Knowledge (XXG)

Bubble raft

Source 📝

80:. Legend claims that Bragg conceived of bubble raft models while pouring oil into his lawn mower. He noticed that bubbles on the surface of the oil assembled into rafts resembling the {111} plane of close-packed crystals. Nye and Bragg later presented a method of generating and controlling bubbles on the surface of a glycerine-water-oleic acid-triethanolamine solution, in assemblies of 100,000 or more sub-millimeter sized bubbles. In their paper, they go on at length about the microstructural phenomena observed in bubble rafts and hypothesized in metals. 520: 146: 903: 20: 51:
soaps. These assembled bubbles act like atoms, diffusing, slipping, ripening, straining, and otherwise deforming in a way that models the behavior of the {111} plane of a close-packed crystal. The ideal (lowest energy) state of the assembly would undoubtedly be a perfectly regular single crystal,
515:{\displaystyle U(\rho )=-\pi R^{4}\rho _{solution}g\left({\frac {\mathrm {B} }{\alpha }}\right)^{2}{\mathit {A}}K_{0}(\alpha \rho )+{\begin{cases}0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\rho \geq \ 2\\\pi R^{4}\rho _{solution}g\left({\frac {(2-\rho )^{2}}{\alpha ^{2}}}\right)~~~\rho \leq \ 2\end{cases}}} 39:
and atomic length-scale behavior by modelling the {111} plane of a close-packed crystal. A material's observable and measurable mechanical properties strongly depend on its atomic and microstructural configuration and characteristics. This fact is intentionally ignored in
89: 113:
Bubble rafts exhibit complex dynamics, as illustrated in the video. This is triggered by rupture of a first bubble, driven by thermal fluctuations and a cascade of subsequent bursting bubbles, which can give rise to
790: 92: 96: 95: 91: 90: 97: 625: 94: 693: 553: 715: 862: 669: 833: 811: 647: 575: 887:
can't be modeled in a 2D bubble raft because it extends outside the plane. It is even possible to replicate some microstructure treats such as
524:
The portion of the equation to the left of the plus sign is the attractive force, and the portion to the right represents the repulsive force.
93: 77: 896: 722: 1085: 928: 115: 102: 23:
Image of a bubble raft (bubble size ~1.5 mm) showing vacancies and an edge dislocation in the bottom right corner.
44:, which assumes a material to have no underlying microstructure and be uniform and semi-infinite throughout. 872: 871:
Bubble rafts can display numerous phenomena seen in the crystal lattice. This includes such things as point
135: 888: 106: 61: 892: 131: 127: 987:
Ritacco H, Kiefer F, Langevin D (June 2007). "Lifetime of bubble rafts: cooperativity and avalanches".
582: 996: 943: 891:. The annealing process is simulated by stirring the bubble raft. This anneals out the dislocations ( 73: 69: 65: 279: 41: 676: 52:
but just as in metals, the bubbles often form defects, grain boundaries, and multiple crystals.
1061: 1012: 884: 529: 700: 1051: 1043: 1004: 951: 32: 840: 654: 975: 865: 1000: 947: 1056: 1031: 818: 796: 632: 560: 60:
The concept of bubble raft modelling was first presented in 1947 by Nobel Laureate Sir
36: 1079: 138:, which consists of a balance between attractive and repulsive forces between atoms. 876: 1008: 902: 880: 48: 141:
The "atoms" in Bubble Rafts also exhibit such attractive and repulsive forces:
1047: 1065: 1032:"Complexity and self-organized criticality in liquid foams. A short review" 1016: 956: 19: 47:
Bubble rafts assemble bubbles on a water surface, often with the help of
835:
is a constant dependent upon the boundary conditions of the calculation
717:
is the ratio R/a of the bubble radius to the Laplace constant a, where
976:
Laboratory Handout in MIT's 3.032: Mechanical Behavior of Materials
901: 671:
is the ratio of the distance between bubbles to the bubble radius
