Knowledge

Bacillus virus phi29

Source 📝

49: 170: 473: 31: 327: 463:
of the packaging motor's three-way junction. When pRNA is in this tetramer ring form, it works as a part of the DNA packaging motor to transport DNA molecules to their destination location within the prohead capsule. Specifically, the functional domains of pRNA bind to the gp16 packaging enzyme and
511:
direction. This replication process also employs a sliding-back mechanism towards the 3’ end of the genome that uses a repeating TTT motif to move the replication complex backward without altering the template sequence. This allows the initiation of
1011: 556:, as most industries are currently unequipped to handle industrial pRNA synthesis. This is primarily because RNA nanotechnology is still an emerging field that lacks industrial application and manufacturing optimization of small RNAs. 1568:
Simpson, Alan A.; Tao, Yizhi; Leiman, Petr G.; Badasso, Mohammed O.; He, Yongning; Jardine, Paul J.; Olson, Norman H.; Morais, Marc C.; Grimes, Shelley; Anderson, Dwight L.; Baker, Timothy S.; Rossmann, Michael G. (2000).
342:(p8), the head or capsid fiber protein (p8.5), the distal tail knob (p9), the portal or connector protein (p10), the tail tube or lower collar proteins (p11), and the tail fibers or appendage proteins (p12*). 525: 464:
the structural connector molecule to aid in the translocation of DNA through the prohead channel. After DNA packaging is complete, the pRNA dissociates and is degraded.
2193: 507:
in other organisms. Φ29 forms a replication complex involving the p3 terminal protein, the dAMP nucleotide, and its own DNA polymerase to synthesize DNA in a 5’ to
357:
during viral replication. The Φ29 packaging motor is structurally composed of the procapsid and the connector proteins, which interact with the pRNA, the packaging
1117:
Zhang, Long; Mu, Chaofeng; Zhang, Tinghong; Yang, Dejun; Wang, Chenou; Chen, Qiong; Tang, Lin; Fan, Luhui; Liu, Cong; Shen, Jianliang; Li, Huaqiong (2021-01-07).
2152: 1119:"Development of targeted therapy therapeutics to sensitize triple-negative breast cancer chemosensitivity utilizing bacteriophage phi29 derived packaging RNA" 884:
Camacho, Ana; Jimenez, Fernando; Torre, Javier; Carrascosa, Jose L.; Mellado, Rafael P.; Vinuela, Eladio; Salas, Margarita; Vasquez, Cesar (February 1977).
1637:
Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley; Ke, Ailong (2011-05-03).
429:. Early studies such as Anderson (1990) and Trottier (1998) hypothesized that pRNA formed intermolecular hexamers, but these studies had a solely 1877:
De Vega, Miguel; Salas, Margarita (2011-09-26). "Chapter 9: Protein-Primed Replication of Bacteriophage Φ29 DNA". In Kusic-Tisma, Jelena (ed.).
595:
Nanoparticles need to be stabilized as delivery mechanisms in order to adapt to microenvironments that may result in loss of therapeutic cargo.
1923: 1888: 1031: 846: 794: 213:. They are in the same order as phages PZA, Φ15, BS32, B103, M2Y (M2), Nf, and GA-1. First discovered in 1965, the Φ29 phage is the smallest 1063:"Current advances in Phi29 pRNA biology and its application in drug delivery: Current advances in Phi29 pRNA biology and its application" 1422:"Computer Modeling of Three-dimensional Structure of DNA-packaging RNA (pRNA) Monomer, Dimer, and Hexamer of Phi29 DNA Packaging Motor*" 2009:
Shu, Yi; Pi, Fengmei; Sharma, Ashwani; Rajabi, Mehdi; Haque, Farzin; Shu, Dan; Leggas, Markos; Evers, B. Mark; Guo, Peixuan (2014).
524: 2206: 2066: 629:
drug delivery mechanism to inhibit TNBC growth and volume. This treatment can also be combined with anti-cancer drugs like
603: 438: 516:
to be more accurate by having the polymerase complex check a specific sequence before beginning the elongation process.
447:, only a pentamer or smaller polymer could spatially fit in the virus. Ultimately, single isomorphous replacement with 459:
structure is a tetramer ring. This discovery aligned with what was known about the structural geometry and necessary
345:
The main difference between Φ29's structure and that of other phages is its use of pRNA in its DNA packaging motor.
