Knowledge (XXG)

Thermal wind

Source 📝

272: 36: 285:
a positive coupling between pressure and temperature. Such a coupling causes the slope of the isobars to increase with height, as illustrated in panel (b) of the figure to the left. Because isobars are steeper at higher elevations, the associated pressure gradient force is stronger there. However, the Coriolis force is the same, so the resulting geostrophic wind at higher elevations must be greater in the direction of the pressure force.
938: 276:
the depth of the fluid in (b). The dotted lines enclose isobaric surfaces which remain at constant slope with increasing height in (a) and increase in slope with height in (b). Pink arrows illustrate the direction and amplitude of the horizontal wind. Only in the baroclinic atmosphere (b) do these vary with height. Such variation illustrates the thermal wind.
93: 284:
atmosphere, where density is a function only of pressure, a horizontal pressure gradient will drive a geostrophic wind that is constant with height. However, if a horizontal temperature gradient exists along isobars, the isobars will also vary with the temperature. In the mid-latitudes there often is
275:
The geostrophic wind on different isobaric levels in a barotropic atmosphere (a) and in a baroclinic atmosphere (b). The blue portion of the surface denotes a cold region while the orange portion denotes a warm region. This temperature structure is restricted to the surface in (a) but extends through
220:
seems appropriate. In the early years of meteorology, when data was scarce, the wind field could be estimated using the thermal wind relation and knowledge of a surface wind speed and direction as well as thermodynamic soundings aloft. In this way, the thermal wind relation acts to define the wind
256:
hemisphere). This is illustrated in panel (a) of the figure below. The balance that develops between these two forces results in a flow that parallels the horizontal pressure difference, or pressure gradient. In addition, when forces acting in the vertical dimension are dominated by the vertical
1041:
The strongest part of jet streams should be in proximity where temperature gradients are the largest. Due to land masses in the northern hemisphere, largest temperature contrasts are observed on the east coast of North America (boundary between Canadian cold air mass and the Gulf Stream/warmer
255:
develops. Intuitively, a horizontal difference in pressure pushes air across that difference in a similar way that the horizontal difference in the height of a hill causes objects to roll downhill. However, the Coriolis force intervenes and nudges the air towards the right (in the northern
522:
is the vertically-averaged temperature of the layer. This formula shows that the layer thickness is proportional to the temperature. When there is a horizontal temperature gradient, the thickness of the layer would be greatest where the temperature is greatest.
1042:
Atlantic) and Eurasia (boundary between the boreal winter monsoon/Siberian cold air mass and the warm Pacific). Therefore, the strongest boreal winter jet streams are observed over east coast of North America and Eurasia. Since stronger vertical shear promotes
292:
atmosphere, where density is a function of both pressure and temperature, such horizontal temperature gradients can exist. The difference in horizontal wind speed with height that results is a vertical wind shear, traditionally called the thermal wind.
897: 784: 941:
In (a), cold advection is occurring, so the thermal wind causes the geostrophic wind to rotate counterclockwise (for the northern hemisphere) with height. In (b), warm advection is occurring, so the geostrophic wind rotates clockwise with
587: 185:– a variation in wind speed or direction with height. The wind shear in this case is a function of a horizontal temperature gradient, which is a variation in temperature over some horizontal distance. Also called 170:, it follows that the thermal wind flows along thickness or temperature contours. For instance, the thermal wind associated with pole-to-equator temperature gradients is the primary physical explanation for the 946:
If a component of the geostrophic wind is parallel to the temperature gradient, the thermal wind will cause the geostrophic wind to rotate with height. If geostrophic wind blows from cold air to warm air (cold
246:
is an idealized wind that results from a balance of forces along a horizontal dimension. Whenever the Earth's rotation plays a dominant role in fluid dynamics, as in the mid-latitudes, a balance between the
402: 637:
is the vertical unit vector, and the subscript "p" on the gradient operator denotes gradient on a constant pressure surface) with respect to pressure, and integrate from pressure level
902:
Note that thermal wind is at right angles to the horizontal temperature gradient, counter clockwise in the northern hemisphere. In the southern hemisphere, the change in sign of
520: 460: 794: 635: 700: 693: 664: 493: 922: 609: 427: 212:
is often considered a misnomer, since it really describes the change in wind with height, rather than the wind itself. However, one can view the thermal wind as a
529: 57: 310: 1196: 1175: 1154: 1133: 1086: 1057:
The lack of land masses in the Southern Hemisphere leads to a more constant jet with longitude (i.e. a more zonally symmetric jet).
