Knowledge (XXG)

Bézout's identity

Source 📝

1184: 834: 1179:{\displaystyle {\begin{aligned}\vdots \\12&\times ({\color {blue}{-10}})&+\;\;42&\times \color {blue}{3}&=6\\12&\times ({\color {red}{-3}})&+\;\;42&\times \color {red}{1}&=6\\12&\times \color {red}{4}&+\;\;42&\times ({\color {red}{-1}})&=6\\12&\times \color {blue}{11}&+\;\;42&\times ({\color {blue}{-3}})&=6\\12&\times \color {blue}{18}&+\;\;42&\times ({\color {blue}{-5}})&=6\\\vdots \end{aligned}}} 2508:
On these pages, Bachet proves (without equations) "Proposition XVIII. Deux nombres premiers entre eux estant donnez, treuver le moindre multiple de chascun d’iceux, surpassant de l'unité un multiple de l'autre." (Given two numbers relatively prime, find the lowest multiple of each of them one
505: 1598: 1843: 375: 1454: 2109: 415: 1735: 1475: 839: 1955: 2014: 1470: 2416: – About algebraic curves passing through all intersection points of two other curves, an analogue of Bézout's identity for homogeneous polynomials in three indeterminates 1730: 2501: 617: 591: 565: 539: 654: 306: 829:. Then the following Bézout's identities are had, with the Bézout coefficients written in red for the minimal pairs and in blue for the other ones. 2400:(1730–1783) proved this identity for polynomials. This statement for integers can be found already in the work of an earlier French mathematician, 1399: 2019: 2557: 2205:
exactly in the same ways as for integers. In particular the Bézout's coefficients and the greatest common divisor may be computed with the
2401: 1886: 2138: 2484: 2431: 2617: 2612: 2217: 2274: 2206: 300: 179: 2533:"Modular arithmetic before C.F. Gauss: Systematizations and discussions on remainder problems in 18th-century Germany" 237:
As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as
2263: 412:
are both nonzero and none of them divides the other, then exactly two of the pairs of Bézout coefficients satisfy
249: 2520:) is a special case of Bézout's equation and was used by Bachet to solve the problems appearing on pages 199 ff. 1960: 500:{\displaystyle |x|<\left|{\frac {b}{d}}\right|\quad {\text{and}}\quad |y|<\left|{\frac {a}{d}}\right|.} 1340: 84: 2290: 264: 31: 2198: 2577: 30:
This article is about Bézout's theorem in arithmetic. For Bézout's theorem in algebraic geometry, see
2532: 2452: 2419: 2397: 2213: 50: 2358: 2202: 2472: 1385: 664: 267:. Every theorem that results from Bézout's identity is thus true in all principal ideal domains. 1593:{\displaystyle {\begin{aligned}r&=a-qd\\&=a-q(as+bt)\\&=a(1-qs)-bqt.\end{aligned}}} 2585: 2480: 2425: 245: 2547: 2380: 596: 570: 544: 518: 256: 2144: 1838:{\displaystyle {\begin{aligned}d&=as+bt\\&=cus+cvt\\&=c(us+vt).\end{aligned}}} 260: 2216:
of two polynomials are the roots of their greatest common divisor, Bézout's identity and
2143:
Bézout's identity does not always hold for polynomials. For example, when working in the
633: 2413: 2286: 2267: 2139:
Polynomial greatest common divisor § Bézout's identity and extended GCD algorithm
2606: 2588: 2394: 2391: 2273:
The generalization of this result to any number of polynomials and indeterminates is
17: 2456: 803:
The extended Euclidean algorithm always produces one of these two minimal pairs.