48: 870: 260: 2157: 614:
is the only viable current treatment for TNBC because the loss of target receptors inherent to the disease causes
302:. Due to its small size and complex morphology, it has become an ideal model for the study of many processes in 2244: 2234: 2130: 549:. The pRNA in bacteriophage Φ29 can use its three-way junction in order to self-assemble into nanoparticles. 1344: 950:"Construction of Bacteriophage Phi29 DNA Packaging Motor and its Applications in Nanotechnology and Therapy" 625:
The three-way junction in the Φ29 DNA packaging motor can help sensitize TNBC cells to chemotherapy using a
564:Φ29’s DNA packaging system, using pRNA, incorporates a motor for the delivery of therapeutic molecules like 315: 299: 2092: 886:"Assembly of Bacillus subtilis Phage Phi29. 1. Mutants in the Cistrons Coding for the Structural Proteins" 553: 370: 268: 256: 1012:"Fabrication Methods for RNA Nanoparticle Assembly Based on Bacteriophage Phi29 pRNA Structural Features" 452: 362: 1178:"Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse" 652: 500: 1905: 1470: 2239: 2211: 1650: 1582: 448: 43: 133: 1817:"Bacteriophage-Encoded DNA Polymerases—Beyond the Traditional View of Polymerase Activities" 1706:"Inter-RNA Interaction of Phage φ29 pRNA to Form a Hexameric Complex for Viral DNA Transportation" 1518:"Inter-RNA Interaction of Phage φ29 pRNA to Form a Hexameric Complex for Viral DNA Transportation" 1092: 864: 647: 414: 223: 2198: 583:
The main difficulty in using aptamer-based drug delivery is sourcing unique aptamers and other
2139: 2048: 2030: 1991: 1973: 1929: 1919: 1884: 1856: 1838: 1792: 1774: 1735: 1727: 1686: 1668: 1616: 1598: 1547: 1539: 1498: 1490: 1451: 1443: 1402: 1394: 1326: 1318: 1274: 1256: 1217: 1199: 1158: 1140: 1084: 1027: 987: 969: 915: 907: 852: 842: 818: 800: 790: 748: 730: 410: 378: 303: 251: 231: 2038: 2022: 1981: 1965: 1911: 1846: 1828: 1782: 1766: 1717: 1676: 1658: 1606: 1590: 1529: 1482: 1433: 1386: 1308: 1264: 1248: 1207: 1189: 1148: 1130: 1074: 1019: 977: 961: 897: 808: 782: 738: 722: 679: 276: 1770: 1639:"Structure and assembly of the essential RNA ring component of a viral DNA packaging motor" 1390: 1313: 1296: 619: 513: 374: 1704:
Guo, Peixuan; Zhang, Chunlin; Chen, Chaoping; Garver, Kyle; Trottier, Mark (1998-07-01).
1516:
Guo, Peixuan; Zhang, Chunlin; Chen, Chaoping; Garver, Kyle; Trottier, Mark (1998-07-01).
1654: 1586: 1061:
Ye, Xin; Hemida, Maged; Zhang, Huifang M.; Hanson, Paul; Ye, Qiu; Yang, Decheng (2012).
472: 2043: 2010: 1986: 1953: 1851: 1816: 1787: 1754: 1681: 1638: 1611: 1570: 1212: 1177: 1153: 1118: 982: 902: 885: 813: 770: 493: 406: 382: 295: 235: 85: 1915: 1722: 1705: 1534: 1517: 1486: 1269: 1236: 786: 326: 2228: 1878: 743: 710: 642: 607: 489: 311: 307: 292: 239: 187: 73: 1096: 30: 841:. Stephen Mc Grath, Douwe van Sinderen. Norfolk, UK: Caister Academic Press. 2007. 726: 611: 577: 542: 205: 169: 121: 109: 97: 2144: 2115: 1252: 2124: 630: 615: 460: 280: 272: 194: 2184: 2026: 2011:"Stable RNA nanoparticles as potential new generation drugs for cancer therapy" 1135: 1952:
Jasinski, Daniel; Haque, Farzin; Binzel, Daniel W; Guo, Peixuan (2017-02-07).
