Knowledge (XXG)

Aromaticity

Source 📝

257: 136: 1725: 44: 206: 191: 1719: 1731: 457:: The π systems form two parallel rings overlap in a "face-to-face" orientation. Aromatic molecules are also able to interact with each other in an "edge-to-face" orientation: The slight positive charge of the substituents on the ring atoms of one molecule are attracted to the slight negative charge of the aromatic system on another molecule. 473:
was discovered to adopt an asymmetric, rectangular configuration in which single and double bonds indeed alternate; there is no resonance and the single bonds are markedly longer than the double bonds, reducing unfavorable p-orbital overlap. This reduction of symmetry lifts the degeneracy of the two
414:
is not, since the number of π delocalized electrons is 4, which of course is a multiple of 4. The cyclobutadienide (2−) ion, however, is aromatic (6 electrons). An atom in an aromatic system can have other electrons that are not part of the system, and are therefore ignored for the 4n + 2 rule. In
196:
Since they are out of the plane of the atoms, these orbitals can interact with each other freely, and become delocalized. This means that, instead of being tied to one atom of carbon, each electron is shared by all six in the ring. Thus, there are not enough electrons to form double bonds on all the
478:
forces the two unpaired electrons into a new, weakly bonding orbital (and also creates a weakly antibonding orbital). Hence, cyclobutadiene is non-aromatic; the strain of the asymmetric configuration outweighs the anti-aromatic destabilization that would afflict the symmetric, square configuration.
422:
Aromatic molecules typically display enhanced chemical stability, compared to similar non-aromatic molecules. A molecule that can be aromatic will tend to alter its electronic or conformational structure to be in this situation. This extra stability changes the chemistry of the molecule. Aromatic
450:. The NMR signal of protons in the plane of an aromatic ring are shifted substantially further down-field than those on non-aromatic spÂČ carbons. This is an important way of detecting aromaticity. By the same mechanism, the signals of protons located near the ring axis are shifted up-field. 438:
Many of the earliest-known examples of aromatic compounds, such as benzene and toluene, have distinctive pleasant smells. This property led to the term "aromatic" for this class of compounds, and hence the term "aromaticity" for the eventually discovered electronic property.
887:. A π system with 4n electrons in a flat (non-twisted) ring would be anti-aromatic, and therefore highly unstable, due to the symmetry of the combinations of p atomic orbitals. By twisting the ring, the symmetry of the system changes and becomes allowed (see also 1259:
Alexander Kuhn, Puravankara Sreeraj, Rainer Pöttgen, Hans-Dieter Wiemhöfer, Martin Wilkening,Paul Heitjans (2011). "Li NMR Spectroscopy on Crystalline Li12Si7: Experimental Evidence for the Aromaticity of the Planar Cyclopentadienyl-Analogous Si56− Rings".
572:. About 35 million tonnes are produced worldwide every year. They are extracted from complex mixtures obtained by the refining of oil or by distillation of coal tar, and are used to produce a range of important chemicals and polymers, including 151:
compound, which is best represented by a hybrid (average) of these structures, which can be seen at right. A C=C bond is shorter than a C−C bond, but benzene is perfectly hexagonal—all six carbon-carbon bonds have the same
848:) are structurally analogous to benzene, with the carbon atoms replaced by another element or elements. In borazine, the boron and nitrogen atoms alternate around the ring. Quite recently, the aromaticity of planar Si 126:
forms, which corresponds to the double and single bonds superimposing to give rise to six one-and-a-half bonds. Benzene is a more stable molecule than would be expected without accounting for charge delocalization.
464:
and are, in general, destabilized. Molecules that could be antiaromatic will tend to alter their electronic or conformational structure to avoid this situation, thereby becoming non-aromatic. For example,
931:
cation. Guanidinium does not have a ring structure but has six π-electrons which are delocalized over the molecule. However, this concept is controversial and some authors have stressed different effects.
305:) ... and when an additive compound is formed, the inner cycle of affinity suffers disruption, the contiguous carbon-atoms to which nothing has been attached of necessity acquire the ethylenic condition". 419:, the oxygen atom is spÂČ hybridized. One lone pair is in the π system and the other in the plane of the ring (analogous to C-H bond on the other positions). There are 6 π electrons, so furan is aromatic. 340:, since he recognized that his affinities had direction, not merely being point particles, and collectively having a distribution that could be altered by introducing substituents onto the benzene ring ( 110:
to one another. These bonds may be seen as a hybrid of a single bond and a double bond, each bond in the ring identical to every other. This commonly seen model of aromatic rings, namely the idea that
5231: 264:
In the 19th century chemists found it puzzling that benzene could be so unreactive toward addition reactions, given its presumed high degree of unsaturation. The cyclohexatriene structure for
820:
the aromaticity is still retained. Aromaticity also occurs in compounds that are not carbon-based at all. Inorganic 6-membered-ring compounds analogous to benzene have been synthesized.
1485:
R. Caminiti, A. Pieretti, L. Bencivenni, F. Ramondo, N. Sanna (1996). "Amidine N−C(N)−N Skeleton:  Its Structure in Isolated and Hydrogen-Bonded Guanidines from ab Initio Calculations".
1431:
Alberto Gobbi, Gemot Frenking (1993). "Y-Conjugated compounds: the equilibrium geometries and electronic structures of guanidine, guanidinium cation, urea, and 1,1-diaminoethylene".
147:, a double-headed arrow is used to indicate that the two structures are not distinct entities, but merely hypothetical possibilities. Neither is an accurate representation of the 244:, which are not aromatic in the chemical sense. But terpenes and benzenoid substances do have a chemical characteristic in common, namely higher unsaturation indices than many 4347: 272:
in 1865. Over the next few decades, most chemists readily accepted this structure, since it accounted for most of the known isomeric relationships of aromatic chemistry.
4292: 5060: 1818: 1512: 1382: 1336: 1287: 4402: 4552: 3186: 5281: 5055: 4157: 2881: 240:
character to apply to a group of chemical substances only some of which have notable aromas. Also, many of the most odoriferous organic substances known are
3927: 2078: 2030: 1974: 236:
in 1855. If this is indeed the earliest introduction of the term, it is curious that Hofmann says nothing about why he introduced an adjective indicating
4727: 2671: 4822: 2926: 647:), one or more of the atoms in the aromatic ring is of an element other than carbon. This can lessen the ring's aromaticity, and thus (as in the case of 4802: 4297: 3464: 3345: 2901: 79:
exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by
4892: 115: 1936: 1863: 1544: 961: 4647: 2114: 2010: 1350:
Claire Castro, Zhongfang Chen, Chaitanya S. Wannere, Haijun Jiao, William L. Karney, Michael Mauksch, Ralph Puchta, Nico J. R. van Eikema Hommes,
3479: 5125: 4582: 5075: 4687: 4667: 4627: 3434: 5221: 5146: 5030: 3642: 3046: 2377: 5216: 5045: 4702: 4557: 4187: 4032: 3269: 4392: 3882: 3557: 5296: 5080: 4102: 5380: 424: 313: 4657: 5291: 5005: 4867: 4622: 907:. As of 2012, there is no proof that a Möbius aromatic molecule was synthesized. Aromatics with two half-twists corresponding to the 428: 5181: 4652: 4567: 4537: 4517: 4382: 4377: 3752: 3677: 3320: 3274: 3141: 2402: 5120: 283: 5286: 5246: 5196: 4672: 4422: 4352: 2841: 4882: 4487: 3380: 3101: 1798: 4872: 2412: 1783: 5040: 4797: 4747: 3537: 3469: 3360: 2936: 2691: 2616: 2397: 1354:(2005). "Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius Annulene Aromaticity". 1150:
Armit, James Wilson; Robinson, Robert (1925). "CCXI.?Polynuclear heterocyclic aromatic types. Part II. Some anhydronium bases".
888: 4752: 4562: 4037: 3947: 2071: 1967: 1607: 1061:
A. T. Balaban, P. v. R. Schleyer and H. S. Rzepa (2005). "Crocker, Not Armit and Robinson, Begat the Six Aromatic Electrons".
956: 691: 5326: 5110: 5050: 4452: 4427: 4337: 3917: 3797: 2831: 2327: 1634: 5211: 4697: 4492: 2761: 1595: 1585: 5316: 4902: 4412: 3922: 3867: 3712: 3672: 3504: 3259: 2976: 2826: 694:
are molecules containing two or more simple aromatic rings fused together by sharing two neighboring carbon atoms (see also
135: 5276: 4837: 4792: 4282: 4137: 1590: 256: 175:
above and below the ring. This model more correctly represents the location of electron density within the aromatic ring.
