Knowledge (XXG)

Circular chromosome

Source 📝

440:. It occurs in the terminus region, approximately opposite oriC on the chromosome (Fig 5). The terminus region contains several DNA replication terminator sites, or "Ter" sites. A special "replication terminator" protein must be bound at the Ter site for it to pause replication. Each Ter site has polarity of action, that is, it will arrest a replication fork approaching the Ter site from one direction, but will allow unimpeded fork movement through the Ter site from the other direction. The arrangement of the Ter sites forms two opposed groups that forces the two forks to meet each other within the region they span. This arrangement is called the "replication fork trap." 428: 95: 151: 142:, which moves with the helicase (together with other proteins) to synthesise a complementary copy of each strand. In this way, two identical copies of the original DNA are created. Eventually, the two replication forks moving around the circular chromosome meet in a specific zone of the chromosome, approximately opposite oriC, called the terminus region. The elongation enzymes then disassemble, and the two "daughter" chromosomes are resolved before cell division is completed. 31: 519:, Khodursky and Cozzarelli in 1997, it was found that topoisomerase IV is the only important decatenase of DNA replication intermediates in bacteria. When DNA gyrase alone was inhibited, most of the catenanes were unlinked. However, when Topoisomerase IV alone was inhibited, decatenation was almost completely blocked. This suggests that Topoisomerase IV is the primary protein for decatenation of interlinked chromosomes 512:
supercoils that form during DNA replication. Topoisomerase IV also relaxes positive supercoils, therefore, DNA Gyrase and topoisomerase IV play an almost identical role in removing the positive supercoils ahead of a translocating DNA polymerase, allowing DNA replication to continue unhindered by topological strain.
326:
and examining the developed film microscopically. This allowed the researchers to see where replication was taking place. The first conclusive observations of bidirectional replication was from studies of B. subtilis. Shortly after, the E. coli chromosome was also shown to replicate bidirectionally.
199:
that are important for its function include DnaA boxes, a 9-mer repeat with a highly conserved consensus sequence 5' – TTATCCACA – 3', that are recognized by the DnaA protein. DnaA protein plays a crucial role in the initiation of chromosomal DNA replication. Bound to ATP, and with the assistance of
511:
DNA gyrase also has topoisomerase type II activity; thus, with it being a homologue of topoisomerase IV (also having topoisomerase II activity) we expect similarity in the two proteins' functions. DNA gyrase's preliminary role is to introduce negative super coils into DNA, thereby relaxing positive
431:
Most circular bacterial chromosomes are replicated bidirectionally, starting at one point of origin and replicating in two directions away from the origin. This results in semiconservative replication, in which each new identical DNA molecule contains one template strand from the original molecule,
391:
are then added to this primer by a single DNA polymerase III dimer, in an integrated complex with DnaB helicase. Leading strand synthesis then proceeds continuously, while the DNA is concurrently unwound at the replication fork. In contrast, lagging strand synthesis is accomplished in short Okazaki
924:
DelVecchio, VG; Kapatral, V; Redkar, RJ; Patra, G; Mujer, C; Los, T; Ivanova, N; Anderson, I; Bhattacharyya, A; Lykidis, A; Reznik, G; Jablonski, L; Larsen, N; D'Souza, M; Bernal, A; Mazur, M; Goltsman, E; Selkov, E; Elzer, PH; Hagius, S; O'Callaghan, D; Letesson, JJ; Haselkorn, R; Kyrpides, N;
126:) of the chromosome, in opposite directions away from the oriC, replicating the DNA to create two identical copies. This process is known as bidirectional replication. The entire assembly of molecules involved in DNA replication on each arm is called a 34:
A circular chromosome, showing DNA replication proceeding bidirectionally, with two replication forks generated at the "origin". Each half of the chromosome replicated by one replication fork is called a "replichore". (Graphic computer art by Daniel
82:. However, a circular chromosome has the disadvantage that after replication, the two progeny circular chromosomes can remain interlinked or tangled, and they must be extricated so that each cell inherits one complete copy of the chromosome during 681: 499:
plays in decatenation. To define the nomenclature, there are two types of topoisomerases: type I produces transient single-strand breaks in DNA and types II produces transient double-strand breaks. As a result, the type I enzyme removes
669:
This is based on an article by Imalda Devaparanam and David Tribe made available under CC by SA licensing conditions from a university course activity at the Department of Microbiology and Immunology, University of Melbourne, 2007.