1910:, Advances in Virus Research, vol. 58, Academic Press, pp. 255–294, 965: 504: 434: 386: 298:
Dr. Bernard Reilly discovered the Φ29 phage in Dr. John Spizizen's lab at the
199: 145: 2034: 1977: 1842: 1778: 1731: 1672: 1602: 1543: 1494: 1447: 1398: 1322: 1260: 1203: 1144: 1023: 973: 911: 804: 734: 1969: 1663: 1374: 949: 856: 584: 354: 2052: 1995: 1933: 1860: 1796: 1690: 1620: 1455: 1438: 1421: 1406: 1330: 1278: 1237:"Bacteriophage Deoxyribonucleate Infection of Competent Bacillus subtilis1" 1221: 1162: 1088: 991: 752: 683: 485: 1739: 1551: 1502: 822: 38:
An illustration of Φ29's head based on electron microscopy data EMDB-2162
2178: 2109: 1833: 1815:
Morcinek-Orłowska, Joanna; Zdrojewska, Karolina; Węgrzyn, Alicja (2022).
1194: 919: 836: 565: 481: 430: 422: 418: 402: 215: 588: 569: 546: 443: 426: 335: 243: 191: 1079: 1062: 709:
Meijer, Wilfried J. J.; Horcajadas, José A.; Salas, Margarita (2001).
508: 330:
Schematic drawing of a Φ29 phage virion (cross section and side view).
1594: 610:
that accounts for ten to fifteen percent of all breast cancer cases.
572:. The small size of pRNA-derived nanoparticles also helps to deliver 503:
that has a different structure and function compared to standard DNA
437:
based approach. In the year 2000, a study by Simpson et al. employed
366: 358: 339: 227: 219:
phage isolated to date and is among the smallest known dsDNA phages.
2086: 673: 1904:
Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight (2002-01-01),
1755:"Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses" 626: 471: 390: 325: 168: 60: 1352: 591:
that potentially degrade therapeutic multimers and nanoparticles
573: 393:, making it one of the most powerful biomotors studied to date. 264: 2090: 2067:"Triple-negative Breast Cancer | Details, Diagnosis, and Signs" 385:. The Φ29 packaging motor is able to generate approximately 57 353:
The Φ29 DNA packaging motor packages the phage genome into the
234:. This novel structure system has inspired ongoing research in 1471:"RNA dependence of the bacteriophage φ29 DNA packaging ATPase" 538: 365:(genomic DNA-gp3). Because the process of genome packaging is 183: 480:
The Φ29 phage has a linear dsDNA genome consisting of 19,285
1010:
Shu, Yi; Wang, Hongzhi; Seremi, Bahar; Guo, Peixuan (2022),
222:Φ29 has a unique DNA packaging motor structure that employs 552:
One major challenge of using pRNA-derived nanoparticles is
1954:"Advancement of the Emerging Field of RNA Nanotechnology" 948:
Lee, Tae Jin; Schwartz, Chad; Guo, Peixuan (2009-10-01).
1571:"Structure of the bacteriophage φ29 DNA packaging motor" 1176:
Errington, Jeffery; van der Aart, Lizah T (2020-05-11).
541:
structure and function provides the ability to assemble
675:
Bacteriophage Φ29 structural model at atomic resolution
173:
Bacteriophage Φ29 structural model at atomic resolution
528:
Targeting of TNBC molecules by bacteriophage Φ29 pRNA
2168: 2099: 838:
Bacteriophage : genetics and molecular biology