38: 2506:(2nd ed.). Lyons, France: Pierre Rigaud & Associates. pp. 18–33. 2552: 758:
The two pairs of small Bézout's coefficients are obtained from the given one
2593: 263:
in which Bézout's identity holds. In particular, Bézout's identity holds in
178:; they are not unique. A pair of Bézout coefficients can be computed by the 182:, and this pair is, in the case of integers one of the two pairs such that 80: 54: 2285:
As noted in the introduction, Bézout's identity works not only in the
370:{\displaystyle \left(x-k{\frac {b}{d}},\ y+k{\frac {a}{d}}\right),} 2509:
multiple exceeds the other by unity (1).) This problem (namely,
2503:
Problèmes plaisants & délectables qui se font par les nombres
1883:
Bézout's identity can be extended to more than two integers: if
1325:
is a nonempty set of positive integers, it has a minimum element
2379:
An integral domain in which Bézout's identity holds is called a
2428: – A prime divisor of a product divides one of the factors 2164:, but there does not exist any integer-coefficient polynomials 2422: – Polynomial equation whose integer solutions are sought 1449:{\displaystyle a=dq+r\quad {\text{with}}\quad 0\leq r<d.} 2104:{\displaystyle d=a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}} 244:
Many other theorems in elementary number theory, such as
774:
in the above formula either of the two integers next to
2231:
with coefficients in a field, there exist polynomials
287:
are not both zero and one pair of Bézout coefficients
27:
Relating two numbers and their greatest common divisor
2022: 1963: 1889: 1733: 1473: 1402: 837: 636: 599: 573: 547: 521: 418: 309: 2500:Claude Gaspard Bachet (sieur de Méziriac) (1624). 2103: 2008: 1949: 1837: 1592: 1448: 1200:is the original pair of Bézout coefficients, then 1178: 648: 611: 585: 559: 533: 499: 369: 2434: – Integers have unique prime factorizations 1950:{\displaystyle \gcd(a_{1},a_{2},\ldots ,a_{n})=d} 1890: 53:who proved it for polynomials, is the following 2120:is the smallest positive integer of this form 8: 2147:of integers: the greatest common divisor of 303:), all pairs can be represented in the form 2123:every number of this form is a multiple of 656:), then one pair of Bézout coefficients is 61: 2458:Théorie générale des équations algébriques 1128: 1127: 1064: 1063: 1000: 999: 947: 946: 883: 882: 401:, and the fractions simplify to integers. 299:has been computed (for example, using the 2551: 2095: 2085: 2066: 2056: 2043: 2033: 2021: 2009:{\displaystyle x_{1},x_{2},\ldots ,x_{n}} 2000: 1981: 1968: 1962: 1932: 1913: 1900: 1888: 1734: 1732: 1474: 1472: 1422: 1401: 1144: 1142: 1116: 1080: 1078: 1052: 1016: 1014: 988: 959: 928: 926: 895: 864: 862: 838: 836: 635: 598: 572: 546: 520: 480: 468: 460: 454: 439: 427: 419: 417: 349: 324: 308: 1367:, and that for any other common divisor 2444: 2477:Galois' Theory of Algebraic Equations 2197:However, Bézout's identity works for 1296:is nonempty since it contains either 1143: 1115: 1079: 1051: 894: 863: 241:, with Bézout coefficients −9 and 2. 