Knowledge (XXG)

Asymptotically flat spacetime

Source đź“ť

147:. Indeed, physicists rarely imagine a universe containing a single star and nothing else when they construct an asymptotically flat model of a star. Rather, they are interested in modeling the interior of the star together with an exterior region in which gravitational effects due to the presence of other objects can be neglected. Since typical distances between astrophysical bodies tend to be much larger than the diameter of each body, we often can get away with this idealization, which usually helps to greatly simplify the construction and analysis of solutions. 33: 1001:
used this to circumvent the tricky problem of suitably defining and evaluating suitable limits in formulating a truly coordinate-free definition of asymptotic flatness. In the new approach, once everything is properly set up, one need only evaluate functions on a locus in order to verify asymptotic
1033:
In metric theories of gravitation such as general relativity, it is usually not possible to give general definitions of important physical concepts such as mass and angular momentum; however, assuming asymptotical flatness allows one to employ convenient definitions which do make sense for
451:(the family of all stationary axisymmetric and asymptotically flat vacuum solutions). These families are given by the solution space of a much simplified family of partial differential equations, and their metric tensors can be written down in terms of an explicit 1216:. Version dated May 16, 2002. Roberts attempts to argue that the exterior solution in a model of a rotating star should be a perfect fluid or dust rather than a vacuum, and then argues that there exist no asymptotically flat rotating 501:, which far from the origin behaves much like a Cartesian chart on Minkowski spacetime, in the following sense. Write the metric tensor as the sum of a (physically unobservable) Minkowski background plus a perturbation tensor, 868: 782: 699: 132:
The condition of asymptotic flatness is analogous to similar conditions in mathematics and in other physical theories. Such conditions say that some physical field or mathematical function is
139:
In general relativity, an asymptotically flat vacuum solution models the exterior gravitational field of an isolated massive object. Therefore, such a spacetime can be considered as an
985:, and others began to study the general phenomenon of radiation from a compact source in general relativity, which requires more flexible definitions of asymptotic flatness. In 1963, 561: 627: 366:
A manifold is asymptotically flat if it is weakly asymptotically simple and asymptotically empty in the sense that its Ricci tensor vanishes in a neighbourhood of the boundary of
120:, as well as any matter or other fields which may be present, become negligible in magnitude at large distances from some region. In particular, in an asymptotically flat 393: 361: 332: 254: 205: 967: 919: 303: 97:
in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of
499: 124:, the gravitational field (curvature) becomes negligible at large distances from the source of the field (typically some isolated massive object such as a star). 277: 225: 173: 1154:
Mars, M. & Senovilla, J. M. M. (1998). "On the construction of global models describing rotating bodies; uniqueness of the exterior gravitational field".
463:
The simplest (and historically the first) way of defining an asymptotically flat spacetime assumes that we have a coordinate chart, with coordinates
1037:
While this is less obvious, it turns out that invoking asymptotic flatness allows physicists to import sophisticated mathematical concepts from
873:
One reason why we require the partial derivatives of the perturbation to decay so quickly is that these conditions turn out to imply that the
1114: 1086: 1011: 1018:
Models of physical phenomena in general relativity (and allied physical theories) generally arise as the solution of appropriate systems of
121: 54: 1130: 788: 1314: 705: 76: 635: 1209:. This doesn't imply that no models of a rotating star exist, but it helps to explain why they seem to be hard to construct. 429: 1296:
This is a short review by three leading experts of the current state-of-the-art on constructing exact solutions which model
1378: 405:
Only spacetimes which model an isolated object are asymptotically flat. Many other familiar exact solutions, such as the
109: 47: 41: 994: 922: 176: 443:
On the other hand, there are important large families of solutions which are asymptotically flat, such as the AF
58: 1064: 504: 877:(to the extent that this somewhat nebulous notion makes sense in a metric theory of gravitation) decays like 566: 1255: 1027: 1019: 259:
Since the latter excludes black holes, one defines a weakly asymptotically simple manifold as a manifold
1042: 1289:
which includes the well-known Wahlquist fluid and Kerr-Newman electrovacuum solutions as special case.