79: 189:, the thermal wind varies with height in proportion to the horizontal temperature gradient. The thermal wind relation results from 982:
component of the geostrophic wind, a sharpening of the temperature gradient results. Thermal wind causes a deformation field and
120: 99:(shown in pink) are well-known examples of thermal wind. They arise from the horizontal temperature gradients between the warm 271: 1215: 959:
known as wind backing. Otherwise, if geostrophic wind blows from warm air to cold air (warm advection) the wind will turn
50: 44: 178:, which is the atmospheric layer extending from the surface of the planet up to altitudes of about 12–15 km. 61: 257: 252: 163: 1047: 301:
The geopotential thickness of an atmospheric layer defined by two different pressures is described by the
1018:
geostrophic wind pattern to form in the mid-latitudes. Because thermal wind causes an increase in wind
966:
Wind backing and veering allow an estimation of the horizontal temperature gradient with data from an
225:
moniker, even though it describes a wind gradient, sometimes offering a clarification to that effect.
1003: 967: 892:{\displaystyle \mathbf {v} _{T}={\frac {R}{f}}\ln \left\mathbf {k} \times \nabla _{p}{\overline {T}}} 498: 302: 198: 1035: 1031: 436: 265: 261: 194: 190: 167: 159: 140: 136: 112: 779:{\displaystyle \mathbf {v} _{T}={\frac {1}{f}}\mathbf {k} \times \nabla _{p}(\Phi _{1}-\Phi _{0})} 618: 1051: 612: 669: 640: 469: 1192: 1171: 1150: 1129: 1082: 952: 281: 243: 239: 213: 124: 905: 592: 410: 248: 1209: 983: 152: 148: 937: 463: 430: 202: 104: 582:{\displaystyle \mathbf {v} _{g}={\frac {1}{f}}\mathbf {k} \times \nabla _{p}\Phi } 1043: 175: 1027: 1023: 1015: 1007: 979: 956: 289: 182: 171: 132: 128: 96: 789:
Substituting the hypsometric equation, one gets a form based on temperature,
960: 948: 17: 1019: 27:
Vector difference of geostrophic wind movement at high and low altitudes
1011: 143:
in the vertical. The combination of these two force balances is called
100: 92: 1054:) is also observed along the east coast of North America and Eurasia. 1022:
with height, the westerly pattern increases in intensity up until the
999: 995: 270: 91: 158:
Since the geostrophic wind at a given pressure level flows along
397:{\displaystyle \Phi _{1}-\Phi _{0}=\ R{\overline {T}}\ln \left} 238:
The thermal wind is the change in the amplitude or sign of the
29: 181:
Mathematically, the thermal wind relation defines a vertical
221:
itself, rather than just its shear. Many authors retain the
978:
As in the case of advection turning, when there is a cross-
147:, a term generalizable also to more complicated horizontal 1038:
exhibit similar jet stream patterns in the mid-latitudes.