5311: 5226: 5085: 5000: 4897: 3972: 3627: 3295: 2706: 2267: 5201: 5176: 5161: 4857: 4722: 4677: 4442: 3987: 3837: 3051: 2731: 2676: 1537: 114:
was formed from a six-membered carbon ring with alternating single and double bonds (cyclohexatriene), was developed by
5206: 5151: 4682: 4097: 3812: 3807: 3300: 3116: 3106: 2821: 2681: 2631: 2626: 2601: 2507: 5375: 5261: 4862: 4782: 4397: 4362: 4207: 3632: 3592: 3489: 3264: 3016: 2961: 2561: 2272: 2262: 2237: 205: 5236: 4937: 4742: 4177: 3742: 3717: 3657: 3249: 2956: 2606: 2791: 4527: 4062: 3514: 2736: 2701: 2297: 2232: 2064: 1960: 308:
Here, Armstrong is describing at least four modern concepts. First, his "affinity" is better known nowadays as the
5095: 4717: 3777: 3702: 3226: 3061: 2746: 2522: 2482: 2227: 1858: 1853: 5336: 5241: 4975: 4947: 4917: 4832: 4762: 4692: 4612: 4512: 4472: 4167: 3787: 3086: 3081: 2543: 2407: 2045: 1843: 1833: 1808: 1778: 190: 5301: 5171: 5035: 4877: 4737: 4257: 3231: 2781: 2741: 2492: 5191: 4787: 4757: 4632: 4587: 4417: 4327: 4142: 4132: 3962: 3519: 3459: 3424: 3211: 3171: 2946: 2816: 2332: 2322: 2252: 1624: 927:
Y-aromaticity is a concept which was developed to explain the extraordinary stability and high basicity of the
469:(COT) distorts itself out of planarity, breaking π overlap between adjacent double bonds. Relatively recently, 4767: 3747: 2771: 2317: 2197: 4980: 5271: 5130: 4922: 4847: 4827: 4547: 4497: 4357: 4322: 4262: 4192: 3494: 3474: 3206: 3126: 3021: 2981: 2951: 2886: 2756: 2666: 2656: 2532: 2242: 1885: 1788: 1760: 1530: 1351: 1232:
Merino, Gabriel; Heine, Thomas; Seifert, Gotthard (2004). "The Induced Magnetic Field in Cyclic Molecules".
912: 600:
The overwhelming majority of aromatic compounds are compounds of carbon, but they need not be hydrocarbons.
1458:
Kenneth B. Wiberg (1990). "Resonance interactions in acyclic systems. 2. Y-Conjugated anions and cations".
487:
Aromatic compounds play key roles in the biochemistry of all living things. The four aromatic amino acids
279:, the discoverer of the electron, proposed three equivalent electrons between each carbon atom in benzene. 5010: 4732: 4482: 4462: 4437: 4387: 4302: 4277: 4232: 4202: 4182: 4152: 4117: 4072: 4047: 4022: 3907: 3832: 3612: 3305: 3241: 3041: 2766: 2686: 2372: 2347: 2124: 2119: 628: 432: 294: 233: 80: 5346: 4092: 2716: 4932: 4887: 4602: 4572: 4542: 4477: 4457: 4372: 4367: 4332: 4287: 4272: 4267: 4247: 4237: 4172: 4162: 4042: 3562: 3365: 2941: 2896: 2726: 2462: 2182: 2144: 1929: 1890: 1506: 1376: 1330: 1281: 904: 790: 640: 443: 342:
much as the distribution of the electric charge in a body is altered by bringing it near to another body
297:, who in 1890 wrote "the (six) centric affinities act within a cycle...benzene may be represented by a 144: 123: 95: 48: 2392: 2387: 1924: 869: 197:
carbon atoms, but the "extra" electrons strengthen all of the bonds on the ring equally. The resulting
4985: 186:
above and below the plane of the ring. The following diagram shows the positions of these p-orbitals:
5115: 5065: 5015: 4995: 4842: 4817: 4532: 4522: 4407: 4222: 4217: 4147: 3932: 3732: 3692: 3622: 3587: 3542: 3509: 3375: 3350: 3330: 3151: 3111: 3071: 3036: 2966: 2721: 2591: 2566: 2104: 1848: 1739: 1602: 1561: 966: 941: 821: 695: 547: 454: 376: 317: 5331: 5321: 5306: 4952: 4927: 4912: 4907: 4637: 4592: 4577: 4467: 4447: 4342: 4227: 4212: 4057: 4002: 3992: 3982: 3957: 3722: 3597: 3572: 3484: 3340: 3325: 3310: 3166: 3131: 3076: 2846: 2696: 2641: 2512: 2427: 2287: 2212: 1750: 1614: 1580: 229: 2357: 1914: 403: 5070: 5020: 4990: 4852: 4642: 4432: 4317: 4252: 4242: 4007: 3937: 3902: 3897: 3877: 3872: 3817: 3727: 3577: 3439: 3429: 3335: 3121: 3066: 2996: 2916: 2811: 2711: 2646: 2571: 2417: 2282: 2217: 1669: 348: 245: 2202: 1301:
D. Ajami, O. Oeckler, A. Simon, R. Herges (2003). "Synthesis of a Möbius aromatic hydrocarbon".
908: 312:, which was to be discovered only seven years later by J. J. Thomson. Second, he is describing 178:
The single bonds are formed with electrons in line between the carbon nuclei — these are called
1177:
Ernest C. Crocker (1922). "Application Of The Octet Theory To Single-Ring Aromatic Compounds".
43: 4807: 4127: 4012: 3977: 3942: 3887: 3842: 3802: 3757: 3737: 3687: 3682: 3652: 3637: 3547: 3454: 3390: 3355: 3181: 3056: 2931: 2856: 2836: 2751: 2586: 2581: 2527: 2437: 2342: 2302: 2257: 2139: 2134: 2099: 2025: 1984: 1900: 1689: 1649: 1639: 1413: 1356: 1318: 1179: 1043: 863: 767: 719: 616: 466: 321: 198: 83:
in 1855. There is no general relationship between aromaticity as a chemical property and the
64: 56: 5341: 5186: 5156: 5100: 5025: 4957: 4712: 4662: 4507: 4312: 4087: 4082: 4027: 4017: 3792: 3602: 3582: 3552: 3449: 3385: 3370: 3201: 3156: 3146: 3136: 3031: 3011: 3006: 2991: 2986: 2866: 2861: 2801: 2786: 2776: 2621: 2611: 2477: 2467: 2457: 2367: 2362: 2337: 2277: 2129: 2088: 2020: 2015: 2005: 1941: 1724: 1681: 1654: 1494: 1467: 1440: 1405: 1364: 1310: 1269: 1241: 1214: 1187: 1159: 1132: 1103: 1072: 1063: 1035: 1008: 976: 759: 723: 269: 68: 770:
dianion (10e). Aromatic properties have been attributed to non-benzenoid compounds such as
402:. That is, 4n + 2 number of π electrons, where n=0, 1, 2, 3, and so on. This is known as 5251: 4942: 4777: 4772: 4067: 4052: 3997: 3952: 3912: 3862: 3827: 3822: 3767: 3762: 3697: 3647: 3567: 3395: 3279: 3254: 3216: 3191: 3176: 3161: 3096: 2971: 2921: 2911: 2891: 2851: 2661: 2651: 2636: 2432: 2352: 2177: 2172: 2040: 1793: 1664: 951: 876: 782: 727: 461: 2222: 2192: 1919: 884: 355:
in 1931. He was the first to separate the bonding electrons into sigma and pi electrons.
282:
An explanation for the exceptional stability of benzene is conventionally attributed to
182:. Double bonds consist of a σ-bond and a π-bond. The π-bonds are formed from overlap of 5256: 5166: 5105: 4197: 4107: 4077: 3852: 3707: 3444: 3221: 3091: 2906: 2876: 2576: 2472: 2247: 2109: 1828: 1629: 971: 946: 805: 475: 470: 411: 183: 91: 31: 5369: 5266: 4967: 4812: 4707: 4502: 3892: 3857: 3847: 3782: 3772: 3662: 3499: 3315: 3026: 3001: 2871: 2517: 2502: 2487: 2382: 2312: 2292: 2207: 2000: 1877: 1837: 1770: 1699: 1572: 1553: 916: 817: 809: 755: 680: 676: 492: 384: 368: 276: 107: 76: 4307: 3667: 3419: 3196: 2796: 2596: 2447: 2442: 2307: 2162: 2035: 1823: 1396:
Rzepa, Henry S. (2005). "A Double-Twist Möbius-Aromatic Conformation of Annulene".
896: 883:
by 4n (n is an integer) electrons, is given a single half-twist to correspond to a
880: 707: 352: 293:
In fact, this concept can be traced further back, via Ernest Crocker in 1922, to
248:, and Hofmann may not have been making a distinction between the two categories. 2806: 2452: 2422: 1952: 892: 813: 801: 797: 735: 699: 540: 532: 399: 380: 161: 157: 153: 1718: 503:
each serve as one of the 20 basic building-blocks of proteins. Further, all 5
5090: 4617: 3967: 2056: 775: 703: 504: 496: 333: 179: 17: 1136: 774:. Aromatic properties are tested to the limit in a class of compounds called 1644: 1619: 928: 763: 672: 660: 585: 527:) that make up the sequence of the genetic code in DNA and RNA are aromatic 488: 237: 84: 72: 35: 1417: 1322: 1273: 1245: 1047: 1012: 2497: 2167: 1218: 1163: 1123:
August Kekulé (1872). "Ueber einige Condensationsproducte des Aldehyds".
833: 664: 656: 652: 612: 516: 500: 389: 309: 241: 99: 1471: 1444: 1314: 1191: 2157: 1205:
Henry Edward Armstrong (1890). "The structure of cycloid hydrocarbon".