1247: 1201:
The authors argue that boundary value problems in general relativity, such as the problem matching a
1173: 420:
is also asymptotically flat. But another well known generalization of the Schwarzschild vacuum, the
413: 1260: 1023: 452: 117: 98: 94: 448: 421: 369: 337: 308: 230: 181: 1352: 1273: 1237: 1189: 1163: 1038: 990: 433: 113: 928: 880: 282: 1010:
The notion of asymptotic flatness is extremely useful as a technical condition in the study of
1110: 1082: 466: 1265: 1181: 1138: 982: 140: 1334: 1294:
Second order perturbations of rotating bodies in equilibrium: the exterior vacuum problem
104:
While this notion makes sense for any Lorentzian manifold, it is most often applied to a
1251: 1177: 1103: 1059: 262: 210: 158: 116:. In this case, we can say that an asymptotically flat spacetime is one in which the 1372: 1224:
Mark Roberts is an occasional contributor to Knowledge (XXG), including this article.
1046: 998: 986: 978: 1277: 1193: 444: 17: 417: 1269: 1185: 432:
solution, which models a spherically symmetric massive object immersed in a
406: 105: 363:
is the conformal compactification of some asymptotically simple manifold.
1293: 1282: 1213: 1198: 925:, the energy of the electromagnetic field of a point charge decays like 1357: 1242: 1205:
perfect fluid interior to an asymptotically flat vacuum exterior, are
1168: 863:{\displaystyle \lim _{r\rightarrow \infty }h_{ab,pq}=O(1/r^{3})} 777:{\displaystyle \lim _{r\rightarrow \infty }h_{ab,p}=O(1/r^{2})} 26: 1026:
which assist in setting up and even in solving the resulting
412:
A simple example of an asymptotically flat spacetime is the
1315:
Einstein's field equations and their physical implications
1014:
and allied theories. There are several reasons for this:
428:
asymptotically flat. An even simpler generalization, the
1214:
Spacetime Exterior to a Star: Against Asymptotic Flatness
694:{\displaystyle \lim _{r\rightarrow \infty }h_{ab}=O(1/r)} 1045:
in order to define and study important features such as
108:
standing as a solution to the field equations of some
1097:
for a discussion of asymptotically simple spacetimes.
931: 883: 791: 708: 638: 569: 507: 469: 372: 340: 311: 285: 265: 233: 213: 184: 161: 1285:
Mars introduces a rotating spacetime of Petrov type
1228:
Mars, Marc (1998). "The Wahlquist-Newman solution".
1102: 961: 913: 862: 776: 693: 621: 555: 493: 387: 355: 326: 297: 271: 248: 219: 199: 167: 227:has future and past endpoints on the boundary of 793: 710: 640: 305:isometric to a neighbourhood of the boundary of 1077:Hawking, S. W. & Ellis, G. F. R. (1973). 8: 1292:MacCallum, M. A. H.; Mars, M.; and Vera, R. 1022:, and assuming asymptotic flatness provides 440:spacetime which is not asymptotically flat. 921:, which would be physically sensible. (In 447:and their rotating generalizations, the AF 1356: 1259: 1241: 1167: 1081:. Cambridge: Cambridge University Press. 950: 941: 930: 902: 893: 882: 851: 842: 812: 796: 790: 765: 756: 729: 713: 707: 680: 659: 643: 637: 613: 600: 587: 574: 568: 544: 528: 512: 506: 468: 374: 373: 371: 342: 341: 339: 313: 312: 310: 284: 264: 235: 234: 232: 212: 186: 185: 183: 160: 77:Learn how and when to remove this message 1109:. Chicago: University of Chicago Press. 