127:
at upper altitudes minus that at lower altitudes in the
994:
A horizontal temperature gradient exists while moving
908: 797: 703: 672: 643: 621: 595: 532: 501: 472: 439: 413: 313: 916: 891: 778: 687: 658: 629: 603: 581: 514: 487: 454: 421: 396: 1006:because curvature of the Earth allows for more 1026:, creating a strong wind current known as the 242:due to a horizontal temperature gradient. The 955:with height (for the northern hemisphere), a 8: 1187:Wallace, John M.; Hobbs, Peter V. (2006). 1079:Introduction to Geophysical Fluid Dynamics 913: 909: 600: 596: 216:that varies with height, so that the term 963:with height, also known as wind veering. 907: 879: 873: 861: 849: 839: 833: 813: 804: 799: 796: 767: 754: 741: 729: 719: 710: 705: 702: 684: 678: 673: 671: 655: 649: 644: 642: 622: 620: 594: 570: 558: 548: 539: 534: 531: 502: 500: 484: 478: 473: 471: 451: 445: 440: 438: 418: 414: 412: 382: 372: 366: 346: 331: 318: 312: 80:Learn how and when to remove this message 936: 162:contours on a map, and the geopotential 139:in the horizontal, while pressure obeys 43:This article includes a list of general 1066: 695:, we obtain the thermal wind equation: 166:of a pressure layer is proportional to 1168:Atmospheric and Oceanic Fluid Dynamics 1126:An Introduction to Dynamic Meteorology 1107:An Introduction to Dynamic Meteorology 526:Differentiating the geostrophic wind, 201:along constant pressure surfaces, or 7: 1100: 1098: 1072: 1070: 135:that would exist if the winds obey 1014:than at the poles. This creates a 870: 764: 751: 738: 576: 567: 442: 328: 315: 131:. It is the hypothetical vertical 49:it lacks sufficient corresponding 25: 1149:. Weather Graphics Technologies. 951:) the geostrophic wind will turn 1046:, the most rapid development of 862: 800: 730: 706: 623: 559: 535: 34: 1077:Cushman-Roisin, Benoit (1994). 515:{\displaystyle {\overline {T}}} 773: 747: 1: 455:{\displaystyle \,\Phi _{n}\,} 1166:Vallis, Geoffrey K. (2006). 1147:Weather Forecasting Handbook 1128:. New York: Academic Press. 884: 630:{\displaystyle \mathbf {k} } 507: 351: 1191:. Elsevier Academic Press. 1232: 1124:Holton, James R. (2004). 688:{\displaystyle \,p_{1}\,} 659:{\displaystyle \,p_{0}\,} 488:{\displaystyle \,p_{n}\,} 174:in the upper half of the 258:pressure-gradient force 253:pressure-gradient force 123:difference between the 64:more precise citations. 1105:Holton, James (2004). 1081:. Prentice-Hall, Inc. 1048:extratropical cyclones 1044:baroclinic instability 943: 918: 893: 780: 689: 660: 631: 605: 583: 516: 489: 456: 423: 398: 297:Mathematical formalism 277: 108: 1145:Vasquez, Tim (2002). 940: 924:flips the direction. 