771: 731: 668: 608: 581: 573: 555: 551: 528: 520: 512: 508: 265: 172: 111: 51:
forms of benzene (top) combine to produce an average structure (bottom)
1498: 1409: 1368: 1108: 1091: 1076: 1039: 383:
system, most commonly an arrangement of alternating single and double
577: 566: 559: 524: 453:
Aromatic molecules are able to interact with each other in so-called
226: 167:
A better representation is that of the circular π bond (Armstrong's
1730: 351:
origins of this stability, or aromaticity, were first modelled by
648: 589: 416: 42: 1522: 872:
occurs when a cyclic system of molecular orbitals, formed from p
460:
Planar monocyclic molecules containing 4n π electrons are called
336:'s notation. It is argued that he also anticipated the nature of 171:), in which the electron density is evenly distributed through a 536: 410:
Whereas benzene is aromatic (6 electrons, from 3 double bonds),
364: 337: 103: 2541: 2060: 1956: 1526: 1026:
Schleyer, Paul von Ragué (2001). "Introduction: Aromaticity".
751: 739: 447: 866:
is believed to exist in certain metal clusters of aluminium.
90:
Aromaticity can also be considered a manifestation of cyclic
30:"Aromatic" redirects here. For meanings related to odor, see 442:
The circulating π electrons in an aromatic molecule produce
392:
structure, with all the contributing atoms in the same plane
134: 919:
the ring bonds are extended with alkyne and allene groups.
286:, who was apparently the first (in 1925) to coin the term 796:
When carbon in benzene is replaced by other elements in
435:
reactions as happens with carbon-carbon double bonds.
225:
term — namely, to apply to compounds that contain the
122:
section below). The model for benzene consists of two
290:
as a group of six electrons that resists disruption.
63:
is a chemical property describing the way in which a
5232:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
860:
was experimentally evidenced by Li solid state NMR.
5139: 4966: 4601: 4116: 3611: 3528: 3408: 3288: 3240: 2550: 1899: 1876: 1807: 1769: 1749: 1738: 1698: 1680: 1571: 1560: 546:Aromatic compounds are important in industry. Key 651:) increase its reactivity. Other examples include 474:formerly non-bonding molecular orbitals, which by 102:are free to cycle around circular arrangements of 4293:Divinylcyclopropane-cycloheptadiene rearrangement 539:contains an aromatic system with 22 π electrons. 395:Contributing atoms arranged in one or more rings 324:of the ring is broken. He introduced the symbol 260:Historic benzene formulae as proposed by KekulĂ©. 221:The first known use of the word "aromatic" as a 4553:Thermal rearrangement of aromatic hydrocarbons 3187:Thermal rearrangement of aromatic hydrocarbons 5282:Lectka enantioselective beta-lactam synthesis 2072: 1968: 1538: 1152:Journal of the Chemical Society, Transactions 994: 992: 785:where conjugation is interrupted by a single 8: 5061:Inverse electron-demand Diels–Alder reaction 2882:Heterogeneous metal catalyzed cross-coupling 1511:: CS1 maint: multiple names: authors list ( 1381:: CS1 maint: multiple names: authors list ( 1335:: CS1 maint: multiple names: authors list ( 1286:: CS1 maint: multiple names: authors list ( 1207:Proceedings of the Chemical Society (London) 627:where n ≄ 4 and is an even number, such as 398:A number of π delocalized electrons that is 359:Characteristics of aromatic (aryl) compounds 328:centered on the ring as a shorthand for the 4403:Lobry de Bruyn–Van Ekenstein transformation 1092:"Introduction: Delocalization Pi and Sigma" 999:A. W. Hofmann (1855). "On Insolinic Acid". 98:. This is usually considered to be because 34:. For the lack of romantic attraction, see 4963: 3237: 2538: 2079: 2065: 2057: 1975: 1961: 1953: 1746: 1568: 1545: 1531: 1523: 781:A special case of aromaticity is found in 446:that oppose the applied magnetic field in 4893:Petrenko-Kritschenko piperidone synthesis 4348:Fritsch–Buttenberg–Wiechell rearrangement 1107: 5056:Intramolecular Diels–Alder cycloaddition 1937:Polyhedral skeletal electron pair theory 1460:Journal of the American Chemical Society 1433:Journal of the American Chemical Society 255: 106:that are alternately single- and double- 988: 891:for details). Because the twist can be 5076:Metal-centered cycloaddition reactions 4728:Debus–Radziszewski imidazole synthesis 2672:Bodroux–Chichibabin aldehyde synthesis 1504: 1374: 1328: 1279: 899:, the resulting Möbius aromatics are 5222:Diazoalkane 1,3-dipolar cycloaddition 5126:Vinylcyclopropane (5+2) cycloaddition 5031:Diazoalkane 1,3-dipolar cycloaddition 4803:Hurd–Mori 1,2,3-thiadiazole synthesis 4298:Dowd–Beckwith ring-expansion reaction 3465:Hurd–Mori 1,2,3-thiadiazole synthesis 2378:LFER solvent coefficients (data page) 852:rings occurring in the Zintl phase Li 371:atoms with specific characteristics: 7: 4033:Sharpless asymmetric dihydroxylation 3270:Methoxymethylenetriphenylphosphorane 911:topologies were first suggested by 543:also has a similar aromatic system. 4158:Allen–Millar–Trippett rearrangement 425:electrophilic aromatic substitution 314:electrophilic aromatic substitution 5297:Nitrone-olefin (3+2) cycloaddition 5292:Niementowski quinazoline synthesis 5081:Nitrone-olefin (3+2) cycloaddition 5006:Azide-alkyne Huisgen cycloaddition 4868:Niementowski quinazoline synthesis 4623:Azide-alkyne Huisgen cycloaddition 3928:Meerwein–Ponndorf–Verley reduction 3480:Leimgruber–Batcho indole synthesis 429:nucleophilic aromatic substitution 25: 5121:Trimethylenemethane cycloaddition 4823:Johnson–Corey–Chaykovsky reaction 4688:Cadogan–Sundberg indole synthesis 4668:Bohlmann–Rahtz pyridine synthesis 4628:Baeyer–Emmerling indole synthesis 3435:Cadogan–Sundberg indole synthesis 2927:Johnson–Corey–Chaykovsky reaction 1487:The Journal of Physical Chemistry 1090:Schleyer, Paul von RaguĂ© (2005). 316:, proceeding (third) through a 252:The structure of the benzene ring 156:, intermediate between that of a 5217:Cook–Heilbron thiazole synthesis 5046:Hexadehydro Diels–Alder reaction 4873:Niementowski quinoline synthesis 4703:Cook–Heilbron thiazole synthesis 4648:Bischler–Möhlau indole synthesis 4558:Tiffeneau–Demjanov rearrangement 4188:Baker–Venkataraman rearrangement 3346:Horner–Wadsworth–Emmons reaction 3017:Mizoroki-Heck vs. Reductive Heck 2902:Horner–Wadsworth–Emmons reaction 2413:Neighbouring group participation 1729: 1723: 1717: 1001:Proceedings of the Royal Society 692:Polycyclic aromatic hydrocarbons 483:Importance of aromatic compounds 204: 189: 4753:Fiesselmann thiophene synthesis 4583:Westphalen–LettrĂ© rearrangement 4563:Vinylcyclopropane rearrangement 4393:Kornblum–DeLaMare rearrangement 4038:Epoxidation of allylic alcohols 3948:Noyori asymmetric hydrogenation 3883:Kornblum–DeLaMare rearrangement 3558:Gallagher–Hollander degradation 5212:Chichibabin pyridine synthesis 4698:Chichibabin pyridine synthesis 4658:Blum–Ittah aziridine synthesis 4493:Ring expansion and contraction 2762:Cross dehydrogenative coupling 1234:Chemistry – A European Journal 722:are aromatic rings with other 87:properties of such compounds. 