Knowledge

Burke–Schumann limit

Source 📝

984:(diffusive transport will be comparable to reaction in this zone). In this thin reaction sheet, both fuel and oxygen are consumed and nothing leaks to the other side of the sheet. Due to the instantaneous consumption of fuel and oxidizer, the normal gradients of scalars exhibit discontinuities at the reaction sheet. 709: 345: 36:. One important conclusion of infinitely fast chemistry is the non-co-existence of fuel and oxidizer simultaneously except in a thin reaction sheet. The inner structure of the reaction sheet is described by 184: 824: 565: 458: 982: 523: 413: 782: 593: 878:
i.e., fuel and oxidizer cannot coexist, since far away from the reaction sheet, only one of the reactant is available (non premixed). On the fuel side of the reaction sheet,
736: 873: 942: 909: 585: 485: 375: 242: 104: 73: 48:
In a typical non-premixed combustion (fuel and oxidizer are separated initially), mixing of fuel and oxidizer takes place based on the mechanical time scale
254: 1003: 1108: 1073: 116: 993: 791: 532: 785: 567:
guarantees that chemical reaction dominates over the other terms. A typical conservation equation for the scalar
418: 998: 37: 33: 75:
dictated by the convection/diffusion (the relative importance between convection and diffusion depends on the
1139: 947: 490: 380: 741: 210: 194: 704:{\displaystyle {\mathcal {L}}(\psi )=\mathrm {Da} _{b}Y_{F}Y_{O}e^{-{\frac {E}{RT}}+{\frac {E}{RT_{b}}}}} 245: 29: 944:. Fuel and oxygen can coexist (with very small concentrations) only in a thin reaction sheet, where 717: 1134: 832: 460:. On the other hand, the shortest chemical time is found at the flame (with burnt gas temperature 1104: 1069: 202: 914: 881: 1096: 1031: 570: 463: 353: 220: 82: 51: 1089:
Liñán, A. (2001). "Diffusion-controlled combustion". In Aref, H.; Phillips, J. W. (eds.).
526: 76: 1129: 1123: 107: 350:
Due to the large activation energy, the Damköhler number at unburnt gas temperature
340:{\displaystyle \mathrm {Da} ={\frac {t_{m}}{t_{c}}}=t_{m}Be^{-{\frac {E}{RT}}}.} 32:), named after S.P. Burke and T.E.W. Schumann, due to their pioneering work on 17: 1100: 28:, is the limit of infinitely fast chemistry (or in other words, infinite 1035: 79:) terms. Similarly, chemical reaction takes certain amount of time 106:
to consume reactants. For one-step irreversible chemistry with
1022:
Burke, S. P.; Schumann, T. E. W. (1928). "Diffusion flames".
723: 599: 587:(species concentration or energy) takes the following form, 179:{\displaystyle t_{c}=\left(Be^{\frac {E}{RT}}\right)^{-1}} 1090: 950: 917: 884: 835: 794: 788:
of fuel and oxidizer, respectively. Taking the limit
744: 720: 596: 573: 535: 493: 466: 421: 383: 356: 257: 223: 119: 85: 54: 819:{\displaystyle \mathrm {Da} _{b}\rightarrow \infty } 560:{\displaystyle \mathrm {Da} _{b}\rightarrow \infty } 244:appropriate for particular flow configuration. The 976: 936: 903: 867: 818: 776: 730: 703: 579: 559: 517: 479: 452: 407: 369: 339: 236: 178: 98: 67: 217:is the temperature. Similarly, one can define 8: 453:{\displaystyle {\frac {E}{RT_{u}}}\sim 100} 1095:. Dordrecht: Springer. pp. 487–502. 