114:. Chromosome replication proceeds in three major stages: initiation, elongation and termination. The initiation stage starts with the ordered assembly of "initiator" proteins at the origin region of the chromosome, called 246:, from the DnaB-DnaC complex to the unwound region to form the pre-priming complex. After DnaB translocates to the apex of each replication fork, the helicase both unwinds the parental DNA and interacts momentarily with 717:
Hirota Y, Mordoh J and Jacob F (1970) On the process of cellular division in Escherichia coli III. Thermosensitive mutants of Escherichia coli altered in the process of DNA initiation. J Mol Biol, 53, 369–387.
492:, DNA topoisomerase IV plays the major role in the separation of the catenated chromosomes, transiently breaking both DNA strands of one chromosome and allowing the other chromosome to pass through the break. 399:
When the synthesis of an Okazaki fragment has been completed, replication halts and the core subunits of DNA Pol III dissociates from the β sliding clamp . The RNA primer is removed and replaced with DNA by
905:
Chris Ullsperger and Nicholas R. Cozzarelli. Contrasting Enzymatic Activities of Topoisomerase IV and DNA Gyrase from Escherichia coli. Volume 271, Number 49, Issue of December 6, 1996, pp. 31549-31555
484:’ or topologically interlinked circles. The circles are not covalently but mechanically linked, because they are interwound and each is covalently closed. The catenated circles require the action of 1152: 914:
E L Zechiedrich, A B Khodursky, N R Cozzarelli. Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 1997 Oct 1;11 (19):2580-92 9334322
708:
C Weigel, A Schmidt, B Rückert, R Lurz, and W Messer. DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC. EMBO J. 1997 November 3; 16(21): 6574–6583.
1084:
Lasek, Robert; Szuplewska, Magdalena; Mitura, Monika; Decewicz, Przemysław; Chmielowska, Cora; Pawłot, Aleksandra; Sentkowska, Dorota; Czarnecki, Jakub; Bartosik, Dariusz (25 October 2018).
685: 318:
As described above, bacterial chromosomal replication occurs in a bidirectional manner. This was first demonstrated by specifically labelling replicating bacterial chromosomes with
585:
has two circular chromosomes and one large plasmid, carrying genes not essential for survival but key to its biochemical behavior. The second chromosome has also been called a
415:
or strand break when cells are grown under normal laboratory conditions (without an exogenous DNA damaging treatment). The encountered DNA damages are ordinarily processed by
735:
Sekimizu K, Bramhill D and Kornberg A (1987) ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E.coli chromosome. Cell, 50, 259–265
753:
Kowalski D, Eddy MJ. 1989. The DNA unwinding element: a novel, cis-acting component that facilitates opening of the Escherichia coli replication origin. EMBO J. 8:4335–44
1145: 726:
Bramhill D, Kornberg A. 1988. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52:743–55
1022:
Si, YY; Xu, KH; Yu, XY; Wang, MF; Chen, XH (July 2019). "Complete genome sequence of Paracoccus denitrificans ATCC 19367 and its denitrification characteristics".
118:. These assembly stages are regulated to ensure that chromosome replication occurs only once in each cell cycle. During the elongation phase of replication, the 677: 474:
of the Ter DNA-Tus protein complex (A) showing the nonblocking and the fork-blocking faces of Tus. (B) A cross-sectional view of the helicase-arresting surface.
807:
O'Donnell M., Jeruzalmi D., Kuriyan J. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr. Biol. 11 R935-R946 2001
880:
Kamada K, Horiuchi T, Ohsumi K, Shimamoto N, Morikawa K. 1996. Structure of a replication-terminator protein complexed with DNA. Nature, 17;383(6601):598–603.