1: 5182:Bischler–Napieralski reaction 5140:Heterocycle forming reactions 4793:Hemetsberger indole synthesis 4653:Bischler–Napieralski reaction 4568:Wagner–Meerwein rearrangement 4538:Sommelet–Hauser rearrangement 4518:Seyferth–Gilbert homologation 4383:Ireland–Claisen rearrangement 4378:Hofmann–Martius rearrangement 4138:2,3-sigmatropic rearrangement 3753:Corey–Winter olefin synthesis 3678:Barton–McCombie deoxygenation 3321:Corey–Winter olefin synthesis 3275:Seyferth–Gilbert homologation 3142:Seyferth–Gilbert homologation 400:even, but not a multiple of 4 367:) compound contains a set of 5287:Lehmstedt–Tanasescu reaction 5247:Gabriel–Colman rearrangement 5202:Bucherer carbazole synthesis 5197:Borsche–Drechsel cyclization 5177:Bernthsen acridine synthesis 5162:Bamberger triazine synthesis 5147:Algar–Flynn–Oyamada reaction 4858:Nazarov cyclization reaction 4723:De Kimpe aziridine synthesis 4678:Bucherer carbazole synthesis 4673:Borsche–Drechsel cyclization 4443:Nazarov cyclization reaction 4423:Meyer–Schuster rearrangement 4353:Gabriel–Colman rearrangement 4103:Wolffenstein–Böters reaction 3988:Reduction of nitro compounds 3838:Grundmann aldehyde synthesis 3643:Algar–Flynn–Oyamada reaction 3052:Olefin conversion technology 3047:Nozaki–Hiyama–Kishi reaction 2842:Gabriel–Colman rearrangement 2732:Claisen-Schmidt condensation 2677:Bouveault aldehyde synthesis 726:attached. Examples include 619:excepted) with the formula C 119: 5262:Hantzsch pyridine synthesis 5041:Enone–alkene cycloadditions 4863:Nenitzescu indole synthesis 4783:Hantzsch pyridine synthesis 4748:Ferrario–Ackermann reaction 4398:Kowalski ester homologation 4363:Halogen dance rearrangement 4208:Benzilic acid rearrangement 3633:Akabori amino-acid reaction 3593:Von Braun amide degradation 3538:Barbier–Wieland degradation 3490:Nenitzescu indole synthesis 3470:Kharasch–Sosnovsky reaction 3361:Julia–Kocienski olefination 3265:Kowalski ester homologation 2962:Kowalski ester homologation 2937:Julia–Kocienski olefination 2692:Cadiot–Chodkiewicz coupling 2617:Aza-Baylis–Hillman reaction 2562:Acetoacetic ester synthesis 2273:Dynamic binding (chemistry) 2263:Conrotatory and disrotatory 2238:Charge remote fragmentation 746:Atypical aromatic compounds 596:Types of aromatic compounds 550:of commercial interest are 139:Modern depiction of benzene 5397: 5381:Physical organic chemistry 5327:Robinson–Gabriel synthesis 5277:Kröhnke pyridine synthesis 5111:Retro-Diels–Alder reaction 5051:Imine Diels–Alder reaction 4838:Kröhnke pyridine synthesis 4453:Newman–Kwart rearrangement 4428:Mislow–Evans rearrangement 4338:Fischer–Hepp rearrangement 4283:Di-π-methane rearrangement 4063:Stephen aldehyde synthesis 3798:Eschweiler–Clarke reaction 3515:Williamson ether synthesis 2832:Fujiwara–Moritani reaction 2737:Combes quinoline synthesis 2702:Carbonyl olefin metathesis 2403:More O'Ferrall–Jencks plot 2328:Grunwald–Winstein equation 2298:Electron-withdrawing group 2233:Catalytic resonance theory 1635:Metal–ligand multiple bond 232:— occurs in an article by 29: 5337:Urech hydantoin synthesis 5317:Pomeranz–Fritsch reaction 5242:Fischer oxazole synthesis 4976:1,3-Dipolar cycloaddition 4948:Urech hydantoin synthesis 4918:Reissert indole synthesis 4903:Pomeranz–Fritsch reaction 4833:Knorr quinoline synthesis 4763:Fischer oxazole synthesis 4693:Camps quinoline synthesis 4613:1,3-Dipolar cycloaddition 4513:Semipinacol rearrangement 4488:Ramberg–BĂ€cklund reaction 4473:Piancatelli rearrangement 4413:McFadyen–Stevens reaction 4168:Alpha-ketol rearrangement 3923:McFadyen–Stevens reaction 3868:Kiliani–Fischer synthesis 3788:Elbs persulfate oxidation 3713:Bouveault–Blanc reduction 3673:Baeyer–Villiger oxidation 3505:Schotten–Baumann reaction 3381:Ramberg–BĂ€cklund reaction 3260:Kiliani–Fischer synthesis 3102:Ramberg–BĂ€cklund reaction 3087:Pinacol coupling reaction 3082:Piancatelli rearrangement 2977:Liebeskind–Srogl coupling 2827:Fujimoto–Belleau reaction 2544:List of organic reactions 2408:Negative hyperconjugation 2153: 2095: 2046:List of organic compounds 1991: 1715: 738:, and the nucleotides of 320:, in which (fourth) the 5312:Pictet–Spengler reaction 5227:Einhorn–Brunner reaction 5192:Boger pyridine synthesis 5086:Oxo-Diels–Alder reaction 5001:Aza-Diels–Alder reaction 4898:Pictet–Spengler reaction 4798:Hofmann–Löffler reaction 4788:Hegedus indole synthesis 4758:Fischer indole synthesis 4633:Bartoli indole synthesis 4588:Willgerodt rearrangement 4418:McLafferty rearrangement 4328:Ferrier carbocyclization 4143:2,3-Wittig rearrangement 4133:1,2-Wittig rearrangement 3973:Parikh–Doering oxidation 3963:Oxygen rebound mechanism 3628:Adkins–Peterson reaction 3520:Yamaguchi esterification 3460:Hegedus indole synthesis 3425:Bartoli indole synthesis 3296:Bamford–Stevens reaction 3212:Weinreb ketone synthesis 3172:Stork enamine alkylation 2947:Knoevenagel condensation 2817:Ferrier carbocyclization 2707:Castro–Stephens coupling 2333:Hammett acidity function 2323:Free-energy relationship 2268:Curtin–Hammett principle 2253:Conformational isomerism 1137:10.1002/jlac.18721620110 758:cation (2e system), the 750:Aromaticity is found in 611:, as well as most other 5272:Knorr pyrrole synthesis 5207:Bucherer–Bergs reaction 5152:Allan–Robinson reaction 5131:Wagner-Jauregg reaction 4923:Ring-closing metathesis 4848:Larock indole synthesis 4828:Knorr pyrrole synthesis 4683:Bucherer–Bergs reaction 4548:Stieglitz rearrangement 4528:SkattebĂžl rearrangement 4498:Ring-closing metathesis 4358:Group transfer reaction 4323:Favorskii rearrangement 4263:Cornforth rearrangement 4193:Bamberger rearrangement 4098:Wolff–Kishner reduction 3918:Markó–Lam deoxygenation 3813:Fleming–Tamao oxidation 3808:Fischer–Tropsch process 3495:Oxymercuration reaction 3475:Knorr pyrrole synthesis 3301:Barton–Kellogg reaction 3207:Wagner-Jauregg reaction 3127:Ring-closing metathesis 3117:Reimer–Tiemann reaction 3107:Rauhut–Currier reaction 3022:Nef isocyanide reaction 2982:Malonic ester synthesis 2952:Knorr pyrrole synthesis 2887:High dilution principle 2822:Friedel–Crafts reaction 2757:Cross-coupling reaction 2682:Bucherer–Bergs reaction 2667:Blanc chloromethylation 2657:Blaise ketone synthesis 2632:Baylis–Hillman reaction 2627:Barton–Kellogg reaction 2602:Allan–Robinson reaction 2508:Woodward–Hoffmann rules 2243:Charge-transfer complex 762:anion (6e system), the 275:Between 1897 and 1906, 5237:Feist–Benary synthesis 5011:Bradsher cycloaddition 4981:4+4 Photocycloaddition 4938:Simmons–Smith reaction 4883:PaternĂČ–BĂŒchi reaction 4743:Feist–Benary synthesis 4733:Dieckmann condensation 4483:Pummerer rearrangement 4463:Oxy-Cope rearrangement 4438:Myers allene synthesis 4388:Jacobsen rearrangement 4303:Electrocyclic reaction 4278:Demjanov rearrangement 4233:Buchner ring expansion 4203:Beckmann rearrangement 4183:Aza-Cope rearrangement 4178:Arndt–Eistert reaction 4153:Alkyne zipper reaction 4073:Transfer hydrogenation 4048:Sharpless oxyamination 4023:Selenoxide elimination 3908:Lombardo methylenation 3833:Griesbaum coozonolysis 3743:Corey–Itsuno reduction 3718:Boyland–Sims oxidation 3658:Angeli–Rimini reaction 3306:Boord olefin synthesis 3250:Arndt–Eistert reaction 3242:Homologation reactions 3042:Nitro-Mannich reaction 2957:Kolbe–Schmitt reaction 2767:Cross-coupling partner 2687:Buchner ring expansion 2607:Arndt–Eistert reaction 2373:Kinetic isotope effect 2120:Rearrangement reaction 1274:10.1002/anie.201105081 1246:10.1002/chem.200400457 1013:10.1098/rspl.1856.0002 629:cyclotetradecaheptaene 433:electrophilic addition 295:Henry Edward Armstrong 268:was first proposed by 261: 