556:{\displaystyle g_{ab}=\eta _{ab}+h_{ab}} 175:is asymptotically simple if it admits a 40:This article includes a list of general 1326: 1079:The Large Scale Structure of Space-Time 622:{\displaystyle r^{2}=x^{2}+y^{2}+z^{2}} 1351:Townsend, P. K (1997). "Black Holes". 1012:exact solutions in general relativity 993:the essential innovation, now called 7: 145:exterior influences can be neglected 1220:solutions in general relativity. ( 875:gravitational field energy density 803: 720: 650: 46:it lacks sufficient corresponding 25: 459:A coordinate-dependent definition 207:such that every null geodesic in 1049:which may or may not be present. 31: 416:solution. More generally, the 1034:asymptotically flat solutions. 956: 935: 908: 887: 857: 836: 800: 771: 750: 717: 688: 674: 647: 430:de Sitter-Schwarzschild metric 379: 347: 318: 240: 191: 1: 401:Some examples and nonexamples 91:asymptotically flat spacetime 1135:Living Reviews in Relativity 973:A coordinate-free definition 388:{\displaystyle {\tilde {M}}} 356:{\displaystyle {\tilde {M}}} 327:{\displaystyle {\tilde {M}}} 249:{\displaystyle {\tilde {M}}} 200:{\displaystyle {\tilde {M}}} 110:metric theory of gravitation 1395: 1270:10.1103/PhysRevD.63.064022 995:conformal compactification 962:{\displaystyle O(1/r^{4})} 923:classical electromagnetism 914:{\displaystyle O(1/r^{4})} 298:{\displaystyle U\subset M} 177:conformal compactification 1300:rotating bodies (with an 1186:10.1142/S0217732398001583 1156:Modern Physics Letters A 1101:Wald, Robert M. (1984). 1065:Einstein field equations 134:asymptotically vanishing 494:{\displaystyle t,x,y,z} 61:more precise citations. 1028:boundary value problem 1020:differential equations 963: 915: 864: 778: 695: 623: 557: 495: 436:, is an example of an 389: 357: 328: 299: 273: 250: 221: 201: 169: 128:Intuitive significance 1043:differential topology 964: 916: 865: 779: 696: 624: 558: 496: 438:asymptotically simple 390: 358: 329: 300: 274: 251: 222: 202: 170: 136:in a suitable sense. 1379:Lorentzian manifolds 1141:on December 31, 2005 1131:"Conformal Infinity" 1129:Frauendiener, Jörg. 929: 881: 789: 706: 636: 629:. Then we require: 567: 505: 467: 414:Schwarzschild metric 370: 338: 309: 283: 263: 231: 211: 182: 159: 143:: a system in which 1302:asymptotically flat 1252:2001PhRvD..63f4022M 1178:1998MPLA...13.1509M 1024:boundary conditions 453:multipole expansion 118:gravitational field 99:Minkowski spacetime 95:Lorentzian manifold 18:Asymptotically flat 1105:General Relativity 1039:algebraic geometry 991:algebraic geometry 959: 911: 860: 807: 774: 724: 691: 654: 619: 553: 491: 434:de Sitter universe 385: 353: 324: 295: 269: 246: 217: 197: 165: 151:Formal definitions 114:general relativity 1304:vacuum exterior). 1212:Mark D. Roberts, 1162:(19): 1509–1519. 