1138: 593:
to the chromosome, are essential to life like the main chromosome, but has plasmid-type elements such as the origin of replication. Many other sequenced
762:
Carr KM, Kaguni JM. 2001. Stoichiometry of DnaA and DnaB protein in initiation at the Escherichia coli chromosomal origin. J. Biol. Chem. 276:44919–25
816:
Indiani C, O'Donnell M. Mechanism of the delta wrench in opening the beta sliding clamp. J Biol Chem. 2003 Oct 10;278(41):40272-81. Epub 2003 Jul 8.
392:
fragments. First, an RNA primer is synthesized by primase, and, like that in leading strand synthesis, DNA Pol III binds to the RNA primer and adds
871:
Duggin IG, Wake RG, Bell SD, Hill TM. 2008. The replication fork trap and termination of chromosome replication. Mol Microbiol. Dec;70(6):1323–33.
744:
Gotoh O, Tagashira Y. 1981. Locations of frequently opening regions on natural DNAs and their relation to functional loci. Biopolymers 20:1043–58
297:
base was incorporated uniformly into the bacterial chromosome. He then isolated the chromosomes by lysing the cells gently and placed them on an
798:
Prescott D.M., Kuempel P.L. 1972. Bidirectional replication of the chromosome in Escherichia coli. Proc Natl Acad Sci U S A. Oct;69(10):2842-5.
475: 449: 1086:"Genome Structure of the Opportunistic Pathogen Paracoccus yeei (Alphaproteobacteria) and Identification of Putative Virulence Factors" 771:
Tougu K, Marians KJ. 1996. The interaction between helicase and primase sets the replication fork clock. J. Biol. Chem. 271:21398–405
508:
and eukaryotes are the type I topoisomerase. The eukaryotic topo II, bacterial gyrase, and bacterial topo IV belong to the type II.
987:
Harrison, PW; Lower, RP; Kim, NK; Young, JP (April 2010). "Introducing the bacterial 'chromid': not a chromosome, not a plasmid".
412: 436:
Termination is the process of fusion of replication forks and disassembly of the replisomes to yield two separate and complete
1806: 1401: 78:. By contrast, most eukaryotes have linear DNA requiring elaborate mechanisms to maintain the stability of the telomeres and 699:
Jon M. Kaguni DnaA: Controlling the Initiation of Bacterial DNA Replication and More. Annu. Rev. Microbiol. 2006. 60:351–71
285:
of E. coli chromosomal replication in 1963, using an innovative method to visualize DNA replication. In his experiment, he
1942: 346: 305:
film for two months. This Experiment clearly demonstrates the theta replication model of circular bacterial chromosomes.
1590: 1510: 1266: 335:
chromosome from cells labeled for 19 min with thymine, followed by labeling for 2.5 min with thymine and thymidine.
647: 231:
is important as it alters the conformation of DNA to promote strand separation, and it appears that this region of
70:
Most prokaryote chromosomes contain a circular DNA molecule. This has the major advantage of having no free ends (
1811: 427: 94: 1658: 1559: 1476: 789:
Wake, R.G. 1972. Visualization of reinitiated chromosomes in Bacillus subtilis. J Mol Biol. Jul 28;68(3):501-9.
581: 541: 416: 278: 480:
Replication of the DNA separating the opposing replication forks leaves the completed chromosomes joined as ‘
1685: 1461: 257:
are needed to prevent the single strands of DNA from forming secondary structures and to prevent them from
1913: 1229: 889:
Kaplan DL, Bastia D. 2009. Mechanisms of polar arrest of a replication fork. Mol Microbiol. 72(2):279-85.
595: 223:(Dam), an enzyme that modifies the adenine base when this sequence is unmethylated or hemimethylated. The 192:
that will eventually lead to the establishment of two complete replisomes for bidirectional replication.