234:August Wilhelm Hofmann 140: 81:August Wilhelm Hofmann 52: 5096:Pauson–Khand reaction 4933:Sharpless epoxidation 4888:Pechmann condensation 4768:FriedlĂ€nder synthesis 4718:Davis–Beirut reaction 4573:Wallach rearrangement 4543:Stevens rearrangement 4478:Pinacol rearrangement 4458:Overman rearrangement 4373:Hofmann rearrangement 4368:Hayashi rearrangement 4333:Ferrier rearrangement 4288:Dimroth rearrangement 4273:Curtius rearrangement 4268:Criegee rearrangement 4248:Claisen rearrangement 4238:Carroll rearrangement 4173:Amadori rearrangement 4163:Allylic rearrangement 4043:Sharpless epoxidation 3778:Dess–Martin oxidation 3703:Bohn–Schmidt reaction 3563:Hofmann rearrangement 3366:Kauffmann olefination 3289:Olefination reactions 3227:Wurtz–Fittig reaction 3062:Palladium–NHC complex 2942:Kauffmann olefination 2897:Homologation reaction 2747:Corey–House synthesis 2727:Claisen rearrangement 2523:Yukawa–Tsuno equation 2483:Swain–Lupton equation 2463:Spherical aromaticity 2398:Möbius–HĂŒckel concept 2183:Aromatic ring current 2145:Substitution reaction 889:Möbius–HĂŒckel concept 714:Substituted aromatics 696:simple aromatic rings 548:aromatic hydrocarbons 259: 138: 46: 5302:Paal–Knorr synthesis 5172:Barton–Zard reaction 5116:Staudinger synthesis 5066:Ketene cycloaddition 5036:Diels–Alder reaction 5016:Cheletropic reaction 4996:Alkyne trimerisation 4878:Paal–Knorr synthesis 4843:Kulinkovich reaction 4818:Jacobsen epoxidation 4738:Diels–Alder reaction 4533:Smiles rearrangement 4523:Sigmatropic reaction 4408:Lossen rearrangement 4258:Corey–Fuchs reaction 4223:Boekelheide reaction 4218:Bergmann degradation 4148:Achmatowicz reaction 3933:Methionine sulfoxide 3733:Clemmensen reduction 3693:Bergmann degradation 3623:Acyloin condensation 3588:Strecker degradation 3543:Bergmann degradation 3510:Ullmann condensation 3376:Peterson olefination 3351:Hydrazone iodination 3331:Elimination reaction 3232:Zincke–Suhl reaction 3152:Sonogashira coupling 3112:Reformatsky reaction 3072:Peterson olefination 3037:Nierenstein reaction 2967:Kulinkovich reaction 2782:Diels–Alder reaction 2742:Corey–Fuchs reaction 2722:Claisen condensation 2592:Alkyne trimerisation 2567:Acyloin condensation 2533:ÎŁ-bishomoaromaticity 2493:Thorpe–Ingold effect 2105:Elimination reaction 1625:Coordinate (dipolar) 1352:Paul von R. Schleyer 1262:Angew. Chem. Int. Ed 1219:10.1039/PL8900600095 1164:10.1039/CT9252701604 967:Simple aromatic ring 942:Aromatic hydrocarbon 732:acetylsalicylic acid 332:, thus anticipating 318:Wheland intermediate 5322:Prilezhaev reaction 5307:Pellizzari reaction 4986:(4+3) cycloaddition 4953:Van Leusen reaction 4928:Robinson annulation 4913:Pschorr cyclization 4908:Prilezhaev reaction 4638:Bergman cyclization 4593:Wolff rearrangement 4578:Weerman degradation 4468:Pericyclic reaction 4448:Neber rearrangement 4343:Fries rearrangement 4228:Brook rearrangement 4213:Bergman cyclization 4058:Staudinger reaction 4003:Rosenmund reduction 3993:Reductive amination 3958:Oppenauer oxidation 3748:Corey–Kim oxidation 3723:Cannizzaro reaction 3598:Weerman degradation 3573:Isosaccharinic acid 3485:Mukaiyama hydration 3341:Hofmann elimination 3326:Dehydrohalogenation 3311:Chugaev elimination 3132:Robinson annulation 3077:Pfitzinger reaction 2847:Gattermann reaction 2792:Wulff–Dötz reaction 2772:Dakin–West reaction 2697:Carbonyl allylation 2642:Bergman cyclization 2428:Kennedy J. P. Orton 2348:Hammond's postulate 2318:Flippin–Lodge angle 2288:Electromeric effect 2213:Beta-silicon effect 2198:Baker–Nathan effect 1799:C–H···O interaction 1581:Electron deficiency 1472:10.1021/ja00167a011 1445:10.1021/ja00059a035 1315:10.1038/nature02224 1192:10.1021/ja01429a002 879:and populated in a 604:Neutral homocyclics 431:reactions, but not 284:Sir Robert Robinson 246:aliphatic compounds 217:The term "aromatic" 143:As is standard for 5376:Aromatic compounds 5071:McCormack reaction 5021:Conia-ene reaction 4853:Madelung synthesis 4643:Biginelli reaction 4433:Mumm rearrangement 4318:Favorskii reaction 4253:Cope rearrangement 4243:Chan rearrangement 4008:Rubottom oxidation 3938:Miyaura borylation 3903:Lipid peroxidation 3898:Lindgren oxidation 3878:Kornblum oxidation 3873:Kolbe electrolysis 3818:Fukuyama reduction 3728:Carbonyl reduction 3578:Marker degradation 3440:Diazonium compound 3430:Boudouard reaction 3409:Carbon-heteroatom 3336:Grieco elimination 3122:Rieche formylation 3067:Passerini reaction 2997:Meerwein arylation 2917:Hydroxymethylation 2812:Favorskii reaction 2712:Chan rearrangement 2647:Biginelli reaction 2572:Aldol condensation 2418:2-Norbornyl cation 2393:Möbius aromaticity 2388:Markovnikov's rule 2283:Effective molarity 2228:BĂŒrgi–Dunitz angle 2218:Bicycloaromaticity 1784:Resonance-assisted 870:Möbius aromaticity 766:ion (6e), and the 720:chemical compounds 423:compounds undergo 349:quantum mechanical 262: 145:resonance diagrams 141: 53: 5363: 5362: 5359: 5358: 5355: 5354: 5347:Wohl–Aue reaction 4991:6+4 Cycloaddition 4808:Iodolactonization 4128:1,2-rearrangement 4093:Wohl–Aue reaction 4013:Sabatier reaction 3978:Pinnick oxidation 3943:Mozingo reduction 3888:Leuckart reaction 3843:Haloform reaction 3758:Criegee oxidation 3738:Collins oxidation 3688:Benkeser reaction 3683:Bechamp reduction 3653:Andrussow process 3638:Alcohol oxidation 3548:Edman degradation 3455:Haloform reaction 3404: 3403: 3391:Takai olefination 3356:Julia olefination 3182:Takai olefination 3057:Olefin metathesis 2932:Julia olefination 2857:Grignard reaction 2837:Fukuyama coupling 2752:Coupling reaction 2717:Chan–Lam coupling 2587:Alkyne metathesis 2582:Alkane metathesis 2438:Phosphaethynolate 2343:George S. Hammond 2303:Electronic effect 2258:Conjugated system 2140:Stereospecificity 2135:Stereoselectivity 2100:Addition reaction 2089:organic reactions 2054: 2053: 2026:Organic synthesis 2021:Organic reactions 2016:Organic compounds 2006:Functional groups 1985:organic chemistry 1950: 1949: 1901:Electron counting 1872: 1871: 1761:London dispersion 1713: 1712: 1690:Metal aromaticity 1499:10.1021/jp960311p 1410:10.1021/ol0518333 1369:10.1021/ja0458165 1357:J. Am. Chem. Soc. 1180:J. Am. Chem. Soc. 1125:Liebigs Ann. Chem 1109:10.1021/cr030095y 1077:10.1021/cr0300946 1071:(10): 3436–3447. 1040:10.1021/cr0103221 864:Metal aromaticity 768:cyclooctatetraene 724:functional groups 617:cyclodecapentaene 467:cyclooctatetraene 199:molecular orbital 184:atomic p-orbitals 69:unsaturated bonds 57:organic chemistry 27:Chemical property 16:(Redirected from 5388: 5342:Wenker synthesis 5332:StollĂ© synthesis 5187:Bobbitt reaction 5157:Auwers synthesis 5101:Povarov reaction 5026:Cyclopropanation 4964: 4958:Wenker synthesis 4713:Darzens reaction 4663:Bobbitt reaction 4508:Schmidt reaction 4313:Enyne metathesis 4088:Whiting reaction 4083:Wharton reaction 4028:Shapiro reaction 4018:Sarett oxidation 3983:PrĂ©vost reaction 3793:Emde degradation 3603:Wohl degradation 3583:Ruff degradation 3553:Emde degradation 3450:Grignard reagent 3386:Shapiro reaction 3371:McMurry reaction 3238: 3202:Ullmann reaction 3167:StollĂ© synthesis 3157:Stetter reaction 3147:Shapiro reaction 3137:Sakurai reaction 3032:Negishi coupling 3012:Minisci reaction 3007:Michael reaction 2992:McMurry reaction 2987:Mannich reaction 2867:Hammick reaction 2862:Grignard reagent 2802:Enyne metathesis 2787:Doebner reaction 2777:Darzens reaction 2622:Barbier reaction 2612:Auwers synthesis 2539: 2513:Woodward's rules 2478:Superaromaticity 2468:Spiroaromaticity 2368:Inductive effect 2363:Hyperconjugation 2338:Hammett equation 2278:Edwards equation 2130:Regioselectivity 2081: 2074: 2067: 2058: 2001:Covalent bonding 1977: 1970: 1963: 1954: 1942:Jemmis mno rules 1794:Dihydrogen bonds 1747: 1733: 1727: 1721: 1655:Hyperconjugation 1569: 1547: 1540: 1533: 1524: 1517: 1516: 1510: 1502: 1482: 1476: 1475: 1455: 1449: 1448: 1428: 1422: 1421: 1393: 1387: 1386: 1380: 1372: 1363:(8): 2425–2432. 