1753:Rao, Venigalla B.; Feiss, Michael (2015-11-09). 1469:Grimes, Shelley; Anderson, Dwight (1990-10-20). 197:head and a short tail that belongs to the genus 1643:Proceedings of the National Academy of Sciences 771:"Tailed Bacteriophages: The Order Caudovirales" 334:The structure of Φ29 is composed of seven main 226:(pRNA) to guide the translocation of the phage 1880:DNA Replication and Related Cellular Processes 1420:Hoeprich, Stephen; Guo, Peixuan (2002-06-07). 476:The replication mechanism of bacteriophage Φ29 8: 1821:International Journal of Molecular Sciences 1235:Reilly, Bernard E.; Spizizen, John (1965). 2087: 1373:Rao, Venigalla B.; Feiss, Michael (2008). 715:Microbiology and Molecular Biology Reviews 492:terminal protein (p3) that complexes with 29: 18: 2042: 1985: 1850: 1832: 1786: 1721: 1680: 1662: 1610: 1533: 1437: 1312: 1268: 1211: 1193: 1152: 1134: 1078: 981: 901: 812: 742: 369:-intensive, it must be facilitated by an 338:: the terminal protein (p3), the head or 523: 1375:"The bacteriophage DNA packaging motor" 664: 599:Triple-negative breast cancer treatment 1771:10.1146/annurev-virology-100114-055212 1391:10.1146/annurev.genet.42.110807.091545 1314:10.1146/annurev.micro.61.080706.093415 862: 672:Padilla-Sanchez, Victor (2021-07-17), 1872: 1870: 1810: 1808: 1806: 1632: 1630: 1563: 1561: 1290: 1288: 764: 762: 7: 1112: 1110: 1108: 1106: 1067:Wiley Interdisciplinary Reviews: RNA 1056: 1054: 1052: 1050: 1048: 1005: 1003: 1001: 943: 941: 939: 937: 935: 933: 931: 929: 704: 702: 700: 698: 1016:RNA Nanotechnology and Therapeutics 401:The Φ29 pRNA is a highly versatile 903:10.1111/j.1432-1033.1977.tb11290.x 14: 1297:"40 Years with Bacteriophage ø29" 499:Φ29 is one of many phages with a 249:In nature, the Φ29 phage infects 1883:. IntechOpen. pp. 179–206. 954:Annals of Biomedical Engineering 890:European Journal of Biochemistry 633:to enhance therapeutic effects. 606:(TNBC) is an aggressive form of 488:of the genome are capped with a 47: 1907:Bacteriophage φ29 DNA packaging 1426:Journal of Biological Chemistry 1295:Salas, Margarita (2007-10-01). 455:was used to determine that the 2015:Advanced Drug Delivery Reviews 727:10.1128/MMBR.65.2.261-287.2001 1: 1916:10.1016/s0065-3527(02)58007-6 1723:10.1016/S1097-2765(00)80124-0 1535:10.1016/S1097-2765(00)80124-0 1487:10.1016/S0022-2836(05)80168-8 1301:Annual Review of Microbiology 787:10.1016/S0065-3527(08)60785-X 604:Triple-negative breast cancer 373:-powered motor that converts 1475:Journal of Molecular Biology 1253:10.1128/jb.89.3.782-790.1965 1123:Journal of Nanobiotechnology 587:for specific treatments for 769:Ackermann, Hans-W. (1998). 2261: 2027:10.1016/j.addr.2013.11.006 1136:10.1186/s12951-020-00758-4 775:Advances in Virus Research 361:(gp16), and the packaging 261:endospore-forming bacteria 1759:Annual Review of Virology 1379:Annual Review of Genetics 966:10.1007/s10439-009-9723-0 314:, viral replication, and 182:(bacteriophage Φ29) is a 42: 37: 28: 21: 1024:10.1201/9781003001560-21 439:cryo-electron microscopy 1970:10.1021/acsnano.6b05737 1664:10.1073/pnas.1016690108 1349:University of Minnesota 1241:Journal of Bacteriology 300:University of Minnesota 269:gastrointestinal tracts 1439:10.1074/jbc.M112061200 869:: CS1 maint: others ( 711:"φ29 Family of Phages" 684:10.5281/zenodo.5111609 618:to resist therapeutic 554:large-scale production 529: 477: 468:Genome and replication 331: 174: 576:in tight spaces like 533:Nanoparticle assembly 527: 475: 329: 277:terrestrial organisms 224:prohead packaging RNA 172: 2170:Bacillus phage phi29 2131:Bacillus virus phi29 2101:Bacillus virus phi29 1834:10.3390/ijms23020635 1195:10.1099/mic.0.000922 1018:, pp. 141–157, 496:during replication. 