118:. Moreover, the integers of the form 7: 1640:is the smallest positive integer in 138:Here the greatest common divisor of 2289:of integers, but also in any other 2531:Maarten Bullynck (February 2009). 1347:is the greatest common divisor of 1239:(18 − 3 ⋅ 7, −5 + 3 ⋅ 2) = (−3, 1) 1235:(18 − 2 ⋅ 7, −5 + 2 ⋅ 2) = (4, −1) 389:is the greatest common divisor of 25: 2432:Fundamental theorem of arithmetic 2402:Claude Gaspard Bachet de Méziriac 1656:necessarily 0. This implies that 1015: 987: 958: 927: 252:, result from Bézout's identity. 222:; equality occurs only if one of 2563:from the original on 2022-10-09. 2461:. Paris, France: Ph.-D. Pierres. 2317:is a greatest common divisor of 2479:. Singapore: World Scientific. 1427: 1421: 459: 453: 2218:fundamental theorem of algebra 2111:has the following properties: 1938: 1893: 1825: 1807: 1568: 1553: 1537: 1519: 1154: 1139: 1090: 1075: 1026: 1011: 938: 923: 874: 859: 667:: given two non-zero integers 469: 461: 428: 420: 1: 2220:imply the following result: 1219:yields the minimal pairs via 663:This relies on a property of 128:are exactly the multiples of 2207:extended Euclidean algorithm 727:, and another one such that 687:, there is exactly one pair 567:for one of these pairs, and 301:extended Euclidean algorithm 234:is a multiple of the other. 180:extended Euclidean algorithm 92:. Then there exist integers 2281:For principal ideal domains 2262:have no common root in any 2223:For univariate polynomials 1249:Given any nonzero integers 515:are both positive, one has 2634: 2370:is principal and equal to 2325:, then there are elements 2264:algebraically closed field 2136: 1879:For three or more integers 29: 2357:. The reason is that the 2275:Hilbert's Nullstellensatz 1691:be any common divisor of 1355:, it must be proven that 383:is an arbitrary integer, 250:Chinese remainder theorem 2553:10.1016/j.hm.2008.08.009 1957:then there are integers 1648:can therefore not be in 2618:Lemmas in number theory 2266:(commonly the field of 1699:; that is, there exist 1676:is a common divisor of 1359:is a common divisor of 1341:well-ordering principle 265:principal ideal domains 85:greatest common divisor 2580:for Bézout's identity. 2291:principal ideal domain 2199:univariate polynomials 2105: 2010: 1951: 1839: 1594: 1450: 1180: 650: 613: 612:{\displaystyle y>0} 587: 586:{\displaystyle x<0} 561: 560:{\displaystyle y<0} 535: 534:{\displaystyle x>0} 501: 371: 271:Structure of solutions 239:3 = 15 × (−9) + 69 × 2 2613:Diophantine equations 2106: 2011: 1952: 1840: 1668:is also a divisor of 1595: 1451: 1181: 651: 614: 588: 562: 536: 502: 372: 2540:Historia Mathematica 2420:Diophantine equation 2020: 1961: 1887: 1731: 1471: 1400: 835: 634: 630:(including the case 597: 571: 545: 519: 416: 307: 2589:"Bézout's Identity" 2473:Tignol, Jean-Pierre 2293:(PID). That is, if 649:{\displaystyle b=0} 164:Bézout coefficients 65: —  18:Bézout coefficients 2586:Weisstein, Eric W. 2101: 2006: 1947: 1835: 1833: 1590: 1588: 1446: 