951: 949: 922: 916: 889: 883: 850: 840: 834: 804: 796: 793: 768: 749: 743: 738:is the convective-diffusive operator and 722: 721: 719: 690: 677: 659: 655: 645: 635: 625: 617: 598: 597: 595: 572: 545: 537: 534: 503: 495: 492: 471: 465: 435: 422: 420: 393: 385: 382: 361: 355: 317: 313: 300: 285: 275: 269: 258: 256: 228: 222: 167: 146: 124: 118: 90: 84: 59: 53: 1014: 1024:Industrial & Engineering Chemistry 977:{\displaystyle \mathrm {Da} \sim O(1)} 518:{\displaystyle \mathrm {Da} _{b}\gg 1} 408:{\displaystyle \mathrm {Da} _{u}\ll 1} 1068:. New York: Oxford University Press. 7: 826:in the above equation, we find that 777:{\displaystyle Y_{F}\ \&\ Y_{O}} 1064:Linan, A.; Williams, F. A. (1993). 955: 952: 813: 800: 797: 758: 621: 618: 554: 541: 538: 499: 496: 389: 386: 262: 259: 14: 1066:Fundamental Aspects of Combustion 110:, this chemical time is given by 1092:Mechanics for a New Millennium 1004:Liñán's diffusion flame theory 971: 965: 810: 731:{\displaystyle {\mathcal {L}}} 610: 604: 551: 1: 994:Activation energy asymptotics 868:{\displaystyle Y_{F}Y_{O}=0,} 26:large Damköhler number limit 1156: 911:and on the oxidizer side, 1101:10.1007/0-306-46956-1_31 1049:Williams, F. A. (2018). 937:{\displaystyle Y_{F}=0} 904:{\displaystyle Y_{O}=0} 978: 938: 905: 869: 820: 778: 732: 705: 581: 561: 519: 481: 454: 409: 371: 341: 238: 211:universal gas constant 195:pre-exponential factor 180: 100: 69: 979: 939: 906: 870: 821: 779: 733: 706: 582: 580:{\displaystyle \psi } 562: 520: 482: 480:{\displaystyle T_{b}} 455: 410: 372: 370:{\displaystyle T_{u}} 342: 239: 237:{\displaystyle t_{m}} 181: 101: 99:{\displaystyle t_{c}} 70: 68:{\displaystyle t_{m}} 948: 915: 882: 833: 792: 742: 718: 594: 571: 533: 491: 464: 419: 381: 354: 255: 221: 117: 83: 52: 34:Burke–Schumann flame 22:Burke–Schumann limit 1036:10.1021/ie50226a005 974: 934: 901: 865: 816: 774: 728: 701: 577: 557: 515: 477: 450: 405: 367: 337: 234: 176: 96: 65: 1110:978-0-7923-7156-4 1051:Combustion Theory 763: 757: 697: 672: 442: 330: 291: 203:activation energy 159: 44:Limit description 1147: 1115: 1114: 1086: 1080: 1079: 1061: 1055: 1054: 1046: 1040: 1039: 1030:(10): 998–1004. 1019: 999:Liñán's equation 983: 981: 980: 975: 958: 943: 941: 940: 935: 927: 926: 910: 908: 907: 902: 894: 893: 874: 872: 871: 866: 855: 854: 845: 844: 825: 823: 822: 817: 809: 808: 803: 783: 781: 780: 775: 773: 772: 761: 755: 754: 753: 737: 735: 734: 729: 727: 726: 710: 708: 707: 702: 700: 699: 698: 696: 695: 694: 678: 673: 671: 660: 650: 649: 640: 639: 630: 629: 624: 603: 602: 586: 584: 583: 578: 566: 564: 563: 558: 550: 549: 544: 525:. Regardless of 524: 522: 521: 516: 508: 507: 502: 486: 484: 483: 478: 476: 475: 459: 457: 456: 451: 443: 441: 440: 439: 423: 414: 412: 411: 406: 398: 397: 392: 376: 374: 373: 368: 366: 365: 346: 344: 343: 338: 333: 332: 331: 329: 318: 305: 304: 292: 290: 289: 280: 279: 270: 265: 246:Damköhler number 243: 241: 240: 235: 233: 232: 216: 208: 200: 192: 185: 183: 182: 177: 175: 174: 166: 162: 161: 160: 158: 147: 129: 128: 105: 103: 102: 97: 95: 94: 74: 72: 71: 66: 64: 63: 38:Liñán's equation 30:Damköhler number 1155: 1154: 1150: 1149: 1148: 1146: 1145: 1144: 1120: 1119: 1118: 1111: 1088: 1087: 1083: 1076: 1063: 1062: 1058: 1048: 1047: 1043: 1021: 1020: 1016: 1012: 990: 946: 945: 918: 913: 912: 885: 880: 879: 846: 836: 831: 830: 795: 790: 789: 764: 745: 740: 739: 716: 715: 686: 682: 664: 651: 641: 631: 616: 592: 591: 569: 568: 536: 531: 530: 527:Reynolds number 494: 489: 488: 467: 462: 461: 431: 427: 417: 416: 384: 379: 378: 357: 352: 351: 322: 309: 296: 281: 271: 253: 252: 224: 219: 218: 214: 206: 198: 190: 151: 142: 138: 134: 133: 120: 115: 114: 86: 81: 80: 77:Reynolds number 55: 50: 49: 46: 12: 11: 