449:anomalous scattering 433:basis rather than a 44:Virus classification 1655:2011PNAS..108.7357D 1587:2000Natur.408..745S 1432:(23): 20794–20803. 441:to determine that, 349:DNA packaging motor 184:double-stranded DNA 1345:"About | Virology" 653:Φ29 DNA polymerase 648:Bacteriophage pRNA 545:for nanomedicinal 530: 478: 332: 179:Bacillus virus Φ29 175: 160:Bacillus virus Φ29 23:Bacillus virus Φ29 2222: 2221: 2093:Taxon identifiers 1925:978-0-12-039858-4 1890:978-953-307-775-8 1649:(18): 7357–7362. 1581:(6813): 745–750. 1080:10.1002/wrna.1111 1033:978-1-003-00156-0 960:(10): 2064–2081. 848:978-1-904455-14-1 796:978-0-12-039851-5 490:covalently bonded 379:mechanical energy 304:molecular biology 267:, as well as the 263:that is found in 252:Bacillus subtilis 167: 166: 2252: 2215: 2214: 2202: 2201: 2189: 2188: 2187: 2161: 2160: 2148: 2147: 2135: 2134: 2133: 2120: 2119: 2118: 2088: 2081: 2080: 2078: 2077: 2063: 2057: 2056: 2046: 2006: 2000: 1999: 1989: 1964:(2): 1142–1164. 1949: 1943: 1942: 1941: 1940: 1901: 1895: 1894: 1874: 1865: 1864: 1854: 1836: 1812: 1801: 1800: 1790: 1750: 1744: 1743: 1725: 1701: 1695: 1694: 1684: 1666: 1634: 1625: 1624: 1614: 1595:10.1038/35047129 1565: 1556: 1555: 1537: 1513: 1507: 1506: 1466: 1460: 1459: 1441: 1417: 1411: 1410: 1370: 1364: 1363: 1361: 1360: 1351:. Archived from 1341: 1335: 1334: 1316: 1292: 1283: 1282: 1272: 1232: 1226: 1225: 1215: 1197: 1173: 1167: 1166: 1156: 1138: 1114: 1101: 1100: 1082: 1058: 1043: 1042: 1041: 1040: 1007: 996: 995: 985: 945: 924: 923: 905: 881: 875: 874: 868: 860: 833: 827: 826: 816: 766: 757: 756: 746: 706: 693: 692: 691: 690: 669: 52: 51: 33: 19: 16:Species of virus 2260: 2259: 2255: 2254: 2253: 2251: 2250: 2249: 2245:Bacillus phages 2235:Model organisms 2225: 2224: 2223: 2218: 2210: 2205: 2197: 2192: 2183: 2182: 2177: 2164: 2156: 2151: 2143: 2138: 2129: 2128: 2123: 2114: 2113: 2108: 2095: 2085: 2084: 2075: 2073: 2065: 2064: 2060: 2008: 2007: 2003: 1951: 1950: 1946: 1938: 1936: 1926: 1903: 1902: 1898: 1891: 1876: 1875: 1868: 1814: 1813: 1804: 1752: 1751: 1747: 1703: 1702: 1698: 1636: 1635: 1628: 1567: 1566: 1559: 1515: 1514: 1510: 1468: 1467: 1463: 1419: 1418: 1414: 1372: 1371: 1367: 1358: 1356: 1343: 1342: 1338: 1294: 1293: 1286: 1234: 1233: 1229: 1175: 1174: 1170: 1116: 1115: 1104: 1060: 1059: 1046: 1038: 1036: 1034: 1009: 1008: 999: 947: 946: 927: 883: 882: 878: 861: 849: 835: 834: 830: 797: 768: 767: 760: 708: 707: 696: 688: 686: 671: 670: 666: 661: 639: 620:pharmaceuticals 601: 562: 537:Versatility in 535: 522: 514:DNA replication 470: 453:crystallography 399: 375:chemical energy 351: 324: 289: 255:, a species of 163: 46: 17: 12: 11: 5: 2258: 2256: 2248: 2247: 2242: 2237: 2227: 2226: 2220: 2219: 2217: 2216: 2203: 2190: 2174: 2172: 2166: 2165: 2163: 2162: 2149: 2136: 2121: 2105: 2103: 2097: 2096: 2091: 2083: 2082: 2071:www.cancer.org 2058: 2001: 1944: 1924: 1896: 1889: 1866: 1802: 1765:(1): 351–378. 1745: 1716:(1): 149–155. 1710:Molecular Cell 1696: 1626: 1557: 1528:(1): 149–155. 1522:Molecular Cell 1508: 1481:(4): 559–566. 1461: 1412: 1365: 1336: 1284: 1247:(3): 782–790. 1227: 1188:(5): 425–427. 1168: 1102: 1073:(4): 469–481. 