1396:may be written as 1386:Euclidean division 1176: 1174: 1152: 1121: 1088: 1057: 1024: 993: 964: 936: 900: 872: 665:Euclidean division 646: 619:for the other. If 609: 583: 557: 531: 497: 367: 63: 2578:Online calculator 1425: 488: 457: 447: 357: 339: 332: 62:Bézout's identity 43:Bézout's identity 16:(Redirected from 2625: 2599: 2598: 2565: 2564: 2562: 2555: 2537: 2527: 2521: 2519: 2507: 2497: 2491: 2490: 2469: 2463: 2462: 2449: 2375: 2369: 2356: 2342: 2336: 2330: 2324: 2320: 2316: 2312: 2307:are elements of 2306: 2302: 2298: 2261: 2257: 2253: 2242: 2236: 2230: 2226: 2193: 2175: 2169: 2159: 2153: 2128: 2119: 2110: 2108: 2107: 2102: 2100: 2099: 2090: 2089: 2071: 2070: 2061: 2060: 2048: 2047: 2038: 2037: 2015: 2013: 2012: 2007: 2005: 2004: 1986: 1985: 1973: 1972: 1956: 1954: 1953: 1948: 1937: 1936: 1918: 1917: 1905: 1904: 1869: 1859: 1852: 1849:is a divisor of 1848: 1844: 1842: 1841: 1836: 1834: 1797: 1766: 1726: 1716: 1706: 1702: 1698: 1694: 1690: 1683: 1679: 1675: 1672:, and therefore 1671: 1667: 1663: 1660:is a divisor of 1659: 1655: 1651: 1647: 1644:: the remainder 1643: 1639: 1635: 1624: 1613: 1603: 1599: 1597: 1596: 1591: 1589: 1543: 1503: 1466: 1459: 1455: 1453: 1452: 1447: 1426: 1423: 1395: 1391: 1380: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1343:. To prove that 1338: 1324: 1320: 1313: 1306: 1299: 1295: 1291: 1256: 1252: 1240: 1236: 1232: 1225: 1218: 1216: 1214: 1213: 1210: 1207: 1199: 1185: 1183: 1182: 1177: 1175: 1153: 1151: 1120: 1089: 1087: 1056: 1025: 1023: 992: 963: 937: 935: 899: 873: 871: 828: 827:gcd (12, 42) = 6 824: 817: 799: 798: 796: 795: 786: 783: 773: 770:by choosing for 769: 754: 748: 740: 726: 724: 712: 698: 686: 683:does not divide 682: 678: 672: 659: 655: 653: 652: 647: 629: 626:is a divisor of 625: 618: 616: 615: 610: 592: 590: 589: 584: 566: 564: 563: 558: 540: 538: 537: 532: 514: 510: 506: 504: 503: 498: 493: 489: 481: 472: 464: 458: 455: 452: 448: 440: 431: 423: 411: 407: 400: 394: 388: 382: 376: 374: 373: 368: 363: 359: 358: 350: 337: 333: 325: 298: 286: 280: 240: 233: 227: 221: 219: 209: 201: 199: 189: 177: 161: 155: 149: 145: 141: 133: 127: 117: 103: 97: 91: 78: 72: 66: 32:Bézout's theorem 21: 2633: 2632: 2628: 2627: 2626: 2624: 2623: 2622: 2603: 2602: 2584: 2583: 2574: 2569: 2568: 2560: 2535: 2530: 2528: 2524: 2510: 2499: 2498: 2494: 2487: 2471: 2470: 2466: 2451: 2450: 2446: 2441: 2410: 2389: 2371: 2361: 2344: 2338: 2332: 2326: 2322: 2318: 2314: 2308: 2304: 2300: 2294: 2283: 2271: 2268:complex numbers 2259: 2255: 2254:if and only if 2244: 2238: 2232: 2228: 2224: 2177: 2171: 2165: 2155: 2148: 2145:polynomial ring 2141: 2135: 2133:For polynomials 2124: 2115: 2091: 2081: 2062: 2052: 2039: 2029: 2018: 2017: 1996: 1977: 1964: 1959: 1958: 1928: 1909: 1896: 1885: 1884: 1881: 1876: 1874:Generalizations 1861: 1860:, this implies 1854: 1850: 1846: 1832: 1831: 1795: 1794: 1764: 1763: 1741: 1729: 1728: 1727:. One has thus 1718: 1708: 1704: 1700: 1696: 1692: 1688: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1626: 