87: 18: 875:(vacancies, substitutional impurities, interstitial atoms), edge 627:
is the density of the solution from which the bubbles are formed
126:
In deforming a crystal lattice, one changes the energy and the
244: 508: 134:
is popularly (and mostly qualitatively) modeled using the
906:
A bubble raft showing a close up of an edge dislocation.
843: 821: 799: 725: 703: 679: 657: 635: 585: 563: 532: 149: 785:{\displaystyle a^{2}={\frac {T}{\rho _{solution}g}}} 856: 827: 805: 784: 709: 687: 663: 641: 619: 569: 547: 514: 101:Avalanches of rupturing bubbles can give rise to 118:, and a power-law distribution of avalanches. 8: 929:"A Dynamical Model of a Crystal Structure" 1055: 955: 848: 842: 820: 798: 749: 739: 730: 724: 702: 680: 678: 656: 634: 590: 584: 562: 531: 472: 461: 442: 408: 398: 274: 253: 243: 242: 236: 222: 220: 185: 175: 148: 922: 920: 916: 130:felt by the atoms of the lattice. This 971: 969: 967: 7: 927:Bragg, Lawrance; Nye, J. F. (1947). 681: 223: 78:Proceedings of the Royal Society A 14: 620:{\displaystyle \rho _{solution}} 695:is the radius of ring contact 649:is the gravitational constant 542: 536: 458: 445: 268: 259: 159: 153: 1: 1009:10.1103/PhysRevLett.98.244501 577:is the average bubble radius 555:is the interbubble potential 35:. It demonstrates materials' 1030:Ritacco HA (November 2020). 688:{\displaystyle \mathrm {B} } 122:Relation to crystal lattices 864:is a zeroth-order modified 1102: 116:self-organized criticality 103:self-organized criticality 1048:10.1016/j.cis.2020.102282 1036:Adv Colloid Interface Sci 548:{\displaystyle U(\rho )} 813:is the surface tension 710:{\displaystyle \alpha } 136:Lennard-Jones potential 56:History of bubble rafts 957:10.1098/rspa.1947.0089 907: 858: 829: 807: 786: 711: 689: 665: 643: 621: 571: 549: 516: 110: 107:Abelian sandpile model 62:William Lawrence Bragg 24: 936:Proc. R. Soc. Lond. A 905: 859: 857:{\displaystyle K_{0}} 830: 808: 787: 712: 690: 666: 664:{\displaystyle \rho } 644: 622: 572: 550: 517: 132:interatomic potential 128:interatomic potential 100: 22: 868:of the second kind. 841: 819: 797: 723: 701: 677: 655: 633: 583: 561: 530: 147: 74:Cavendish Laboratory 70:Cambridge University 1001:2007PhRvL..98x4501R 948:1947RSPSA.190..474B 42:continuum mechanics 908: 854: 825: 803: 782: 707: 685: 661: 639: 617: 567: 545: 512: 507: 111: 25: 1086:Materials science 942:(1023): 474–481. 897:recrystallization 885:screw dislocation 828:{\displaystyle A} 806:{\displaystyle T} 780: 642:{\displaystyle g} 570:{\displaystyle R} 501: 492: 489: 486: 478: 383: 374: 371: 368: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 329: 326: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 230: 105:, similar to the 98: 1093: 1070: 1069: 1059: 1027: 1021: 1020: 984: 978: 973: 962: 961: 959: 933: 924: 863: 861: 860: 855: 853: 852: 834: 832: 831: 826: 812: 810: 809: 804: 791: 789: 788: 783: 781: 779: 775: 774: 740: 735: 734: 716: 714: 713: 708: 694: 692: 691: 686: 684: 670: 668: 667: 662: 648: 646: 645: 640: 626: 624: 623: 618: 616: 615: 576: 574: 573: 568: 554: 552: 551: 546: 521: 519: 518: 513: 511: 510: 499: 490: 487: 484: 483: 479: 477: 476: 467: 466: 465: 443: 434: 433: 403: 402: 381: 372: 369: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 324: 321: 318: 315: 312: 309: 306: 303: 300: 297: 294: 291: 288: 285: 258: 257: 248: 247: 241: 240: 235: 231: 226: 221: 211: 210: 180: 179: 99: 16:Array of bubbles 1101: 1100: 1096: 1095: 1094: 1092: 1091: 1090: 1076: 1075: 1074: 1073: 1029: 1028: 1024: 986: 985: 981: 974: 965: 931: 926: 925: 918: 913: 895:) and promotes 866:Bessel function 844: 839: 838: 817: 816: 795: 794: 745: 744: 726: 721: 720: 699: 698: 675: 674: 653: 652: 631: 630: 586: 581: 580: 559: 558: 528: 527: 506: 505: 468: 457: 444: 438: 404: 394: 388: 387: 275: 249: 216: 215: 181: 171: 145: 144: 124: 88: 86: 58: 37:microstructural 31:is an array of 17: 12: 11: 5: 1099: 1097: 1089: 1088: 1078: 1077: 1072: 1071: 1022: 995:(24): 244501. 