1044: 1032: 997: 925: 876: 847: 828: 795: 758: 721:(2): 261–287. 694: 663: 662: 660: 657: 656: 655: 650: 645: 638: 635: 600: 597: 561: 558: 534: 531: 521: 518: 501:DNA polymerase 494:DNA polymerase 469: 466: 398: 395: 383:ATP hydrolysis 350: 347: 340:capsid protein 323: 320: 296:microbiologist 288: 285: 236:nanotechnology 211:Salasmaviridae 165: 164: 157: 155: 151: 150: 143: 139: 138: 135:Salasmaviridae 131: 127: 126: 119: 115: 114: 111:Caudoviricetes 107: 103: 102: 95: 91: 90: 87:Heunggongvirae 83: 79: 78: 71: 64: 63: 58: 54: 53: 40: 39: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 2257: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2230: 2213: 2208: 2204: 2200: 2195: 2191: 2186: 2180: 2176: 2175: 2173: 2171: 2167: 2159: 2154: 2150: 2146: 2141: 2137: 2132: 2126: 2122: 2117: 2111: 2107: 2106: 2104: 2102: 2098: 2094: 2089: 2072: 2068: 2062: 2059: 2054: 2050: 2045: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2005: 2002: 1997: 1993: 1988: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1948: 1945: 1935: 1931: 1927: 1921: 1917: 1913: 1909: 1908: 1900: 1897: 1892: 1886: 1882: 1881: 1873: 1871: 1867: 1862: 1858: 1853: 1848: 1844: 1840: 1835: 1830: 1826: 1822: 1818: 1811: 1809: 1807: 1803: 1798: 1794: 1789: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1749: 1746: 1741: 1737: 1733: 1729: 1724: 1719: 1715: 1711: 1707: 1700: 1697: 1692: 1688: 1683: 1678: 1674: 1670: 1665: 1660: 1656: 1652: 1648: 1644: 1640: 1633: 1631: 1627: 1622: 1618: 1613: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1564: 1562: 1558: 1553: 1549: 1545: 1541: 1536: 1531: 1527: 1523: 1519: 1512: 1509: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1465: 1462: 1457: 1453: 1449: 1445: 1440: 1435: 1431: 1427: 1423: 1416: 1413: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1369: 1366: 1355:on 2022-11-01 1354: 1350: 1346: 1340: 1337: 1332: 1328: 1324: 1320: 1315: 1310: 1306: 1302: 1298: 1291: 1289: 1285: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1231: 1228: 1223: 1219: 1214: 1209: 1205: 1201: 1196: 1191: 1187: 1183: 1179: 1172: 1169: 1164: 1160: 1155: 1150: 1146: 1142: 1137: 1132: 1128: 1124: 1120: 1113: 1111: 1109: 1107: 1103: 1098: 1094: 1090: 1086: 1081: 1076: 1072: 1068: 1064: 1057: 1055: 1053: 1051: 1049: 1045: 1035: 1029: 1025: 1021: 1017: 1013: 1006: 1004: 1002: 998: 993: 989: 984: 979: 975: 971: 967: 963: 959: 955: 951: 944: 942: 940: 938: 936: 934: 932: 930: 926: 921: 917: 913: 909: 904: 899: 895: 891: 887: 880: 877: 872: 866: 858: 854: 850: 844: 840: 839: 832: 829: 824: 820: 815: 810: 806: 802: 798: 792: 788: 784: 780: 776: 772: 765: 763: 759: 754: 750: 745: 740: 736: 732: 728: 724: 720: 716: 712: 705: 703: 701: 699: 695: 685: 681: 677: 676: 668: 665: 658: 654: 651: 649: 646: 644: 643:Bacteriophage 641: 640: 636: 634: 632: 628: 623: 621: 617: 613: 609: 608:breast cancer 605: 598: 596: 594: 590: 586: 581: 579: 578:blood vessels 575: 571: 567: 560:Drug delivery 559: 557: 555: 550: 548: 544: 543:nanoparticles 540: 532: 526: 519: 517: 515: 510: 506: 502: 497: 495: 491: 487: 483: 474: 467: 465: 462: 458: 454: 450: 446: 445: 440: 436: 432: 428: 424: 420: 416: 412: 408: 404: 396: 394: 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 348: 346: 343: 341: 337: 328: 321: 319: 317: 316:transcription 313: 312:DNA packaging 