1980: 1975: 1673: 1646: 504:
from DNA one at a time, whereas the type II enzyme removes supercoils two at a time. The topo I of both
463: 220: 216: 165: 150: 1970: 1617: 1612: 1488: 938: 286: 1066: 1853: 1695: 1651: 1345: 561: 556: 393: 319: 298: 258: 209: 1903: 1047: 854: 181: 322:. The regions of DNA undergoing replication during the experiment were then visualized by using 1898: 1602: 1117: 1039: 1004: 966: 890: 846: 471: 358: 110: 60: 52: 188:
species. DnaA binding to the origin initiates the regulated recruitment of other enzymes and
102:
The circular bacteria chromosome replication is best understood in the well-studied bacteria
1634: 1528: 1161: 1107: 1097: 1031: 996: 956: 946: 838: 516: 401: 388: 370: 273:
When the replication fork moves around the circle, a structure shaped like the Greek letter
135: 104: 411:
A substantial proportion (10-15%) of the replication forks originating at oriC encounter a
1891: 1585: 1564: 1493: 1296: 657: 282: 254: 79: 56: 30: 627: 942: 1881: 1768: 1639: 1498: 1481: 1286: 1216: 1112: 1085: 374: 366: 331:
See Figure 4 of D. M. Prescott, and P. L. Kuempel (1972): A grain track produced by an
323: 313: 139: 1130: 961: 926: 1964: 1921: 1886: 1729: 1719: 1690: 1323: 1316: 842: 652: 642: 485: 350: 243: 83: 1051: 515:
DNA gyrase is not the sole enzyme responsible for decatenation. In an experiment by
265:
is needed to relieve the topological stress created by the action of DnaB helicase.
1908: 1751: 1711: 1678: 1450: 1436: 1334: 927:"The genome sequence of the facultative intracellular pathogen Brucella melitensis" 858: 454:
The Ter sites specifically interact with the replication terminator protein called
437: 362: 173: 131: 448:(A) Map showing the ori and the 10 Ter sites. (B) The consensus sequence of Ter. 336: 1932: 1798: 1746: 1741: 1254: 673: 611:-type origin, but the latter uses a P1 plasmid-type origin, making it a chromid. 590: 455: 224: 931:
Proceedings of the National Academy of Sciences of the United States of America
1840: 1835: 1788: 1781: 1776: 1761: 1756: 1597: 1532: 1281: 1223: 1000: 829:
Cox MM (1998). "A broadening view of recombinational DNA repair in bacteria".
780:
Cairns, J.P.: Cold Spring Harbor Symposia on Quantitative Biology 28:44, 1963.
505: 496: 405: 378: 294: 262: 204:-like proteins DnaA then unwinds an AT-rich region near the left boundary of 123: 1102: 17: 1845: 1830: 1817: 1569: 1357: 1276: 1271: 1261: 1249: 1188: 501: 365:
component . DNA Pol III uses one set of its core subunits to synthesize the
354: 290: 127: 64: 1121: 1043: 1008: 970: 951: 894: 1035: 850: 569:-stype origin of replication. In other cases, such as the closely related 1876: 1822: 1724: 1668: 1663: 1554: 1515: 1471: 1373: 1178: 632: 622: 535: 481: 239: 185: 71: 44: 432:
shown as the solid lines, and one new strand, shown as the dotted lines.
1858: 1736: 1520: 1505: 1208: 1183: 637: 586: 574: 521: 247: 228: 201: 189: 48: 122:
that were assembled at oriC during initiation proceed along each arm (
1949: 1927: 1624: 1547: 1542: 1307: 1198: 1193: 603: 547: 119: 573:, the smaller chromosome replicates like a plasmid and is clearly a 369:
continuously, while the other set of core subunits cycles from one
1431: 1423: 1241: 1203: 426: 302: 274: 93: 607:
have two circular chromosomes. The larger one uses a traditional
408:, which then ligates these fragments to form the lagging strand. 289:
the chromosome by growing his cultures in a medium containing 3H-
1937: 1629: 1170: 419:
repair enzymes to allow continued replication fork progression.