979: 963: 915: 914: 912: 909: 851: 847: 824: 802: 778: 773: 770: 767: 764: 761: 758: 755: 752: 748: 743: 738: 733: 729: 706: 683: 660: 638: 614: 611: 608: 605: 602: 599: 596: 593: 589: 566: 544: 541: 538: 535: 509: 504: 498: 495: 482: 475: 471: 464: 460: 456: 453: 450: 447: 441: 437: 432: 429: 426: 423: 420: 417: 414: 411: 407: 401: 397: 393: 390: 389: 386: 380: 377: 284: 281: 280: 278: 273: 270: 267: 264: 261: 256: 252: 246: 239: 234: 229: 225: 219: 214: 209: 206: 203: 200: 197: 194: 191: 188: 184: 178: 174: 170: 167: 164: 161: 158: 155: 152: 123: 120: 85: 82: 57: 54: 15: 13: 10: 9: 6: 4: 3: 2: 1098: 1087: 1084: 1083: 1081: 1067: 1063: 1058: 1053: 1049: 1045: 1041: 1037: 1033: 1026: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 989:Phys Rev Lett 983: 980: 977: 972: 970: 968: 964: 958: 953: 949: 945: 941: 937: 930: 923: 921: 917: 910: 904: 900: 898: 894: 890: 886: 882: 878: 874: 869: 867: 849: 845: 836: 822: 814: 800: 792: 776: 771: 768: 765: 762: 759: 756: 753: 750: 746: 741: 736: 731: 727: 718: 704: 696: 672: 658: 650: 636: 628: 612: 609: 606: 603: 600: 597: 594: 591: 587: 578: 564: 556: 539: 533: 525: 522: 502: 496: 493: 480: 473: 469: 462: 454: 451: 448: 439: 435: 430: 427: 424: 421: 418: 415: 412: 409: 405: 399: 395: 391: 384: 378: 375: 282: 276: 271: 265: 262: 254: 250: 237: 232: 227: 217: 212: 207: 204: 201: 198: 195: 192: 189: 186: 182: 176: 172: 168: 165: 162: 156: 150: 142: 139: 137: 133: 129: 121: 119: 117: 108: 104: 83: 81: 79: 75: 71: 67: 63: 55: 53: 50: 45: 43: 38: 34: 30: 21: 1039: 1035: 1025: 992: 988: 982: 939: 935: 877:dislocations 870: 837: 815: 793: 719: 697: 673: 651: 629: 579: 557: 526: 523: 143: 140: 125: 112: 59: 46: 28: 26: 49:amphiphilic 29:bubble raft 1042:: 102282. 911:References 889:annealing 747:ρ 705:α 659:ρ 588:ρ 540:ρ 497:≤ 494:ρ 470:α 455:ρ 452:− 406:ρ 392:π 379:≥ 376:ρ 266:ρ 263:α 228:α 183:ρ 169:π 166:− 157:ρ 1080:Category 1066:33059304 1017:17677967 893:recovery 84:Dynamics 66:John Nye 1057:7537653 997:Bibcode 944:Bibcode 873:defects 33:bubbles 1064:  1054:  1015:  881:grains 500:  491:  488:  485:  382:  373:  370:  367:  364:  361:  358:  355:  352:  349:  346:  343:  340:  337:  334:  331:  328:  325:  322:  319:  316:  313:  310:  307:  304:  301:  298:  295:  292:  289:  286:  932:(PDF) 1062:PMID 1013:PMID 883:. A 879:and 64:and 1052:PMC 1044:doi 1040:285 1005:doi 952:doi 940:190 76:in 72:'s 68:of 1082:: 1060:. 1050:. 1038:. 1034:. 1011:. 1003:. 993:98 991:. 966:^ 950:. 938:. 934:. 919:^ 899:. 27:A 1068:. 1046:: 1019:. 1007:: 999:: 960:. 954:: 946:: 850:0 846:K 823:A 801:T 777:g 772:n 769:o 766:i 763:t 760:u 757:l 754:o 751:s 742:T 737:= 732:2 728:a 682:B 637:g 613:n 610:o 607:i 604:t 601:u 598:l 595:o 592:s 565:R 543:) 537:( 534:U 503:2 481:) 474:2 463:2 459:) 449:2 446:( 440:( 436:g 431:n 428:o 425:i 422:t 419:u 416:l 413:o 410:s 400:4 396:R 385:2 283:0 277:{ 272:+ 269:) 260:( 255:0 251:K 245:A 238:2 233:) 224:B 218:( 213:g 208:n 205:o 202:i 199:t 196:u 193:l 190:o 187:s 177:4 173:R 163:= 160:) 154:( 151:U 109:.

Index


bubbles
microstructural
continuum mechanics
amphiphilic
William Lawrence Bragg
John Nye
Cambridge University
Cavendish Laboratory
Proceedings of the Royal Society A
self-organized criticality
Abelian sandpile model
self-organized criticality
interatomic potential
interatomic potential
Lennard-Jones potential
Bessel function
defects
dislocations
grains
screw dislocation
annealing
recovery
recrystallization



"A Dynamical Model of a Crystal Structure"
Bibcode
1947RSPSA.190..474B

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.