1116:978-0-226-87033-5 1088:978-0-521-09906-6 792: 709: 639: 382: 350: 321: 279:with an open set 272:{\displaystyle M} 243: 220:{\displaystyle M} 194: 168:{\displaystyle M} 87: 86: 79: 16:(Redirected from 1386: 1363: 1362: 1360: 1348: 1342: 1341: 1339: 1331: 1281: 1263: 1245: 1197: 1171: 1150: 1148: 1146: 1137:. Archived from 1120: 1108: 1092: 968: 966: 965: 960: 955: 954: 945: 920: 918: 917: 912: 907: 906: 897: 869: 867: 866: 861: 856: 855: 846: 829: 828: 806: 783: 781: 780: 775: 770: 769: 760: 743: 742: 723: 700: 698: 697: 692: 684: 667: 666: 653: 628: 626: 625: 620: 618: 617: 605: 604: 592: 591: 579: 578: 562: 560: 559: 554: 552: 551: 536: 535: 520: 519: 500: 498: 497: 492: 394: 392: 391: 386: 384: 383: 375: 362: 360: 359: 354: 352: 351: 343: 333: 331: 330: 325: 323: 322: 314: 304: 302: 301: 296: 278: 276: 275: 270: 255: 253: 252: 247: 245: 244: 236: 226: 224: 223: 218: 206: 204: 203: 198: 196: 195: 187: 174: 172: 171: 166: 82: 75: 71: 68: 62: 57:this article by 48:inline citations 35: 34: 27: 21: 1394: 1393: 1389: 1388: 1387: 1385: 1384: 1383: 1369: 1368: 1367: 1366: 1350: 1349: 1345: 1337: 1333: 1332: 1328: 1323: 1311: 1261:10.1.1.339.8609 1227: 1153: 1144: 1142: 1128: 1117: 1100: 1089: 1076: 1073: 1056: 1008: 997:, and in 1972, 983:Rainer K. Sachs 975: 946: 927: 926: 898: 879: 878: 847: 808: 787: 786: 761: 725: 704: 703: 655: 634: 633: 609: 596: 583: 570: 565: 564: 540: 524: 508: 503: 502: 465: 464: 461: 403: 368: 367: 336: 335: 307: 306: 281: 280: 261: 260: 229: 228: 209: 208: 180: 179: 157: 156: 153: 141:isolated system 130: 122:vacuum solution 112:, particularly 83: 72: 66: 63: 53:Please help to 52: 36: 32: 23: 22: 15: 12: 11: 5: 1392: 1390: 1382: 1381: 1371: 1370: 1365: 1364: 1343: 1325: 1324: 1322: 1319: 1318: 1317: 1310: 1309:External links 1307: 1306: 1305: 1290: 1225: 1210: 1207:overdetermined 1151: 1126: 1115: 1098: 1087: 1072: 1069: 1068: 1067: 1062: 1060:Fluid solution 1055: 1052: 1051: 1050: 1047:event horizons 1035: 1031: 1007: 1004: 989:imported from 974: 971: 958: 953: 949: 944: 940: 937: 934: 910: 905: 901: 896: 892: 889: 886: 871: 870: 859: 854: 850: 845: 841: 838: 835: 832: 827: 824: 821: 818: 815: 811: 805: 802: 799: 795: 784: 773: 768: 764: 759: 755: 752: 749: 746: 741: 738: 735: 732: 728: 722: 719: 716: 712: 701: 690: 687: 683: 679: 676: 673: 670: 665: 662: 658: 652: 649: 646: 642: 616: 612: 608: 603: 599: 595: 590: 586: 582: 577: 573: 550: 547: 543: 539: 534: 531: 527: 523: 518: 515: 511: 490: 487: 484: 481: 478: 475: 472: 460: 457: 422:Taub–NUT space 402: 399: 381: 378: 349: 346: 320: 317: 294: 291: 288: 268: 242: 239: 216: 193: 190: 164: 152: 149: 129: 126: 85: 84: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1391: 1380: 1377: 1376: 1374: 1359: 1358:gr-qc/9707012 1354: 1347: 1344: 1336: 1330: 1327: 1320: 1316: 1313: 1312: 1308: 1303: 1299: 1295: 1291: 1288: 1284: 1279: 1275: 1271: 1267: 1262: 1257: 1253: 1249: 1244: 1243:gr-qc/0101021 1239: 1236:(6): 064022. 1235: 1231: 1226: 1223: 1219: 1218:perfect fluid 1215: 1211: 1208: 1204: 1200: 1195: 1191: 1187: 1183: 1179: 1175: 1170: 1169:gr-qc/9806094 1165: 1161: 1157: 1152: 1140: 1136: 1132: 1127: 1124: 1118: 1112: 1107: 1106: 1099: 1096: 1090: 1084: 1080: 1075: 1074: 1070: 1066: 1063: 1061: 1058: 1057: 1053: 1048: 1044: 1040: 1036: 1032: 1029: 1025: 1021: 1017: 1016: 1015: 1013: 1005: 1003: 1000: 999:Robert Geroch 996: 992: 988: 987:Roger Penrose 984: 980: 979:Hermann Bondi 977:Around 1962, 972: 970: 951: 947: 942: 938: 932: 924: 903: 899: 894: 