309: 308:morphogenesis 305: 301: 297: 294: 286: 284: 282: 278: 274: 270: 266: 262: 258: 257:gram-positive 254: 253: 247: 245: 241: 240:drug delivery 237: 233: 229: 225: 220: 218: 217: 212: 209:, and family 208: 207: 202: 201: 196: 193: 189: 188:bacteriophage 185: 181: 180: 171: 162: 161: 156: 153: 152: 149: 148: 144: 141: 140: 137: 136: 132: 129: 128: 125: 124: 120: 117: 116: 113: 112: 108: 105: 104: 101: 100: 96: 93: 92: 89: 88: 84: 81: 80: 77: 76: 75:Duplodnaviria 72: 69: 66: 65: 62: 59: 56: 55: 50: 45: 41: 36: 32: 27: 24: 20: 2169: 2100: 2074:. Retrieved 2070: 2061: 2018: 2014: 2004: 1961: 1957: 1947: 1937:, retrieved 1906: 1899: 1879: 1824: 1820: 1762: 1758: 1748: 1713: 1709: 1699: 1646: 1642: 1578: 1574: 1525: 1521: 1511: 1478: 1474: 1464: 1429: 1425: 1415: 1382: 1378: 1368: 1357:. Retrieved 1353:the original 1348: 1339: 1304: 1300: 1244: 1240: 1230: 1185: 1182:Microbiology 1181: 1171: 1126: 1122: 1070: 1066: 1037:, retrieved 1015: 957: 953: 896:(1): 39–55. 893: 889: 879: 837: 831: 778: 774: 718: 714: 687:, retrieved 674: 667: 624: 616:cancer cells 612:Chemotherapy 602: 592: 582: 563: 551: 547:therapeutics 536: 520:Applications 498: 479: 456: 442: 400: 352: 344: 333: 290: 281:human beings 279:, including 250: 248: 244:therapeutics 221: 214: 210: 206:Caudovirales 204: 198: 178: 177: 176: 159: 158: 146: 134: 123:Caudovirales 122: 110: 98: 86: 74: 67: 57:(unranked): 22: 2240:Podoviridae 2125:Wikispecies 1385:: 647–681. 1307:(1): 1–22. 781:: 135–201. 631:Doxorubicin 505:polymerases 461:flexibility 387:piconewtons 271:of various 232:replication 195:icosahedral 99:Uroviricota 2229:Categories 2076:2022-11-01 1939:2022-10-24 1827:(2): 635. 1359:2022-10-31 1039:2022-11-01 689:2021-07-17 659:References 435:microscopy 407:polymerize 306:, such as 200:Salasvirus 147:Salasvirus 2116:Q24808071 2035:0169-409X 2021:: 74–89. 1978:1936-0851 1843:1422-0067 1779:2327-056X 1732:1097-2765 1673:0027-8424 1603:1476-4687 1544:1097-2765 1495:0022-2836 1448:0021-9258 1399:0066-4197 1323:0066-4227 1261:0021-9193 1204:1350-0872 1145:1477-3155 1129:(1): 13. 974:1573-9686 912:0014-2956 865:cite book 805:0065-3527 735:1092-2172 585:multimers 566:ribozymes 423:pentamers 419:tetramers 405:that can 363:substrate 355:procapsid 322:Structure 291:In 1965, 154:Species: 82:Kingdom: 2199:11459168 2185:Q8084000 2179:Wikidata 2110:Wikidata 2053:24270010 1996:28045501 1958:ACS Nano 1934:12205781 1861:35054821 1797:26958920 1691:21471452 1621:11130079 1456:11886855 1407:18687036 1331:17441785 1279:14273661 1222:32391747 1163:33413427 1097:12631001 1089:22362726 992:19495981 857:86168751 753:11381102 637:See also 593:in vivo. 589:diseases 570:aptamers 451:(SIRAS) 427:hexamers 403:molecule 389:(pN) of 381:through 336:proteins 310:, viral 293:American 216:Bacillus 203:, order 186:(dsDNA) 130:Family: 94:Phylum: 2044:3955949 1987:5333189 1852:8775771 1788:4785836 1740:9702202 1682:3088594 1651:Bibcode 1612:4151180 1583:Bibcode 1552:9702202 1503:1700132 1213:7376258 1154:7792131 983:2855900 823:9891587 814:7173057 486:5’ ends 484:. Both 457:in vivo 444:in vivo 431:genetic 415:trimers 287:History 230:during 192:prolate 190:with a 142:Genus: 118:Order: 106:Class: 2212:816282 2051:  2041:  2033:  1994:  1984:  1976:  1932:  1922:  1887:  1859:  1849:  1841:  