1615: 1605: 1604:is of the form 1601: 1587: 1586: 1541: 1540: 1501: 1500: 1481: 1469: 1468: 1461: 1457: 1398: 1397: 1393: 1389: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1326: 1322: 1315: 1308: 1301: 1297: 1293: 1258: 1254: 1250: 1247: 1245:Existence proof 1238: 1234: 1227: 1226:, respectively 1220: 1211: 1208: 1205: 1204: 1202: 1201: 1189: 1173: 1172: 1166: 1165: 1157: 1132: 1122: 1108: 1102: 1101: 1093: 1068: 1058: 1044: 1038: 1037: 1029: 1004: 994: 980: 974: 973: 965: 951: 941: 916: 910: 909: 901: 887: 877: 852: 846: 845: 833: 832: 826: 819: 812: 809: 787: 784: 779: 778: 776: 775: 771: 759: 744: 742: 728: 720: 714: 700: 688: 684: 680: 674: 668: 657: 632: 631: 627: 620: 595: 594: 569: 568: 543: 542: 517: 516: 512: 508: 476: 435: 414: 413: 409: 405: 396: 390: 384: 378: 314: 310: 305: 304: 288: 282: 276: 273: 261:integral domain 238: 229: 223: 211: 210:| ≤ | 205: 203: 191: 190:| ≤ | 185: 183: 167: 157: 151: 150:. The integers 147: 146:is taken to be 143: 139: 136: 129: 119: 105: 99: 93: 87: 74: 68: 64: 49:), named after 35: 28: 23: 22: 15: 12: 11: 5: 2631: 2629: 2621: 2620: 2615: 2605: 2604: 2601: 2600: 2581: 2573: 2572:External links 2570: 2567: 2566: 2522: 2492: 2485: 2464: 2443: 2442: 2440: 2437: 2436: 2435: 2429: 2426:Euclid's lemma 2423: 2417: 2409: 2406: 2398:Étienne Bézout 2388: 2385: 2299:is a PID, and 2282: 2279: 2222: 2212:As the common 2137:Main article: 2134: 2131: 2130: 2129: 2121: 2098: 2094: 2088: 2084: 2080: 2077: 2074: 2069: 2065: 2059: 2055: 2051: 2046: 2042: 2036: 2032: 2028: 2025: 2003: 1999: 1995: 1992: 1989: 1984: 1980: 1976: 1971: 1967: 1946: 1943: 1940: 1935: 1931: 1927: 1924: 1921: 1916: 1912: 1908: 1903: 1899: 1895: 1892: 1880: 1877: 1875: 1872: 1830: 1827: 1824: 1821: 1818: 1815: 1812: 1809: 1806: 1803: 1800: 1798: 1796: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1772: 1769: 1767: 1765: 1762: 1759: 1756: 1753: 1750: 1747: 1744: 1742: 1740: 1737: 1736: 1585: 1582: 1579: 1576: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1552: 1549: 1546: 1544: 1542: 1539: 1536: 1533: 1530: 1527: 1524: 1521: 1518: 1515: 1512: 1509: 1506: 1504: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1482: 1480: 1477: 1476: 1456:The remainder 1445: 1442: 1439: 1436: 1433: 1430: 1420: 1417: 1414: 1411: 1408: 1405: 1246: 1243: 1171: 1168: 1167: 1164: 1161: 1158: 1156: 1150: 1147: 1141: 1138: 1135: 1133: 1131: 1126: 1123: 1119: 1114: 1111: 1109: 1107: 1104: 1103: 1100: 1097: 1094: 1092: 1086: 1083: 1077: 1074: 1071: 1069: 1067: 1062: 1059: 1055: 1050: 1047: 1045: 1043: 1040: 1039: 1036: 1033: 1030: 1028: 1022: 1019: 1013: 1010: 1007: 1005: 1003: 998: 995: 991: 986: 983: 981: 979: 976: 975: 972: 969: 966: 962: 957: 954: 952: 950: 945: 942: 940: 934: 931: 925: 922: 919: 917: 915: 912: 911: 908: 905: 902: 898: 893: 890: 888: 886: 881: 878: 876: 870: 867: 861: 858: 855: 853: 851: 848: 847: 844: 841: 840: 808: 805: 645: 642: 639: 608: 605: 602: 582: 579: 576: 556: 553: 550: 530: 527: 524: 496: 492: 487: 484: 479: 475: 471: 467: 463: 