382: 377:. Leading strand synthesis begins with the synthesis of a short 177: 115: 1134: 138:. The two unwound single strands of DNA serve as templates for 75: 682:
Creative Commons Attribution-ShareAlike 3.0 Unported License
444:
See locations and sequences of the replication termini of
253:
In order for DNA replication to continue, single stranded
59:, in the form of a molecule of circular DNA, unlike the 309:
See Autoradiograph of intact replicating chromosome of
134:
that unwinds the two strands of DNA, creating a moving
208:, which carries three 13-mer motifs, and opens up the 559:
have two circular molecules. In some cases, such as
1869: 1797: 1710: 1578: 1460: 1449: 1422: 1394: 1344: 1333: 1306: 1295: 1240: 1169: 98:
Bidirectional replication in a circular chromosome.
381:at the replication origin by the enzyme Primase ( 349:is a 900 kD complex, possessing an essentially a 824: 822: 678:Replication of a circular bacterial chromosome 1146: 495:There has been some confusion about the role 8: 672:This article incorporates material from the 466:of DnaB in an orientation-dependent manner. 212:for entrance of other replication proteins. 488:to separate the circles (decatenation). In 1457: 1341: 1303: 1153: 1139: 1131: 982: 980: 1111: 1101: 960: 950: 130:. At the forefront of the replisome is a 1067:"Paracoccus denitrificans - microbewiki" 525:, with DNA gyrase playing a minor role. 149: 29: 692: 565:, both appear chromosome-like with an 533:Several groups of bacteria, including 215:This region also contains four “GATC” 7: 551:have multiple circular chromosomes. 404:and the remaining nick is sealed by 235:C has a natural tendency to unwind. 238:DnaA then recruits the replicative 462:. The Tus-Ter complex impedes the 25: 219:sequences that are recognized by 1024:Canadian Journal of Microbiology 843:10.1046/j.1365-2443.1998.00175.x 1065:Larsen, Rachel; Pogliano, Kit. 680:", which is licensed under the 1807:Last universal common ancestor 1402:Defective interfering particle 925:Overbeek, R (8 January 2002). 301:(EM) grid which he exposed to 1: 1943:Clonally transmissible cancer 1379:Satellite-like nucleic acids 529:Multiple circular chromosomes 357:unit has a catalytic core, a 347:DNA polymerase III holoenzyme 195:DNA sequence elements within 589:, in that they have similar 176:that are recognised by the 1997: 1499:Class II or DNA transposon 1494:Class I or retrotransposon 648:Rolling circle replication 373:to the next on the looped 1812:Earliest known life forms 1686:Repeated sequences in DNA 1090:Frontiers in Microbiology 1001:10.1016/j.tim.2009.12.010 180:protein, which is highly 1659:Endogenous viral element 1477:Horizontal gene transfer 1103:10.3389/fmicb.2018.02553 582:Paracoccus denitrificans 542:Paracoccus denitrificans 1356:dsDNA satellite virus ( 1914:Helper dependent virus 1230:Biological dark matter 1071:microbewiki.kenyon.edu 989:Trends in Microbiology 952:10.1073/pnas.221575398 658:Theta type replication 464:DNA