Knowledge (XXG)

Background selection

Source 📝

106:
is too high. The reduction is smaller for large s because deleterious mutations are removed more quickly from the population. For linked sites, diversity is reduced by exp(-u/r), where u/r is the ratio of deleterious mutation to recombination within a genomic window surrounding the neutral allele of
153:, the accumulation of irreversible deleterious mutations. Background selection reduces the effective population size down to represent only those individuals with the fewest mutations, and sometimes this size stochastically falls to zero, producing one click of the ratchet. 126:
across the genome. In areas of high recombination, new mutations are more likely to ‘escape' the effects of nearby selection and be retained in the population. The same correlation is also produced by
232:
Charlesworth, D., B. Charlesworth, and M. T. Morgan. 1995. The pattern of neutral molecular variation under the background selection model. Genetics. 141: 1619-1632.
111:
from nearby deleterious alleles. Background selection at linked sites dominates when U<1, while background selection at unlinked sites dominates when U>1.
171:
Charlesworth, B., M. T. Morgan, and D. Charlesworth. 1993. The effect of deleterious mutations on neutral molecular variation. Genetics. 134: 1289-1303.
46:
has a significant impact on whether it will be preserved versus lost from a population. Background selection contradicts the assumption of the
31: 281:
Ewing, Gregory B.; Jensen, Jeffrey D. (January 2016). "The consequences of not accounting for background selection in demographic inference".
47: 102:
coefficient. This corresponds to the probability that an individual cannot appreciably contribute to the next generation because its
59: 271:
Innan, Hideki and Wolfgang Stephan. 2003. Distinguishing the hitchhiking and background selection models. Genetics. 165: 2307-2312.
134: 253:
Hudson, Richard R. and Norman L. Kaplan. 1995. Deleterious background selection with recombination. Genetics. 141: 1605-1617.
67: 326:"Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences" 367:
Johri, Parul; Riall, Kellen; Becher, Hannes; Excoffier, Laurent; Charlesworth, Brian; Jensen, Jeffrey D. (25 June 2021).
244:
Charlesworth, Brian. 2012. The effects of deleterious mutations on evolution at linked sites. Genetics. 190: 5-22.
369:"The Impact of Purifying and Background Selection on the Inference of Population History: Problems and Prospects" 83: 90:
to deleterious sites. For unlinked sites, it is reduced by exp(-8Ush), where U is the genome-wide deleterious
426: 39: 421: 108: 95: 290: 146: 123: 99: 79: 63: 262:
Lewontin, R. C. 1974. The genetic basis for evolutionary change. Columbia Univ. Press, New York, NY.
186:"Background Selection From Unlinked Sites Causes Nonindependent Evolution of Deleterious Mutations" 150: 127: 51: 398: 306: 215: 23: 388: 380: 347: 337: 298: 205: 197: 27: 324:
Pouyet, Fanny; Aeschbacher, Simon; Thiéry, Alexandre; Excoffier, Laurent (23 August 2018).
87: 70:
of beneficial mutations, and increases the fixation probability of deleterious mutations.
42:. The name emphasizes the fact that the genetic background, or genomic environment, of a 294: 210: 185: 393: 368: 352: 325: 133:
Failing to account for background selection can lead to errors in the inference of the
415: 107:
interest. This corresponds to the probability that a gene copy is able to escape via
91: 55: 86:', is reduced due to background selection, depends on whether the neutral sites are 103: 119: 115: 130:. The two theories are easiest to distinguish in regions of low recombination. 384: 114:
Background selection contributes to a selective explanation of the positive