1795:  1785:  1777:  1738:  1730:  1689:  1679:  1671:  1619:  1609:  1601:  1575:Nature 1550:  1542:  1501:  1493:  1454:  1446:  1405:  1397:  1329:  1321:  1277:  1270:277537 1267:  1259:  1220:  1210:  1202:  1161:  1151:  1143:  1095:  1087:  1030:  990:  980:  972:  920:402269 918:  910:  855:  845:  821:  811:  803:  793:  751:  741:  733:  425:, and 411:dimers 367:energy 359:enzyme 273:marine 242:, and 228:genome 2207:WoRMS 2194:IRMNG 2158:10756 1093:S2CID 744:99027 627:siRNA 574:drugs 482:bases 409:into 391:force 68:Realm 61:Virus 2153:NCBI 2145:K922 2049:PMID 2031:ISSN 1992:PMID 1974:ISSN 1930:PMID 1920:ISBN 1885:ISBN 1857:PMID 1839:ISSN 1793:PMID 1775:ISSN 1736:PMID 1728:ISSN 1687:PMID 1669:ISSN 1617:PMID 1599:ISSN 1548:PMID 1540:ISSN 1499:PMID 1491:ISSN 1452:PMID 1444:ISSN 1403:PMID 1395:ISSN 1327:PMID 1319:ISSN 1275:PMID 1257:ISSN 1218:PMID 1200:ISSN 1159:PMID 1141:ISSN 1085:PMID 1028:ISBN 988:PMID 970:ISSN 916:PMID 908:ISSN 871:link 853:OCLC 843:ISBN 819:PMID 801:ISSN 791:ISBN 749:PMID 731:ISSN 568:and 397:pRNA 275:and 265:soil 2140:CoL 2039:PMC 2023:doi 1982:PMC 1966:doi 1912:doi 1847:PMC 1829:doi 1783:PMC 1767:doi 1718:doi 1677:PMC 1659:doi 1647:108 1607:PMC 1591:doi 1579:408 1530:doi 1483:doi 1479:215 1434:doi 1430:277 1387:doi 1309:doi 1265:PMC 1249:doi 1208:PMC 1190:doi 1186:166 1149:PMC 1131:doi 1075:doi 1020:doi 978:PMC 962:doi 898:doi 809:PMC 783:doi 739:PMC 723:doi 680:doi 539:RNA 377:to 371:ATP 2231:: 2209:: 2196:: 2181:: 2155:: 2142:: 2127:: 2112:: 2069:. 2047:. 2037:. 2029:. 2019:66 2017:. 2013:. 1990:. 1980:. 1972:. 1962:11 1960:. 1956:. 1928:, 1918:, 1869:^ 1855:. 1845:. 1837:. 1825:23 1823:. 1819:. 1805:^ 1791:. 1781:. 1773:. 1761:. 1757:. 1734:. 1726:. 1712:. 1708:. 1685:. 1675:. 1667:. 1657:. 1645:. 1641:. 1629:^ 1615:. 1605:. 1597:. 1589:. 1577:. 1573:. 1560:^ 1546:. 1538:. 1524:. 1520:. 1497:. 1489:. 1477:. 1473:. 1450:. 1442:. 1428:. 1424:. 1401:. 1393:. 1383:42 1381:. 1377:. 1347:. 1325:. 1317:. 1305:61 1303:. 1299:. 1287:^ 1273:. 1263:. 1255:. 1245:89 1243:. 1239:. 1216:. 1206:. 1198:. 1184:. 1180:. 1157:. 1147:. 1139:. 1127:19 1125:. 1121:. 1105:^ 1091:. 1083:. 1069:. 1065:. 1047:^ 1026:, 1014:, 1000:^ 986:. 976:. 968:. 958:37 956:. 952:. 928:^ 914:. 906:. 894:73 892:. 888:. 867:}} 863:{{ 851:. 817:. 807:. 799:. 789:. 779:51 777:. 773:. 761:^ 747:. 737:. 729:. 719:65 717:. 713:. 697:^ 678:, 622:. 580:. 509:3’ 421:, 417:, 413:, 318:. 283:. 259:, 246:. 238:, 70:: 2079:. 2055:. 2025:: 1998:. 1968:: 1914:: 1893:. 1863:. 1831:: 1799:. 1769:: 1763:2 1742:. 1720:: 1714:2 1693:. 1661:: 1653:: 1623:. 1593:: 1585:: 1554:. 1532:: 1526:2 1505:. 1485:: 1458:. 1436:: 1409:. 1389:: 1362:. 1333:. 1311:: 1281:. 1251:: 1224:. 1192:: 1165:. 1133:: 1099:. 1077:: 1071:3 1022:: 994:. 964:: 922:. 900:: 873:) 859:. 825:. 785:: 755:. 725:: 682::

Index


Virus classification
Edit this classification
Virus
Duplodnaviria
Heunggongvirae
Uroviricota
Caudoviricetes
Caudovirales
Salasmaviridae
Salasvirus

double-stranded DNA
bacteriophage
prolate
icosahedral
Salasvirus
Caudovirales
Bacillus
prohead packaging RNA
genome
replication
nanotechnology
drug delivery
therapeutics
Bacillus subtilis
gram-positive
endospore-forming bacteria
soil
gastrointestinal tracts

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.