451: 446: 443: 438: 434: 430: 426: 422: 366: 362: 356: 353: 348: 345: 342: 336: 331: 328: 323: 320: 317: 313: 272: 269: 246:Euclid's lemma 59: 51:Étienne Bézout 47:Bézout's lemma 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2630: 2619: 2616: 2614: 2611: 2610: 2608: 2596: 2595: 2590: 2587: 2582: 2579: 2576: 2575: 2571: 2559: 2554: 2549: 2545: 2541: 2534: 2526: 2523: 2517: 2513: 2505: 2504: 2496: 2493: 2488: 2486:981-02-4541-6 2482: 2478: 2474: 2468: 2465: 2460: 2459: 2454: 2448: 2445: 2438: 2433: 2430: 2427: 2424: 2421: 2418: 2415: 2414:AF+BG theorem 2412: 2411: 2407: 2405: 2404:(1581–1638). 2403: 2399: 2396: 2395:mathematician 2393: 2386: 2384: 2382: 2381:Bézout domain 2377: 2374: 2368: 2364: 2360: 2355: 2351: 2347: 2341: 2335: 2329: 2311: 2297: 2292: 2288: 2280: 2278: 2276: 2269: 2265: 2251: 2247: 2241: 2235: 2221: 2219: 2215: 2210: 2208: 2204: 2200: 2195: 2192: 2188: 2185: 2181: 2174: 2168: 2163: 2158: 2152: 2146: 2140: 2132: 2127: 2122: 2118: 2114: 2113: 2112: 2096: 2092: 2086: 2082: 2078: 2075: 2072: 2067: 2063: 2057: 2053: 2049: 2044: 2040: 2034: 2030: 2026: 2023: 2001: 1997: 1993: 1990: 1987: 1982: 1978: 1974: 1969: 1965: 1944: 1941: 1933: 1929: 1925: 1922: 1919: 1914: 1910: 1906: 1901: 1897: 1878: 1873: 1871: 1868: 1864: 1857: 1828: 1822: 1819: 1816: 1813: 1810: 1804: 1801: 1799: 1791: 1788: 1785: 1782: 1779: 1776: 1773: 1770: 1768: 1760: 1757: 1754: 1751: 1748: 1745: 1743: 1738: 1725: 1721: 1715: 1711: 1685: 1634: 1630: 1622: 1618: 1612: 1608: 1583: 1580: 1577: 1574: 1571: 1565: 1562: 1559: 1556: 1550: 1547: 1545: 1534: 1531: 1528: 1525: 1522: 1516: 1513: 1510: 1507: 1505: 1497: 1494: 1491: 1488: 1485: 1483: 1478: 1464: 1443: 1440: 1437: 1434: 1431: 1428: 1418: 1415: 1412: 1409: 1406: 1403: 1387: 1382: 1379: 1375: 1342: 1337: 1333: 1329: 1318: 1311: 1305: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1244: 1242: 1230: 1223: 1197: 1193: 1186: 1169: 1162: 1159: 1148: 1145: 1136: 1134: 1129: 1124: 1117: 1112: 1110: 1105: 1098: 1095: 1084: 1081: 1072: 1070: 1065: 1060: 1053: 1048: 1046: 1041: 1034: 1031: 1020: 1017: 1008: 1006: 1001: 996: 989: 984: 982: 977: 970: 967: 960: 955: 953: 948: 943: 932: 929: 920: 918: 913: 906: 903: 896: 891: 889: 884: 879: 868: 865: 856: 854: 849: 842: 830: 822: 815: 806: 804: 801: 794: 790: 782: 767: 763: 756: 752: 747: 739: 735: 731: 723: 718: 711: 707: 703: 696: 692: 677: 671: 666: 661: 643: 640: 637: 623: 606: 603: 600: 580: 577: 574: 554: 551: 548: 528: 525: 522: 494: 490: 485: 482: 477: 473: 465: 449: 444: 441: 436: 432: 424: 402: 399: 393: 387: 381: 364: 360: 354: 351: 346: 343: 340: 334: 329: 326: 321: 318: 315: 311: 302: 296: 292: 285: 279: 270: 268: 266: 262: 258: 257:Bézout domain 253: 251: 247: 242: 235: 232: 226: 218: 214: 208: 198: 194: 188: 181: 175: 171: 165: 160: 154: 135: 132: 126: 122: 116: 112: 108: 102: 96: 90: 86: 82: 77: 71: 58: 56: 52: 48: 45:(also called 44: 40: 33: 19: 2592: 2546:(1): 48–72. 