unwinding activity 433: 158: 99: 36: 1674:Endogenous retrovirus 1647:Origin of replication 1363:ssDNA satellite virus 1353:ssRNA satellite virus 1036:10.1139/cjm-2019-0037 430: 287:radioactively labeled 221:DNA adenine methylase 217:DNA unwinding element 166:origin of replication 153: 97: 33: 1618:Secondary chromosome 1613:Extrachromosomal DNA 1489:Transposable element 394:deoxyribonucleotides 320:radioactive isotopes 1854:Model lipid bilayer 1696:Interspersed repeat 943:2002PNAS...99..443D 599:also have chromids. 562:Brucella melitensis 557:Alphaproteobacteria 299:electron micrograph 210:double-stranded DNA 43:is a chromosome in 41:circular chromosome 1164:organic structures 684:but not under the 434: 184:amongst different 159: 157:motifs in bacteria 100: 37: 27:Type of chromosome 1958: 1957: 1899:Non-cellular life 1706: 1705: 1445: 1444: 1418: 1417: 1372:ssRNA satellite ( 472:crystal structure 281:demonstrated the 111:Bacillus subtilis 80:replicate the DNA 61:linear chromosome 16:(Redirected from 1988: 1635:Gene duplication 1458: 1454:self-replication 1342: 1304: 1162:Self-replicating 1155: 1148: 1141: 1132: 1126: 1125: 1115: 1105: 1081: 1075: 1074: 1062: 1056: 1055: 1019: 1013: 1012: 984: 975: 974: 964: 954: 921: 915: 912: 906: 903: 897: 887: 881: 878: 872: 869: 863: 862: 826: 817: 814: 808: 805: 799: 796: 790: 787: 781: 778: 772: 769: 763: 760: 754: 751: 745: 742: 736: 733: 727: 724: 718: 715: 709: 706: 700: 697: 402:DNA polymerase I 389:Deoxynucleotides 371:Okazaki fragment 353:structure. Each 255:binding proteins 136:replication fork 105:Escherichia coli 21: 1996: 1995: 1991: 1990: 1989: 1987: 1986: 1985: 1961: 1960: 1959: 1954: 1904:Synthetic virus 1892:Artificial cell 1865: 1793: 1702: 1591:RNA replication 1586:DNA replication 1574: 1565:Group II intron 1463: 1453: 1441: 1432:Mammalian prion 1414: 1390: 1369:dsRNA satellite 1366:ssDNA satellite 1336: 1329: 1298: 1291: 1236: 1165: 1159: 1129: 1083: 1082: 1078: 1064: 1063: 1059: 1021: 1020: 1016: 986: 985: 978: 923: 922: 918: 913: 909: 904: 900: 888: 884: 879: 875: 870: 866: 828: 827: 820: 815: 811: 806: 802: 797: 793: 788: 784: 779: 775: 770: 766: 761: 757: 752: 748: 743: 739: 734: 730: 725: 721: 716: 712: 707: 703: 698: 694: 667: 662: 618: 531: 425: 417:recombinational 361:subunit, and a 324:autoradiography 283:theta structure 271: 261:. In addition, 148: 92: 28: 23: 22: 15: 12: 11: 5: 1994: 1992: 1984: 1983: 1978: 1973: 1963: 1962: 1956: 1955: 1953: 1952: 1947: 1946: 1945: 1940: 1930: 1924: 1918: 1917: 1916: 1911: 1901: 1896: 1895: 1894: 1889: 1879: 1873: 1871: 1867: 1866: 1864: 1863: 1862: 1861: 1856: 1848: 1843: 1838: 1833: 1827: 1826: 1825: 1814: 1809: 1803: 1801: 1795: 1794: 1792: 1791: 1786: 1785: 1784: 1779: 1771: 1769:Kappa organism 1766: 1765: 1764: 1759: 1754: 1749: 1744: 1734: 1733: 1732: 1727: 1716: 1714: 1708: 1707: 1704: 1703: 1701: 1700: 1699: 1698: 1693: 1683: 1682: 1681: 1676: 1671: 1666: 1656: 1655: 1654: 1644: 1643: 1642: 1640:Non-coding DNA 1637: 1632: 