1347: 1341: 1340: 1334: 1326: 1309:(6968): 819–21. 1298: 1292: 1291: 1285: 1277: 1256: 1250: 1249: 1229: 1223: 1222: 1202: 1196: 1195: 1186:(8): 1618–1630. 1174: 1168: 1167: 1147: 1141: 1140: 1120: 1114: 1113: 1111: 1096:Chemical Reviews 1087: 1081: 1080: 1064:Chemical Reviews 1058: 1052: 1051: 1028:Chemical Reviews 1023: 1017: 1016: 996: 977:Avoided crossing 760:cyclopentadienyl 698:). Examples are 683:, for example). 535:. The molecule 369:covalently bound 363:An aromatic (or 208: 201:has π symmetry. 193: 21: 5396: 5395: 5391: 5390: 5389: 5387: 5386: 5385: 5366: 5365: 5364: 5351: 5252:Gewald reaction 5135: 4962: 4943:Skraup reaction 4778:Graham reaction 4773:Gewald reaction 4604: 4597: 4119: 4112: 4068:Swern oxidation 4053:Stahl oxidation 3998:Riley oxidation 3953:Omega oxidation 3913:Luche reduction 3863:Jones oxidation 3828:Glycol cleavage 3823:Ganem oxidation 3768:Davis oxidation 3763:Dakin oxidation 3698:Birch reduction 3648:Amide reduction 3614: 3607: 3568:Hooker reaction 3530: 3524: 3412: 3410: 3400: 3396:Wittig reaction 3284: 3280:Wittig reaction 3255:Hooker reaction 3236: 3217:Wittig reaction 3192:Thorpe reaction 3177:Suzuki reaction 3162:Stille reaction 3097:Quelet reaction 2972:Kumada coupling 2922:Ivanov reaction 2912:Hydrovinylation 2892:Hiyama coupling 2852:Glaser coupling 2662:Blaise reaction 2652:Bingel reaction 2637:Benary reaction 2554: 2552: 2546: 2537: 2433:Passive binding 2353:Homoaromaticity 2203:Baldwin's rules 2178:Antiaromaticity 2173:Anomeric effect 2149: 2091: 2085: 2055: 2050: 2041:Stereochemistry 1987: 1981: 1951: 1946: 1895: 1868: 1811: 1803: 1765: 1752: 1742: 1734: 1728: 1722: 1709: 1694: 1676: 1564: 1556: 1551: 1521: 1520: 1503: 1493:: 10928–10935. 1484: 1483: 1479: 1457: 1456: 1452: 1430: 1429: 1425: 1398:Organic Letters 1395: 1394: 1390: 1373: 1349: 1348: 1344: 1327: 1300: 1299: 1295: 1278: 1258: 1257: 1253: 1231: 1230: 1226: 1204: 1203: 1199: 1176: 1175: 1171: 1149: 1148: 1144: 1122: 1121: 1117: 1089: 1088: 1084: 1060: 1059: 1055: 1025: 1024: 1020: 998: 997: 990: 985: 952:BTX (chemistry) 938: 925: 877:atomic orbitals 875: 859: 855: 851: 847: 843: 839: 831: 827: 822:Hexasilabenzene 783:homoaromaticity 748: 728:trinitrotoluene 716: 689: 637: 626: 622: 606: 598: 485: 361: 288:aromatic sextet 254: 219: 214: 133: 39: 28: 23: 22: 15: 12: 11: 5: 5394: 5392: 5384: 5383: 5378: 5368: 5367: 5361: 5360: 5357: 5356: 5353: 5352: 5350: 5349: 5344: 5339: 5334: 5329: 5324: 5319: 5314: 5309: 5304: 5299: 5294: 5289: 5284: 5279: 5274: 5269: 5264: 5259: 5257:Hantzsch ester 5254: 5249: 5244: 5239: 5234: 5229: 5224: 5219: 5214: 5209: 5204: 5199: 5194: 5189: 5184: 5179: 5174: 5169: 5167:Banert cascade 5164: 5159: 5154: 5149: 5143: 5141: 5137: 5136: 5134: 5133: 5128: 5123: 5118: 5113: 5108: 5106:Prato reaction 5103: 5098: 5093: 5088: 5083: 5078: 5073: 5068: 5063: 5058: 5053: 5048: 5043: 5038: 5033: 5028: 5023: 5018: 5013: 5008: 5003: 4998: 4993: 4988: 4983: 4978: 4972: 4970: 4961: 4960: 4955: 4950: 4945: 4940: 4935: 4930: 4925: 4920: 4915: 4910: 4905: 4900: 4895: 4890: 4885: 4880: 4875: 4870: 4865: 4860: 4855: 4850: 4845: 4840: 4835: 4830: 4825: 4820: 4815: 4810: 4805: 4800: 4795: 4790: 4785: 4780: 4775: 4770: 4765: 4760: 4755: 4750: 4745: 4740: 4735: 4730: 4725: 4720: 4715: 4710: 4705: 4700: 4695: 4690: 4685: 4680: 4675: 4670: 4665: 4660: 4655: 4650: 4645: 4640: 4635: 4630: 4625: 4620: 4615: 4609: 4607: 4599: 4598: 4596: 4595: 4590: 4585: 4580: 4575: 4570: 4565: 4560: 4555: 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4510: 4505: 4500: 4495: 4490: 4485: 4480: 4475: 4470: 4465: 4460: 4455: 4450: 4445: 4440: 4435: 4430: 4425: 4420: 4415: 4410: 4405: 4400: 4395: 4390: 4385: 4380: 4375: 4370: 4365: 4360: 4355: 4350: 4345: 4340: 4335: 4330: 4325: 4320: 4315: 4310: 4305: 4300: 4295: 4290: 4285: 4280: 4275: 4270: 4265: 4260: 4255: 4250: 4245: 4240: 4235: 4230: 4225: 4220: 4215: 4210: 4205: 4200: 4198:Banert cascade 4195: 4190: 4185: 4180: 4175: 4170: 4165: 4160: 4155: 4150: 4145: 4140: 4135: 4130: 4124: 4122: 4118:Rearrangement 4114: 4113: 4111: 4110: 4108:Zinin reaction 4105: 4100: 4095: 4090: 4085: 4080: 4078:Wacker process 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4005: 4000: 3995: 3990: 3985: 3980: 3975: 3970: 3965: 3960: 3955: 3950: 3945: 3940: 3935: 3930: 3925: 3920: 3915: 3910: 3905: 3900: 3895: 3890: 3885: 3880: 3875: 3870: 3865: 3860: 3855: 3853:Hydrogenolysis 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3805: 3803:Étard reaction 3800: 3795: 3790: 3785: 3780: 3775: 3770: 3765: 3760: 3755: 3750: 3745: 3740: 3735: 3730: 3725: 3720: 3715: 3710: 3708:Bosch reaction 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3619: 3617: 3613:Organic redox 3609: 3608: 3606: 3605: 3600: 3595: 3590: 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3534: 3532: 3526: 3525: 3523: 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3445:Esterification 3442: 3437: 3432: 3427: 3422: 3416: 3414: 3406: 3405: 3402: 3401: 3399: 3398: 3393: 3388: 3383: 3378: 3373: 3368: 3363: 3358: 3353: 3348: 3343: 3338: 3333: 3328: 3323: 3318: 3313: 3308: 3303: 3298: 3292: 3290: 3286: 3285: 3283: 3282: 3277: 3272: 3267: 3262: 3257: 3252: 3246: 3244: 3235: 3234: 3229: 3224: 3222:Wurtz reaction 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3139: 3134: 3129: 3124: 3119: 3114: 3109: 3104: 3099: 3094: 3092:Prins reaction 3089: 3084: 3079: 3074: 3069: 3064: 3059: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3019: 3014: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2944: 2939: 2934: 2929: 2924: 2919: 2914: 2909: 2907:Hydrocyanation 2904: 2899: 2894: 2889: 2884: 2879: 2877:Henry reaction 2874: 2869: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2824: 2819: 2814: 2809: 2804: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2764: 2759: 2754: 2749: 2744: 2739: 2734: 2729: 2724: 2719: 2714: 2709: 2704: 2699: 2694: 2689: 2684: 2679: 2674: 2669: 2664: 2659: 2654: 2649: 2644: 2639: 2634: 2629: 2624: 2619: 2614: 2609: 2604: 2599: 2594: 2589: 2584: 2579: 2577:Aldol reaction 2574: 2569: 2564: 2558: 2556: 2551:Carbon-carbon 2548: 2547: 2542: 2536: 2535: 2530: 2528:Zaitsev's rule 2525: 2520: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2473:Steric effects 2470: 2465: 2460: 2455: 2450: 2445: 2440: 2435: 2430: 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2275: 2270: 2265: 2260: 2255: 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2154: 2151: 2150: 2148: 2147: 2142: 2137: 2132: 2127: 2125:Redox reaction 2122: 2117: 2112: 2110:Polymerization 2107: 2102: 2096: 2093: 2092: 2086: 2084: 2083: 2076: 2069: 2061: 2052: 2051: 2049: 2048: 2043: 2038: 2033: 2028: 2023: 2018: 2013: 2008: 2003: 1998: 1992: 1989: 1988: 1982: 1980: 1979: 1972: 1965: 1957: 1948: 1947: 1945: 1944: 1939: 1934: 1933: 1932: 1927: 1922: 1917: 1906: 1904: 1897: 1896: 1894: 1893: 1888: 1882: 1880: 1874: 1873: 1870: 1869: 1867: 1866: 1861: 1856: 1851: 1846: 1841: 1831: 1826: 1821: 1815: 1813: 1805: 1804: 1802: 1801: 1796: 1791: 1786: 1781: 1775: 1773: 1767: 1766: 1764: 1763: 1757: 1755: 1744: 1740:Intermolecular 1736: 1735: 1716: 1714: 1711: 1710: 1708: 1707: 1704: 1702: 1696: 1695: 1693: 1692: 1686: 1684: 1678: 1677: 1675: 1674: 1673: 1672: 1667: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1611: 1610: 1600: 1599: 1598: 1593: 1588: 1577: 1575: 1566: 1562:Intramolecular 1558: 1557: 1554:Chemical bonds 1552: 1550: 1549: 1542: 1535: 1527: 1519: 1518: 1477: 1450: 1423: 1404:(21): 4637–9. 