919: 917:{\displaystyle \;f\;} 894: 781: 690: 661: 632: 606: 604:{\displaystyle \;f\;} 584: 517: 490: 457: 424: 422:{\displaystyle \,R\,} 399: 274: 197:in the presence of a 95: 1216:Atmospheric dynamics 1036:Southern Hemispheres 968:atmospheric sounding 906: 795: 701: 670: 641: 619: 593: 530: 499: 470: 437: 411: 311: 303:hypsometric equation 234:Physical explanation 199:temperature gradient 145:thermal wind balance 1189:Atmospheric Science 266:hydrostatic balance 262:gravitational force 195:geostrophic balance 191:hydrostatic balance 168:virtual temperature 160:geopotential height 141:hydrostatic balance 137:geostrophic balance 113:atmospheric science 944: 914: 889: 776: 685: 656: 627: 613:Coriolis parameter 601: 579: 512: 485: 466:at pressure level 452: 419: 394: 278: 109: 933:Advection turning 887: 855: 821: 727: 556: 510: 388: 354: 342: 90: 89: 82: 16:(Redirected from 1223: 1202: 1181: 1160: 1139: 1111: 1110: 1102: 1093: 1092: 1074: 953:counterclockwise 923: 921: 920: 915: 898: 896: 895: 890: 888: 880: 878: 877: 865: 860: 856: 854: 853: 844: 843: 834: 822: 814: 809: 808: 803: 785: 783: 782: 777: 772: 771: 759: 758: 746: 745: 733: 728: 720: 715: 714: 709: 694: 692: 691: 686: 683: 682: 665: 663: 662: 657: 654: 653: 636: 634: 633: 628: 626: 610: 608: 607: 602: 588: 586: 585: 580: 575: 574: 562: 557: 549: 544: 543: 538: 521: 519: 518: 513: 511: 503: 494: 492: 491: 486: 483: 482: 461: 459: 458: 453: 450: 449: 429:is the specific 428: 426: 425: 420: 403: 401: 400: 395: 393: 389: 387: 386: 377: 376: 367: 355: 347: 340: 336: 335: 323: 322: 244:geostrophic wind 240:geostrophic wind 214:geostrophic wind 125:geostrophic wind 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 1231: 1230: 1226: 1225: 1224: 1222: 1221: 1220: 1206: 1205: 1199: 1186: 1178: 1165: 1157: 1144: 1136: 1123: 1120: 1118:Further reading 1115: 1114: 1104: 1103: 1096: 1089: 1076: 1075: 1068: 1063: 992: 976: 935: 930: 904: 903: 869: 845: 835: 829: 798: 793: 792: 763: 750: 737: 704: 699: 698: 674: 668: 667: 645: 639: 638: 617: 616: 591: 590: 566: 533: 528: 527: 497: 496: 474: 468: 467: 441: 435: 434: 409: 408: 378: 368: 362: 327: 314: 309: 308: 299: 236: 231: 187:baroclinic flow 103:and the colder 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1229: 1227: 1219: 1218: 1208: 1207: 1204: 1203: 1197: 1183: 1182: 1176: 1162: 1161: 1155: 1141: 1140: 1134: 1119: 1116: 1113: 1112: 1094: 1087: 1065: 1064: 1062: 1059: 991: 988: 975: 972: 934: 931: 929: 926: 912: 886: 883: 876: 872: 868: 864: 859: 852: 848: 842: 838: 832: 828: 825: 820: 817: 812: 807: 802: 775: 770: 766: 762: 757: 753: 749: 744: 740: 736: 732: 726: 723: 718: 713: 708: 681: 677: 652: 648: 625: 599: 578: 573: 569: 565: 561: 555: 552: 547: 542: 537: 509: 506: 481: 477: 448: 444: 417: 392: 385: 381: 375: 371: 365: 361: 358: 353: 350: 345: 339: 334: 330: 326: 321: 317: 298: 295: 249:Coriolis force 235: 232: 230: 227: 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1228: 1217: 1214: 1213: 1211: 1200: 1198:0-12-732951-X 1194: 1190: 1185: 1184: 1179: 1177:0-521-84969-1 1173: 1169: 1164: 1163: 1158: 1156:0-9706840-2-9 1152: 1148: 1143: 1142: 1137: 1135:0-12-354015-1 1131: 1127: 1122: 1121: 1117: 1108: 1101: 1099: 1095: 1090: 1088:0-13-353301-8 1084: 1080: 1073: 1071: 1067: 1060: 1058: 1055: 1053: 1049: 1045: 1039: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1008:solar heating 1005: 1001: 997: 989: 987: 985: 984:frontogenesis 981: 974:Frontogenesis 973: 