890: 884: 876: 852: 848: 843: 839: 833: 830: 825: 822: 819: 816: 813: 809: 797: 785: 766: 762: 757: 753: 747: 744: 739: 736: 733: 730: 726: 714: 702: 685: 681: 677: 671: 668: 663: 660: 656: 644: 632: 631: 630: 614: 610: 606: 601: 597: 593: 588: 584: 580: 575: 571: 548: 545: 541: 537: 532: 529: 525: 521: 516: 513: 509: 488: 485: 482: 479: 476: 473: 470: 458: 456: 454: 450: 449:Ernst vacuums 446: 441: 439: 435: 431: 427: 423: 419: 415: 410: 408: 400: 398: 396: 376: 364: 344: 315: 292: 289: 286: 266: 257: 237: 214: 188: 178: 162: 150: 148: 146: 142: 137: 135: 127: 125: 123: 119: 115: 111: 107: 102: 100: 96: 92: 81: 78: 70: 67:November 2008 60: 56: 50: 49: 43: 38: 29: 28: 19: 1346: 1329: 1301: 1297: 1286: 1233: 1230:Phys. Rev. D 1229: 1221: 1217: 1206: 1202: 1159: 1155: 1143:. Retrieved 1139:the original 1134: 1122: 1104: 1094: 1078: 1009: 1006:Applications 976: 874: 872: 462: 445:Weyl metrics 442: 437: 425: 411: 404: 397: 365: 258: 154: 144: 138: 133: 131: 103: 90: 88: 73: 64: 45: 1145:January 23, 1095:Section 6.9 418:Kerr metric 409:, are not. 155:A manifold 59:introducing 1123:Chapter 11 1071:References 1002:flatness. 563:, and set 407:FRW models 42:references 1335:"Physics" 1256:CiteSeerX 804:∞ 801:→ 721:∞ 718:→ 651:∞ 648:→ 526:η 380:~ 348:~ 319:~ 290:⊂ 241:~ 192:~ 106:spacetime 1373:Category 1298:isolated 1054:See also 334:, where 1278:1644106 1248:Bibcode 1194:5289048 1174:Bibcode 55:improve 1283:eprint 1276:  1258:  1199:eprint 1192:  1113:  1085:  44:, but 1353:arXiv 1338:(PDF) 1321:Notes 1274:S2CID 1238:arXiv 1222:Note: 1203:given 1190:S2CID 1164:arXiv 424:, is 93:is a 1147:2004 1121:See 1111:ISBN 1093:See 1083:ISBN 1041:and 1266:doi 1182:doi 969:.) 794:lim 711:lim 641:lim 426:not 89:An 1375:: 1272:. 1264:. 1254:. 1246:. 1234:63 1232:. 1188:. 1180:. 1172:. 1160:13 1158:. 1133:. 981:, 455:. 395:. 256:. 101:. 1361:. 1355:: 1340:. 1287:D 1280:. 1268:: 1250:: 1240:: 1196:. 1184:: 1176:: 1166:: 1149:. 1125:. 1119:. 1091:. 1030:. 957:) 952:4 948:r 943:/ 939:1 936:( 933:O 909:) 904:4 900:r 895:/ 891:1 888:( 885:O 858:) 853:3 849:r 844:/ 840:1 837:( 834:O 831:= 826:q 823:p 820:, 817:b 814:a 810:h 798:r 772:) 767:2 763:r 758:/ 754:1 751:( 748:O 745:= 740:p 737:, 734:b 731:a 727:h 715:r 689:) 686:r 682:/ 678:1 675:( 672:O 669:= 664:b 661:a 657:h 645:r 615:2 611:z 607:+ 602:2 598:y 594:+ 589:2 585:x 581:= 576:2 572:r 549:b 546:a 542:h 538:+ 533:b 530:a 522:= 517:b 514:a 510:g 489:z 486:, 483:y 480:, 477:x 474:, 471:t 377:M 345:M 316:M 293:M 287:U 267:M 238:M 215:M 189:M 163:M 80:) 74:( 69:) 65:( 51:. 20:)

Index

Asymptotically flat
references
inline citations
improve
introducing
Learn how and when to remove this message
Lorentzian manifold
Minkowski spacetime
spacetime
metric theory of gravitation
general relativity
gravitational field
vacuum solution
isolated system
conformal compactification
FRW models
Schwarzschild metric
Kerr metric
Taub–NUT space
de Sitter-Schwarzschild metric
de Sitter universe
Weyl metrics
Ernst vacuums
multipole expansion
classical electromagnetism
Hermann Bondi
Rainer K. Sachs
Roger Penrose
algebraic geometry
conformal compactification

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