50:
that the fixation or loss of a neutral allele can be described by one-locus
402: 310: 219: 201: 43: 342: 302: 35: 240: 238: 167: 165: 184:Matheson, Joseph; Masel, Joanna (2 March 2024). 16:Phenomenon inducing a loss of genetic diversity 179: 177: 62:from other loci. As well as reducing neutral 8: 392: 351: 341: 209: 161: 98:of deleterious mutations, and h is the 48:neutral theory of molecular evolution 7: 141:Implications for asexual populations 66:, background selection reduces the 14: 373:Molecular Biology and Evolution 82:, which is quantified as the ' 1: 190:Genome Biology and Evolution 78:The degree to which neutral 74:Effect on neutral diversity 443: 84:effective population size 145:Background selection in 118:between local rates of 385:10.1093/molbev/msab050 40:linkage disequilibrium 22:describes the loss of 96:selection coefficient 80:nucleotide diversity 68:fixation probability 64:nucleotide diversity 38:with which it is in 34:against deleterious 20:Background selection 343:10.7554/eLife.36317 295:2016MolEc..25..135E 202:10.1093/gbe/evae050 147:asexual populations 135:demographic history 128:genetic hitchhiking 32:negative selection 303:10.1111/mec.13390 283:Molecular Ecology 24:genetic diversity 434: 407: 406: 396: 379:(7): 2986–3003. 364: 358: 357: 355: 345: 321: 315: 314: 278: 272: 269: 263: 260: 254: 251: 245: 242: 233: 230: 224: 223: 213: 181: 172: 169: 151:Muller's ratchet 137:of populations. 442: 441: 437: 436: 435: 433: 432: 431: 412: 411: 410: 366: 365: 361: 323: 322: 318: 280: 279: 275: 270: 266: 261: 257: 252: 248: 243: 236: 231: 227: 183: 182: 175: 170: 163: 159: 143: 76: 17: 12: 11: 5: 440: 438: 430: 429: 427:Neutral theory 424: 414: 413: 409: 408: 359: 316: 289:(1): 135–141. 273: 264: 255: 246: 234: 225: 173: 160: 158: 155: 142: 139: 75: 72: 15: 13: 10: 9: 6: 4: 3: 2: 439: 428: 425: 423: 420: 419: 417: 404: 400: 395: 390: 386: 382: 378: 374: 370: 363: 360: 354: 349: 344: 339: 335: 331: 327: 320: 317: 312: 308: 304: 300: 296: 292: 288: 284: 277: 274: 268: 265: 259: 256: 250: 247: 241: 239: 235: 229: 226: 221: 217: 212: 207: 203: 199: 195: 191: 187: 180: 178: 174: 168: 166: 162: 156: 154: 152: 148: 140: 138: 136: 131: 129: 125: 121: 120:recombination 117: 112: 110: 109:recombination 105: 101: 97: 93: 92:mutation rate 89: 85: 81: 73: 71: 69: 65: 61: 60:independently 57: 56:genetic drift 53: 49: 45: 41: 37: 33: 29: 25: 21: 422:Biodiversity 376: 372: 362: 333: 329: 319: 286: 282: 276: 267: 258: 249: 228: 193: 189: 144: 132: 124:polymorphism 113: 104:genetic load 77: 19: 18: 116:correlation 94:, s is the 416:Categories 157:References 149:produces 100:dominance 403:33591322 311:26394805 220:38482769 211:10972689 44:mutation 394:8233493 353:6177262 291:Bibcode 36:alleles 30:due to 401:  391:  350:  309:  218:  208:  88:linked 52:models 330:eLife 196:(3). 28:locus 26:at a 399:PMID 307:PMID 216:PMID 122:and 389:PMC 381:doi 348:PMC 338:doi 299:doi 206:PMC 198:doi 54:of 418:: 397:. 387:. 377:38 375:. 371:. 346:. 336:. 332:. 328:. 305:. 297:. 287:25 285:. 237:^ 214:. 204:. 194:16 192:. 188:. 176:^ 164:^ 58:, 405:. 383:: 356:. 340:: 334:7 313:. 301:: 293:: 222:. 200::

Index

genetic diversity
locus
negative selection
alleles
linkage disequilibrium
mutation
neutral theory of molecular evolution
models
genetic drift
independently
nucleotide diversity
fixation probability
nucleotide diversity
effective population size
linked
mutation rate
selection coefficient
dominance
genetic load
recombination
correlation
recombination
polymorphism
genetic hitchhiking
demographic history
asexual populations
Muller's ratchet


Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.