5: 1153: 1151: 1143: 1142: 1140:Fluid dynamics 1137: 1132: 1122: 1121: 1117: 1116: 1109: 1081: 1074: 1056: 1041: 1013: 1011: 1008: 1007: 1006: 1001: 996: 989: 986: 973: 970: 967: 964: 961: 957: 954: 933: 930: 925: 921: 900: 897: 892: 888: 876: 875: 864: 861: 858: 853: 849: 843: 839: 815: 812: 807: 802: 799: 786:mass fractions 771: 767: 760: 752: 748: 725: 712: 711: 693: 689: 685: 681: 676: 670: 667: 663: 658: 654: 648: 644: 638: 634: 628: 623: 620: 615: 612: 609: 606: 601: 576: 556: 553: 548: 543: 540: 514: 511: 506: 501: 498: 487:), leading to 474: 470: 449: 446: 438: 434: 430: 426: 404: 401: 396: 391: 388: 364: 360: 348: 347: 336: 328: 325: 321: 316: 312: 308: 303: 299: 295: 288: 284: 278: 274: 268: 264: 261: 231: 227: 187: 186: 173: 170: 165: 157: 154: 150: 145: 141: 137: 132: 127: 123: 108:Arrhenius rate 93: 89: 62: 58: 45: 42: 13: 10: 9: 6: 4: 3: 2: 1152: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1125: 1112: 1106: 1102: 1098: 1094: 1093: 1085: 1082: 1077: 1075:0-19-507626-5 1071: 1067: 1060: 1057: 1052: 1045: 1042: 1037: 1033: 1029: 1025: 1018: 1015: 1009: 1005: 1002: 1000: 997: 995: 992: 991: 987: 985: 968: 962: 959: 931: 928: 923: 919: 898: 895: 890: 886: 862: 859: 856: 851: 847: 841: 837: 829: 828: 827: 805: 787: 769: 765: 750: 746: 691: 687: 683: 679: 674: 668: 665: 661: 656: 652: 646: 642: 636: 632: 626: 613: 607: 590: 589: 588: 574: 546: 528: 512: 509: 504: 472: 468: 447: 444: 436: 432: 428: 424: 402: 399: 394: 362: 358: 334: 326: 323: 319: 314: 310: 306: 301: 297: 293: 286: 282: 276: 272: 266: 251: 250: 249: 247: 229: 225: 212: 204: 196: 171: 168: 163: 155: 152: 148: 143: 139: 135: 130: 125: 121: 113: 112: 111: 109: 91: 87: 78: 60: 56: 43: 41: 39: 35: 31: 27: 23: 19: 1091: 1084: 1065: 1059: 1053:. CRC Press. 1050: 1044: 1027: 1023: 1017: 877: 713: 529:, the limit 349: 188: 47: 25: 21: 15: 1135:Combustion 1124:Categories 1010:References 415:, because 18:combustion 960:∼ 814:∞ 811:→ 759:& 657:− 608:ψ 575:ψ 555:∞ 552:→ 510:≫ 445:∼ 400:≪ 315:− 169:− 988:See also 784:are the 248:is then 209:is the 201:is the 193:is the 1107:  1072:  762:  756:  714:where 189:where 24:, or 1130:Fire 1105:ISBN 1070:ISBN 213:and 1097:doi 1032:doi 448:100 377:is 16:In 1126:: 1103:. 1028:20 1026:. 205:, 197:, 40:. 20:, 1113:. 1099:: 1078:. 1038:. 1034:: 972:) 969:1 966:( 963:O 956:a 953:D 932:0 929:= 924:F 920:Y 899:0 896:= 891:O 887:Y 863:, 860:0 857:= 852:O 848:Y 842:F 838:Y 806:b 801:a 798:D 770:O 766:Y 751:F 747:Y 724:L 692:b 688:T 684:R 680:E 675:+ 669:T 666:R 662:E 653:e 647:O 643:Y 637:F 633:Y 627:b 622:a 619:D 614:= 611:) 605:( 600:L 547:b 542:a 539:D 513:1 505:b 500:a 497:D 473:b 469:T 437:u 433:T 429:R 425:E 403:1 395:u 390:a 387:D 363:u 359:T 335:. 327:T 324:R 320:E 311:e 307:B 302:m 298:t 294:= 287:c 283:t 277:m 273:t 267:= 263:a 260:D 230:m 226:t 215:T 207:R 199:E 191:B 172:1 164:) 156:T 153:R 149:E 144:e 140:B 136:( 131:= 126:c 122:t 92:c 88:t 61:m 57:t

Index

combustion
Damköhler number
Burke–Schumann flame
Liñán's equation
Reynolds number
Arrhenius rate
pre-exponential factor
activation energy
universal gas constant
Damköhler number
Reynolds number
mass fractions
Activation energy asymptotics
Liñán's equation
Liñán's diffusion flame theory
doi
10.1021/ie50226a005
ISBN
0-19-507626-5
Mechanics for a New Millennium
doi
10.1007/0-306-46956-1_31
ISBN
978-0-7923-7156-4
Categories
Fire
Combustion
Fluid dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.