1622: 1621: 1620: 1615: 1610: 1605: 1595: 1594: 1593: 1582: 1580: 1576: 1575: 1573: 1572: 1567: 1562: 1560:Group I intron 1557: 1552: 1551: 1550: 1540: 1539: 1538: 1535: 1526: 1523: 1518: 1513: 1503: 1502: 1501: 1496: 1486: 1485: 1484: 1482:Genomic island 1479: 1468: 1466: 1462:Mobile genetic 1455: 1447: 1446: 1443: 1442: 1440: 1439: 1434: 1428: 1426: 1420: 1419: 1416: 1415: 1413: 1412: 1411: 1410: 1407: 1398: 1396: 1392: 1391: 1389: 1388: 1387: 1386: 1383: 1377: 1370: 1367: 1364: 1361: 1354: 1350: 1348: 1339: 1331: 1330: 1328: 1327: 1320: 1312: 1310: 1301: 1293: 1292: 1290: 1289: 1287:dsDNA-RT virus 1284: 1282:ssRNA-RT virus 1279: 1277:(−)ssRNA virus 1274: 1272:(+)ssRNA virus 1269: 1264: 1259: 1258: 1257: 1246: 1244: 1238: 1237: 1235: 1234: 1233: 1232: 1227: 1217:Incertae sedis 1213: 1212: 1211: 1206: 1201: 1196: 1186: 1181: 1175: 1173: 1167: 1166: 1160: 1158: 1157: 1150: 1143: 1135: 1128: 1127: 1076: 1057: 1030:(7): 486–495. 1014: 976: 916: 907: 898: 882: 873: 864: 818: 809: 800: 791: 782: 773: 764: 755: 746: 737: 728: 719: 710: 701: 691: 666: 663: 661: 660: 655: 650: 645: 640: 635: 630: 625: 619: 617: 614: 613: 612: 600: 578: 530: 527: 486:topoisomerases 478: 477: 452: 451: 424: 421: 375:lagging strand 367:leading strand 340: 339: 316: 315: 270: 267: 147: 144: 140:DNA polymerase 91: 88: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1993: 1982: 1979: 1977: 1974: 1972: 1969: 1968: 1966: 1951: 1948: 1944: 1941: 1939: 1936: 1935: 1934: 1931: 1929: 1925: 1923: 1922:Nanobacterium 1919: 1915: 1912: 1910: 1907: 1906: 1905: 1902: 1900: 1897: 1893: 1890: 1888: 1887:Cell division 1885: 1884: 1883: 1880: 1878: 1875: 1874: 1872: 1868: 1860: 1857: 1855: 1852: 1851: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1828: 1824: 1821: 1820: 1819: 1815: 1813: 1810: 1808: 1805: 1804: 1802: 1800: 1796: 1790: 1787: 1783: 1780: 1778: 1775: 1774: 1772: 1770: 1767: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1739: 1738: 1735: 1731: 1730:Hydrogenosome 1728: 1726: 1723: 1722: 1721: 1720:Mitochondrion 1718: 1717: 1715: 1713: 1712:Endosymbiosis 1709: 1697: 1694: 1692: 1691:Tandem repeat 1689: 1688: 1687: 1684: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1661: 1660: 1657: 1653: 1650: 1649: 1648: 1645: 1641: 1638: 1636: 1633: 1631: 1628: 1627: 1626: 1623: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1600: 1599: 1596: 1592: 1589: 1588: 1587: 1584: 1583: 1581: 1579:Other aspects 1577: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1549: 1546: 1545: 1544: 1541: 1536: 1534: 1530: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1508: 1507: 1504: 1500: 1497: 1495: 1492: 1491: 1490: 1487: 1483: 1480: 1478: 1475: 1474: 1473: 1470: 1469: 1467: 1465: 1459: 1456: 1452: 1448: 1438: 1435: 1433: 1430: 1429: 1427: 1425: 1421: 1408: 1405: 1404: 1403: 1400: 1399: 1397: 1393: 1384: 1381: 1380: 1378: 1375: 1371: 1368: 1365: 1362: 1359: 1355: 1352: 1351: 1349: 1347: 1343: 1340: 1338: 1332: 1326: 1325: 1324:Avsunviroidae 1321: 1319: 1318: 