1388: 1342: 1293: 1251: 1224: 1213:(85): 95–106. 1197: 1169: 1142: 1115: 1082: 1053: 1018: 987: 986: 984: 981: 980: 979: 974: 972:Pi interaction 969: 964: 959: 954: 949: 947:Aromatic amine 944: 937: 934: 924: 921: 913:Johann Listing 873: 857: 853: 849: 845: 841: 837: 829: 825: 818:pyrylium salts 806:germanabenzene 747: 744: 715: 712: 688: 685: 636: 633: 624: 620: 605: 602: 597: 594: 484: 481: 471:cyclobutadiene 412:cyclobutadiene 408: 407: 396: 393: 387: 360: 357: 338:wave mechanics 253: 250: 218: 215: 213: 210: 160:and that of a 132: 129: 92:delocalization 77:empty orbitals 47:Two different 32:aroma compound 26: 24: 18:Aromatic rings 14: 13: 10: 9: 6: 4: 3: 2: 5393: 5382: 5379: 5377: 5374: 5373: 5371: 5348: 5345: 5343: 5340: 5338: 5335: 5333: 5330: 5328: 5325: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5303: 5300: 5298: 5295: 5293: 5290: 5288: 5285: 5283: 5280: 5278: 5275: 5273: 5270: 5268: 5267:Herz reaction 5265: 5263: 5260: 5258: 5255: 5253: 5250: 5248: 5245: 5243: 5240: 5238: 5235: 5233: 5230: 5228: 5225: 5223: 5220: 5218: 5215: 5213: 5210: 5208: 5205: 5203: 5200: 5198: 5195: 5193: 5190: 5188: 5185: 5183: 5180: 5178: 5175: 5173: 5170: 5168: 5165: 5163: 5160: 5158: 5155: 5153: 5150: 5148: 5145: 5144: 5142: 5138: 5132: 5129: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5097: 5094: 5092: 5089: 5087: 5084: 5082: 5079: 5077: 5074: 5072: 5069: 5067: 5064: 5062: 5059: 5057: 5054: 5052: 5049: 5047: 5044: 5042: 5039: 5037: 5034: 5032: 5029: 5027: 5024: 5022: 5019: 5017: 5014: 5012: 5009: 5007: 5004: 5002: 4999: 4997: 4994: 4992: 4989: 4987: 4984: 4982: 4979: 4977: 4974: 4973: 4971: 4969: 4968:Cycloaddition 4965: 4959: 4956: 4954: 4951: 4949: 4946: 4944: 4941: 4939: 4936: 4934: 4931: 4929: 4926: 4924: 4921: 4919: 4916: 4914: 4911: 4909: 4906: 4904: 4901: 4899: 4896: 4894: 4891: 4889: 4886: 4884: 4881: 4879: 4876: 4874: 4871: 4869: 4866: 4864: 4861: 4859: 4856: 4854: 4851: 4849: 4846: 4844: 4841: 4839: 4836: 4834: 4831: 4829: 4826: 4824: 4821: 4819: 4816: 4814: 4813:Isay reaction 4811: 4809: 4806: 4804: 4801: 4799: 4796: 4794: 4791: 4789: 4786: 4784: 4781: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4709: 4708:Cycloaddition 4706: 4704: 4701: 4699: 4696: 4694: 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4666: 4664: 4661: 4659: 4656: 4654: 4651: 4649: 4646: 4644: 4641: 4639: 4636: 4634: 4631: 4629: 4626: 4624: 4621: 4619: 4616: 4614: 4611: 4610: 4608: 4606: 4603:Ring forming 4600: 4594: 4591: 4589: 4586: 4584: 4581: 4579: 4576: 4574: 4571: 4569: 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4509: 4506: 4504: 4503:Rupe reaction 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4484: 4481: 4479: 4476: 4474: 4471: 4469: 4466: 4464: 4461: 4459: 4456: 4454: 4451: 4449: 4446: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4371: 4369: 4366: 4364: 4361: 4359: 4356: 4354: 4351: 4349: 4346: 4344: 4341: 4339: 4336: 4334: 4331: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4306: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4209: 4206: 4204: 4201: 4199: 4196: 4194: 4191: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4129: 4126: 4125: 4123: 4121: 4115: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3944: 3941: 3939: 3936: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3911: 3909: 3906: 3904: 3901: 3899: 3896: 3894: 3893:Ley oxidation 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3858:Hydroxylation 3856: 3854: 3851: 3849: 3848:Hydrogenation 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3791: 3789: 3786: 3784: 3783:DNA oxidation 3781: 3779: 3776: 3774: 3773:Deoxygenation 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3663:Aromatization 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3620: 3618: 3616: 3610: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3535: 3533: 3527: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3500:Reed reaction 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3417: 3415: 3411:bond forming 3407: 3397: 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3316:Cope reaction 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3293: 3291: 3287: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3247: 3245: 3243: 3239: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3027:Nef synthesis 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3002:Methylenation 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2872:Heck reaction 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2633: 2630: 2628: 2625: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2605: 2603: 2600: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2559: 2557: 2553:bond forming 2549: 2545: 2540: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2518:Y-aromaticity 2516: 2514: 2511: 2509: 2506: 2504: 2503:Walsh diagram 2501: 2499: 2496: 2494: 2491: 2489: 2488:Taft equation 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2458:ÎŁ-aromaticity 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2383:Marcus theory 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2358:HĂŒckel's rule 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2313:Evelyn effect 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2293:Electron-rich 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2208:Bema Hapothle 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2155: 2152: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2097: 2094: 2090: 2082: 2077: 2075: 2070: 2068: 2063: 2062: 2059: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1993: 1990: 1986: 1978: 1973: 1971: 1966: 1964: 1959: 1958: 1955: 1943: 1940: 1938: 1935: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1915:HĂŒckel's rule 1913: 1912: 1911: 1908: 1907: 1905: 1902: 1898: 1892: 1889: 1887: 1884: 1883: 1881: 1879: 1878:Bond cleavage 1875: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1844:Intercalation 1842: 1839: 1835: 1834:Metallophilic 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1816: 1814: 1810: 1806: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1776: 1774: 1772: 1768: 1762: 1759: 1758: 1756: 1754: 1751:Van der Waals 1748: 1745: 1741: 1737: 1732: 1726: 1720: 1706: 1705: 1703: 1701: 1697: 1691: 1688: 1687: 1685: 1683: 1679: 1671: 1668: 1666: 1663: 1662: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1609: 1606: 1605: 1604: 1601: 1597: 1594: 1592: 1589: 1587: 1584: 1583: 1582: 1579: 1578: 1576: 1574: 1570: 1567: 1563: 1559: 1555: 1548: 1543: 1541: 1536: 1534: 1529: 1528: 1525: 1514: 1508: 1500: 1496: 1492: 1488: 1481: 1478: 1473: 1469: 1466:: 4177–4182. 1465: 1461: 1454: 1451: 1446: 1442: 1439:: 2362–2372. 