971: 969: 964: 962: 958: 954: 950: 939: 932: 927: 925: 910: 900: 881: 874: 866: 857: 850: 846: 840: 836: 830: 826: 823: 818: 815: 810: 805: 790: 787: 768: 760: 755: 742: 734: 724: 721: 716: 711: 696: 679: 675: 650: 646: 614: 597: 571: 563: 553: 550: 545: 540: 524: 504: 479: 475: 465: 446: 432: 415: 405: 390: 383: 379: 373: 369: 363: 359: 356: 348: 343: 337: 332: 324: 319: 306: 304: 296: 294: 291: 286: 283: 273: 269: 267: 263: 259: 254: 250: 245: 241: 233: 228: 226: 224: 219: 215: 211: 206: 204: 200: 196: 192: 188: 184: 179: 177: 173: 169: 165: 161: 156: 154: 153:gradient wind 150: 149:flow balances 146: 142: 138: 134: 130: 126: 122: 118: 114: 106: 105:polar regions 102: 98: 94: 84: 81: 73: 70:February 2011 63: 59: 53: 52: 46: 41: 32: 31: 19: 1188: 1167: 1146: 1125: 1106: 1078: 1056: 1040: 993: 977: 965: 945: 901: 791: 788: 697: 525: 464:geopotential 431:gas constant 406: 307: 300: 287: 279: 237: 223:thermal wind 222: 217: 210:thermal wind 209: 207: 186: 180: 157: 144: 117:thermal wind 116: 110: 76: 67: 48: 18:Backing wind 1109:. Elsevier. 1050:(so called 986:may occur. 229:Description 176:troposphere 97:Jet streams 62:introducing 1061:References 1028:jet stream 1024:tropopause 990:Jet stream 980:isothermal 957:phenomenon 290:baroclinic 282:barotropic 183:wind shear 172:jet stream 133:wind shear 129:atmosphere 45:references 961:clockwise 949:advection 885:¯ 871:∇ 867:× 827:⁡ 765:Φ 761:− 752:Φ 739:∇ 735:× 577:Φ 568:∇ 564:× 508:¯ 443:Φ 433:for air, 360:⁡ 352:¯ 329:Φ 325:− 316:Φ 208:The term 164:thickness 155:balance. 1210:Category 1032:Northern 1020:velocity 1016:westerly 1004:meridian 1002:along a 928:Examples 260:and the 251:and the 151:such as 1012:equator 1010:at the 942:height. 611:is the 589:(where 462:is the 268:occurs. 203:isobars 119:is the 101:tropics 58:improve 1195:  1174:  1153:  1132:  1085:  1030:. The 495:, and 407:where 341:  121:vector 115:, the 47:, but 1052:bombs 1000:South 996:North 288:In a 280:In a 1193:ISBN 1172:ISBN 1151:ISBN 1130:ISBN 1083:ISBN 1034:and 218:wind 193:and 666:to 111:In 1212:: 1170:. 1097:^ 1069:^ 970:. 899:. 824:ln 786:. 615:, 404:, 357:ln 305:: 264:, 205:. 1201:. 1180:. 1159:. 1138:. 1091:. 998:- 911:f 882:T 875:p 863:k 858:] 851:1 847:p 841:0 837:p 831:[ 819:f 816:R 811:= 806:T 801:v 774:) 769:0 756:1 748:( 743:p 731:k 725:f 722:1 717:= 712:T 707:v 680:1 676:p 651:0 647:p 624:k 598:f 572:p 560:k 554:f 551:1 546:= 541:g 536:v 505:T 480:n 476:p 447:n 416:R 391:] 384:1 380:p 374:0 370:p 364:[ 349:T 344:R 338:= 333:0 320:1 107:. 83:) 77:( 72:) 68:( 54:. 20:)

Index

Backing wind
references
inline citations
improve
introducing
Learn how and when to remove this message

Jet streams
tropics
polar regions
atmospheric science
vector
geostrophic wind
atmosphere
wind shear
geostrophic balance
hydrostatic balance
flow balances
gradient wind
geopotential height
thickness
virtual temperature
jet stream
troposphere
wind shear
hydrostatic balance
geostrophic balance
temperature gradient
isobars
geostrophic wind

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.