1317:Pospiviroidae 1314: 1313: 1311: 1309: 1305: 1302: 1300: 1294: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1256: 1253: 1252: 1251: 1248: 1247: 1245: 1243: 1239: 1231: 1228: 1226: 1225: 1221: 1220: 1219: 1218: 1214: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1191: 1190: 1187: 1185: 1182: 1180: 1177: 1176: 1174: 1172: 1171:Cellular life 1168: 1163: 1156: 1151: 1149: 1144: 1142: 1137: 1136: 1133: 1123: 1119: 1114: 1109: 1104: 1099: 1095: 1091: 1087: 1080: 1077: 1072: 1068: 1061: 1058: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1018: 1015: 1010: 1006: 1002: 998: 994: 990: 983: 981: 977: 972: 968: 963: 958: 953: 948: 944: 940: 936: 932: 928: 920: 917: 911: 908: 902: 899: 896: 892: 886: 883: 877: 874: 868: 865: 860: 856: 852: 848: 844: 840: 836: 832: 825: 823: 819: 813: 810: 804: 801: 795: 792: 786: 783: 777: 774: 768: 765: 759: 756: 750: 747: 741: 738: 732: 729: 723: 720: 714: 711: 705: 702: 696: 693: 690: 689: 687: 683: 679: 675: 664: 659: 656: 654: 653:Topoisomerase 651: 649: 646: 644: 643:Ribbon theory 641: 639: 636: 634: 631: 629: 626: 624: 621: 620: 615: 610: 606: 605: 601: 598: 597: 592: 588: 584: 583: 579: 576: 572: 568: 564: 563: 558: 554: 553: 552: 550: 549: 544: 543: 538: 537: 528: 526: 524: 523: 518: 513: 509: 507: 503: 498: 493: 491: 487: 483: 476: 473: 469: 468: 467: 465: 461: 457: 450: 447: 443: 442: 441: 439: 438:DNA molecules 429: 422: 420: 418: 414: 409: 407: 403: 397: 395: 390: 386: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 345: 337: 334: 330: 329: 328: 325: 321: 314: 312: 308: 307: 306: 304: 300: 296: 292: 288: 284: 280: 277:Ө is formed. 276: 268: 266: 264: 260: 256: 251: 249: 245: 241: 236: 234: 230: 226: 222: 218: 213: 211: 207: 203: 198: 193: 191: 187: 183: 179: 175: 174:DNA sequences 171: 167: 164: 156: 152: 145: 143: 141: 137: 133: 129: 125: 121: 117: 113: 112: 107: 106: 96: 89: 87: 85: 84:cell division 81: 77: 73: 68: 66: 62: 58: 54: 50: 46: 42: 32: 19: 18:Bacterial DNA 1981:Cell anatomy 1976:Bacteriology 1909:Viral vector 1752:Gerontoplast 1679:Transpoviron 1607: 1451:Nucleic acid 1437:Fungal prion 1335:Helper-virus 1322: 1315: 1222: 1215: 1093: 1089: 1079: 1070: 1060: 1027: 1023: 1017: 995:(4): 141–8. 992: 988: 937:(1): 443–8. 934: 930: 919: 910: 901: 885: 876: 867: 837:(2): 65–78. 834: 830: 812: 803: 794: 785: 776: 767: 758: 749: 740: 731: 722: 713: 704: 695: 671: 668: 628:Möbius strip 608: 602: 594: 580: 571:Ochrobactrum 570: 566: 560: 546: 540: 534: 532: 520: 514: 510: 494: 489: 479: 459: 453: 445: 435: 410: 398: 387: 363:processivity 359:dimerization 343: 341: 332: 317: 310: 272: 259:re-annealing 252: 237: 232: 214: 205: 196: 194: 172:consists of 169: 162: 160: 154: 132:DNA helicase 109: 103: 101: 69: 57:chloroplasts 53:mitochondria 40: 38: 1971:Chromosomes 1933:Cancer cell 1799:Abiogenesis 1747:Chromoplast 1742:Chloroplast 1525:Degradative 1267:dsRNA virus 1262:ssDNA virus 1255:Giant virus 1250:dsDNA virus 831:Genes Cells 674:Citizendium 591:codon usage 517:