1438: 1434: 1427: 1424: 1419: 1415: 1411: 1407: 1403: 1399: 1392: 1389: 1384: 1378: 1370: 1366: 1362: 1359: 1358: 1353: 1346: 1343: 1338: 1332: 1324: 1320: 1316: 1312: 1308: 1304: 1297: 1294: 1289: 1283: 1275: 1271: 1268:(50): 12099. 1267: 1263: 1255: 1252: 1247: 1243: 1239: 1235: 1228: 1225: 1220: 1216: 1212: 1208: 1201: 1198: 1193: 1189: 1185: 1182: 1181: 1173: 1170: 1165: 1161: 1157: 1153: 1146: 1143: 1138: 1134: 1131:(1): 77–124. 1130: 1126: 1119: 1116: 1110: 1105: 1101: 1097: 1093: 1086: 1083: 1078: 1074: 1070: 1066: 1065: 1057: 1054: 1049: 1045: 1041: 1037: 1034:(5): 1115–8. 1033: 1029: 1022: 1019: 1014: 1010: 1006: 1002: 995: 993: 989: 982: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 943: 940: 939: 935: 933: 930: 923:Y-aromaticity 922: 920: 918: 917:carbo-benzene 914: 910: 906: 902: 898: 894: 890: 886: 882: 878: 871: 867: 865: 861: 835: 823: 819: 815: 811: 810:stannabenzene 807: 803: 799: 794: 793:carbon atom. 792: 788: 784: 779: 777: 773: 769: 765: 761: 757: 756:cyclopropenyl 754:as well: the 753: 745: 743: 741: 737: 733: 729: 725: 721: 713: 711: 709: 705: 701: 697: 693: 686: 684: 682: 681:benzimidazole 678: 677:benzannulated 674: 670: 666: 662: 658: 654: 650: 646: 645:heteroaromats 642: 635:Heterocyclics 634: 632: 630: 618: 614: 610: 603: 601: 595: 593: 591: 587: 583: 579: 575: 571: 569: 564: 562: 557: 553: 549: 544: 542: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 493:phenylalanine 490: 482: 480: 477: 472: 468: 463: 458: 456: 451: 449: 445: 444:ring currents 440: 436: 434: 430: 426: 420: 418: 413: 405: 404:HĂŒckel's Rule 401: 397: 394: 391: 388: 386: 382: 378: 374: 373: 372: 370: 366: 358: 356: 354: 350: 345: 343: 339: 335: 331: 327: 323: 319: 315: 311: 306: 304: 300: 296: 291: 289: 285: 280: 278: 277:J. J. Thomson 273: 271: 270:August KekulĂ© 267: 258: 251: 249: 247: 243: 239: 235: 231: 228: 224: 216: 211: 209: 207: 202: 200: 194: 192: 187: 185: 181: 176: 174: 170: 165: 163: 159: 155: 150: 146: 137: 130: 128: 125: 121: 117: 113: 109: 105: 101: 97: 93: 88: 86: 82: 78: 74: 70: 66: 62: 58: 50: 45: 41: 37: 33: 19: 4308:Ene reaction 3668:Autoxidation 3529:Degradation 3420:Azo coupling 3197:Ugi reaction 2797:Ene reaction 2597:Alkynylation 2448:Polyfluorene 2443:Polar effect 2308:Electrophile 2223:Bredt's rule 2193:Baird's rule 2187: 2163:Alpha effect 2036:Spectroscopy 2031:Publications 2011:Nomenclature 1995: 1983:Concepts in 1920:Baird's rule 1909: 1659: 1640:Charge-shift 1603:Hypervalence 1507:cite journal 1490: 1486: 1480: 1463: 1459: 1453: 1436: 1432: 1426: 1401: 1397: 1391: 1377:cite journal 1360: 1355: 1345: 1331:cite journal 1306: 1302: 1296: 1282:cite journal 1265: 1261: 1254: 1240:(17): 4367. 1237: 1233: 1227: 1210: 1206: 1200: 1183: 1178: 1172: 1155: 1151: 1145: 1128: 1124: 1118: 1102:(10): 3433. 1099: 1095: 1085: 1068: 1062: 1056: 1031: 1027: 1021: 1004: 1000: 926: 901:dissymmetric 900: 897:right-handed 885:Möbius strip 881:closed shell 868: 862: 795: 786: 780: 749: 717: 708:phenanthrene 690: 675:, and their 644: 641:heterocyclic 638: 607: 599: 567: 560: 545: 486: 462:antiaromatic 459: 455:π-π stacking 452: 441: 437: 421: 409: 362: 346: 341: 329: 325: 307: 302: 298: 292: 287: 281: 274: 263: 222: 220: 203: 195: 188: 177: 168: 166: 148: 142: 89: 60: 54: 40: 2807:Ethenolysis 2453:Ring strain 2423:Nucleophile 2248:Clar's rule 2188:Aromaticity 1996:Aromaticity 1910:Aromaticity 1886:Heterolysis 1864:Salt bridge 1809:Noncovalent 1779:Low-barrier 1660:Aromaticity 1650:Conjugation 1630:Pi backbond 929:guanidinium 893:left-handed 814:phosphorine 802:silabenzene 798:borabenzene 776:cyclophanes 736:paracetamol 734:(aspirin), 700:naphthalene 687:Polycyclics 643:aromatics ( 541:Chlorophyll 533:pyrimidines 505:nucleotides 476:Hund's rule 379:conjugated 377:delocalized 330:inner cycle 322:conjugation 299:double ring 169:inner cycle 162:double bond 61:aromaticity 5370:Categories 5091:Ozonolysis 4618:Annulation 3968:Ozonolysis 2087:Topics in 1838:aurophilic 1819:Mechanical 983:References 909:paradromic 791:hybridized 704:anthracene 497:tryptophan 334:Erich Clar 73:lone pairs 65:conjugated 4605:reactions 4120:reactions 3615:reactions 3531:reactions 3413:reactions 2555:reactions 1930:spherical 1891:Homolysis 1854:Cation–pi 1829:Chalcogen 1789:Symmetric 1645:Hapticity 764:tropylium 679:analogs ( 673:thiophene 661:imidazole 613:annulenes 586:polyester 489:histidine 238:olfactory 124:resonance 100:electrons 96:resonance 85:olfactory 49:resonance 36:aromantic 2498:Vinylogy 2168:Annulene 2115:Reagents 1859:Anion–pi 1849:Stacking 1771:Hydrogen 1682:Metallic 1573:Covalent 1565:(strong) 1418:16209498 1323:14685233 1158:: 1604. 1048:11749368 936:See also 834:borazine 665:pyrazole 657:pyrazine 653:pyridine 517:cytosine 501:tyrosine 390:Coplanar 310:electron 242:terpenes 223:chemical 67:ring of 2158:A value 1824:Halogen 1670:bicyclo 1615:Agostic 1007:: 1–3. 772:tropone 730:(TNT), 669:oxazole 609:Benzene 582:aniline 574:styrene 570:-xylene 563:-xylene 556:toluene 552:benzene 529:purines 521:guanine 513:thymine 509:adenine 266:benzene 230:radical 212:History 180:σ-bonds 120:History 112:benzene 94:and of 1925:Möbius 1753:forces 1743:(weak) 1416:  1321:  1303:Nature 1046:  905:chiral 832:) and 706:, and 578:phenol 525:uracil 523:, and 499:, and 353:HĂŒckel 227:phenyl 173:π-bond 158:single 154:length 149:actual 131:Theory 116:KekulĂ© 108:bonded 1903:rules 1812:other 1700:Ionic 1608:3c–4e 1596:8c–2e 1591:4c–2e 1586:3c–2e 915:. In 718:Many 649:furan 590:nylon 561:ortho 417:furan 385:bonds 118:(see 104:atoms 75:, or 1665:homo 1620:Bent 1513:link 1414:PMID 1383:link 1337:link 1319:PMID 1288:link 1044:PMID 962:SARA 895:or 752:ions 588:and 568:para 565:and 537:heme 427:and 365:aryl 347:The 1495:doi 1491:100 1468:doi 1464:112 1441:doi 1437:115 1406:doi 1365:doi 1361:127 1311:doi 1307:426 1270:doi 1242:doi 1215:doi 1188:doi 1160:doi 1156:127 1133:doi 1129:162 1104:doi 1100:105 1073:doi 1069:105 1036:doi 1032:101 1009:doi 957:PAH 903:or 824:(Si 816:or 740:DNA 639:In 531:or 448:NMR 344:). 303:sic 55:In 5372:: 1509:}} 1505:{{ 1489:. 1462:. 1435:. 1412:. 1400:. 1379:}} 1375:{{ 1333:}} 1329:{{ 1317:. 1305:. 1284:}} 1280:{{ 1266:50 1264:. 1238:10 1236:. 1209:. 1184:44 1154:. 1127:. 1098:. 1094:. 1067:. 1042:. 1030:. 1003:. 991:^ 856:Si 854:12 836:(B 812:, 808:, 804:, 800:, 789:Âł 787:sp 778:. 742:. 710:. 702:, 671:, 667:, 663:, 659:, 655:, 631:. 592:. 584:, 580:, 576:, 558:, 554:, 519:, 515:, 511:, 495:, 491:, 375:A 164:. 71:, 59:, 2080:e 2073:t 2066:v 1976:e 1969:t 1962:v 1840:) 1836:( 1546:e 1539:t 1532:v 1515:) 1501:. 1497:: 1474:. 1470:: 1447:. 1443:: 1420:. 1408:: 1402:7 1385:) 1371:. 1367:: 1339:) 1325:. 1313:: 1290:) 1276:. 1272:: 1248:. 1244:: 1221:. 1217:: 1211:6 1194:. 1190:: 1166:. 1162:: 1139:. 1135:: 1112:. 1106:: 1079:. 1075:: 1050:. 1038:: 1015:. 1011:: 1005:8 874:π 858:7 850:5 846:6 844:H 842:3 840:N 838:3 830:6 828:H 826:6 625:n 623:H 621:n 615:( 507:( 406:. 381:π 326:C 301:( 38:. 20:)

Index

Aromatic rings
aroma compound
aromantic

resonance
organic chemistry
conjugated
unsaturated bonds
lone pairs
empty orbitals
August Wilhelm Hofmann
olfactory
delocalization
resonance
electrons
atoms
bonded
benzene
Kekulé
History
resonance
Modern depiction of benzene
resonance diagrams
length
single
double bond
π-bond
σ-bonds
atomic p-orbitals
Benzene electron orbitals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