2543: 2539: 2525: 2515: 2511: 2502: 2495: 2476: 2467: 2457: 2447: 2390: 2378: 2372: 2366: 2362: 2353: 2349: 2345: 2339: 2333: 2327: 2309: 2295: 2284: 2272: 2249: 2245: 2239: 2233: 2211: 2196: 2190: 2186: 2183: 2179: 2172: 2166: 2161: 2156: 2150: 2142: 2125: 2116: 1882: 1866: 1862: 1855: 1723: 1719: 1713: 1709: 1686: 1664:. Similarly 1632: 1628: 1620: 1616: 1614:, and hence 1610: 1606: 1462: 1383: 1377: 1373: 1335: 1331: 1327: 1316: 1309: 1303: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1248: 1228: 1221: 1198:) = (18, −5) 1195: 1191: 1187: 831: 820: 813: 810: 802: 792: 788: 780: 765: 761: 757: 750: 749:| < 745: 737: 733: 729: 721: 716: 709: 705: 701: 694: 690: 675: 669: 662: 621: 403: 397: 391: 385: 379: 294: 290: 283: 277: 274: 254: 243: 236: 230: 224: 216: 212: 206: 196: 192: 186: 173: 169: 163: 158: 152: 137: 130: 124: 120: 114: 110: 106: 100: 94: 88: 75: 69: 60: 46: 42: 36: 2176:satisfying 1625:. However, 1233:; that is, 719:< | 162:are called 39:mathematics 2607:Categories 2529:See also: 2453:Bézout, É. 2343:such that 2243:such that 2016:such that 1707:such that 1467:, because 1371:, one has 1292:. The set 699:such that 104:such that 2594:MathWorld 2076:⋯ 1991:… 1923:… 1845:That is, 1687:Now, let 1652:, making 1572:− 1560:− 1514:− 1492:− 1432:≤ 1339:, by the 1321:). Since 1170:⋮ 1146:− 1137:× 1113:× 1082:− 1073:× 1049:× 1018:− 1009:× 985:× 956:× 930:− 921:× 892:× 866:− 857:× 843:⋮ 319:− 2558:Archived 2475:(2001). 2455:(1779). 2408:See also 1853:. Since 81:integers 2387:History 2201:over a 1290:> 0} 1215:⁠ 1203:⁠ 825:, then 807:Example 797:⁠ 777:⁠ 743:−| 715:0 < 248:or the 55:theorem 2483:  2392:French 2313:, and 1858:> 0 1636:, and 1460:is in 1307:(with 1257:, let 1237:, and 753:< 0 725:| 658:(1, 0) 624:> 0 377:where 338:  259:is an 220:| 204:| 200:| 184:| 2561:(PDF) 2536:(PDF) 2439:Notes 2359:ideal 2214:roots 2203:field 1631:< 1623:∪ {0} 1600:Thus 1465:∪ {0} 679:, if 83:with 2481:ISBN 2331:and 2321:and 2303:and 2287:ring 2258:and 2237:and 2227:and 2170:and 2154:and 1717:and 1703:and 1695:and 1680:and 1627:0 ≤ 1438:< 1424:with 1384:The 1363:and 1351:and 1314:and 1312:= ±1 1282:and 1253:and 1212:42/6 823:= 42 818:and 816:= 12 811:Let 741:and 713:and 673:and 604:> 593:and 578:< 552:< 541:and 526:> 511:and 474:< 433:< 408:and 395:and 281:and 228:and 202:and 166:for 156:and 142:and 98:and 73:and 67:Let 2548:doi 2518:= 1 2337:in 2252:= 1 2160:is 1891:gcd 1392:by 1388:of 1319:= 0 1300:or 1262:= { 1231:= 3 1224:= 2 1188:If 507:If 456:and 404:If 275:If 79:be 37:In 2609:: 2591:. 2556:. 2544:36 2542:. 2538:. 2516:by 2514:− 2512:ax 2383:. 2376:. 2373:Rd 2367:Rb 2365:+ 2363:Ra 2352:= 2350:by 2348:+ 2346:ax 2277:. 2270:). 2250:bg 2248:+ 2246:af 2209:. 2194:. 2189:= 2182:+ 2180:xp 1870:. 1865:≤ 1724:cv 1722:= 1714:cu 1712:= 1684:. 1619:∈ 1611:by 1609:+ 1607:ax 1381:. 1376:≤ 1336:bt 1334:+ 1332:as 1330:= 1288:by 1286:+ 1284:ax 1278:∈ 1274:, 1270:| 1268:by 1266:+ 1264:ax 1241:. 1217:∈ 1206:18 1194:, 1130:42 1118:18 1106:12 1066:42 1054:11 1042:12 1002:42 978:12 949:42 914:12 885:42 869:10 850:12 800:. 764:, 755:. 736:+ 734:dq 732:= 708:+ 706:dq 704:= 693:, 660:. 293:, 255:A 172:, 134:. 125:bt 123:+ 121:az 113:= 111:by 109:+ 107:ax 57:: 41:, 2597:. 2550:: 2489:. 2354:d 2340:R 2334:y 2328:x 2323:b 2319:a 2315:d 2310:R 2305:b 2301:a 2296:R 2260:g 2256:f 2240:b 2234:a 2229:g 2225:f 2191:x 2187:q 2184:x 2178:2 2173:q 2167:p 2162:x 2157:x 2151:x 2149:2 2126:d 2117:d 2097:n 2093:x 2087:n 2083:a 2079:+ 2073:+ 2068:2 2064:x 2058:2 2054:a 2050:+ 2045:1 2041:x 2035:1 2031:a 2027:= 2024:d 2002:n 1998:x 1994:, 1988:, 1983:2 1979:x 1975:, 1970:1 1966:x 1945:d 1942:= 1939:) 1934:n 1930:a 1926:, 1920:, 1915:2 1911:a 1907:, 1902:1 1898:a 1894:( 1867:d 1863:c 1856:d 1851:d 1847:c 1829:. 1826:) 1823:t 1820:v 1817:+ 1814:s 1811:u 1808:( 1805:c 1802:= 1792:t 1789:v 1786:c 1783:+ 1780:s 1777:u 1774:c 1771:= 1761:t 1758:b 1755:+ 1752:s 1749:a 1746:= 1739:d 1720:b 1710:a 1705:v 1701:u 1697:b 1693:a 1689:c 1682:b 1678:a 1674:d 1670:b 1666:d 1662:a 1658:d 1654:r 1650:S 1646:r 1642:S 1638:d 1633:d 1629:r 1621:S 1617:r 1602:r 1584:. 1581:t 1578:q 1575:b 1569:) 1566:s 1563:q 1557:1 1554:( 1551:a 1548:= 1538:) 1535:t 1532:b 1529:+ 1526:s 1523:a 1520:( 1517:q 1511:a 1508:= 1498:d 1495:q 1489:a 1486:= 1479:r 1463:S 1458:r 1444:. 1441:d 1435:r 1429:0 1419:r 1416:+ 1413:q 1410:d 1407:= 1404:a 1394:d 1390:a 1378:d 1374:c 1369:c 1365:b 1361:a 1357:d 1353:b 1349:a 1345:d 1328:d 1323:S 1317:y 1310:x 1304:a 1302:– 1298:a 1294:S 1280:Z 1276:y 1272:x 1260:S 1255:b 1251:a 1229:k 1222:k 1209:/ 1196:y 1192:x 1190:( 1163:6 1160:= 1155:) 1149:5 1140:( 1125:+ 1099:6 1096:= 1091:) 1085:3 1076:( 1061:+ 1035:6 1032:= 1027:) 1021:1 1012:( 997:+ 990:4 971:6 968:= 961:1 944:+ 939:) 933:3 924:( 907:6 904:= 897:3 880:+ 875:) 860:( 821:b 814:a 793:d 791:/ 789:b 785:/ 781:x 772:k 768:) 766:y 762:x 760:( 751:r 746:d 738:r 730:c 722:d 717:r 710:r 702:c 697:) 695:r 691:q 689:( 685:c 681:d 676:d 670:c 644:0 641:= 638:b 628:b 622:a 607:0 601:y 581:0 575:x 555:0 549:y 529:0 523:x 513:b 509:a 495:. 491:| 486:d 483:a 478:| 470:| 466:y 462:| 450:| 445:d 442:b 437:| 429:| 425:x 421:| 410:b 406:a 398:b 392:a 386:d 380:k 365:, 361:) 355:d 352:a 347:k 344:+ 341:y 335:, 330:d 327:b 322:k 316:x 312:( 297:) 295:y 291:x 289:( 284:b 278:a 231:b 225:a 217:d 215:/ 213:a 207:y 197:d 195:/ 193:b 187:x 176:) 174:b 170:a 168:( 159:y 153:x 148:0 144:0 140:0 131:d 115:d 101:y 95:x 89:d 76:b 70:a 34:. 20:)

Index

Bézout coefficients
Bézout's theorem
mathematics
Étienne Bézout
theorem
integers
greatest common divisor
extended Euclidean algorithm
Euclid's lemma
Chinese remainder theorem
Bézout domain
integral domain
principal ideal domains
extended Euclidean algorithm
Euclidean division
well-ordering principle
Euclidean division
Polynomial greatest common divisor § Bézout's identity and extended GCD algorithm
polynomial ring
univariate polynomials
field
extended Euclidean algorithm
roots
fundamental theorem of algebra
algebraically closed field
complex numbers
Hilbert's Nullstellensatz
ring
principal ideal domain
ideal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.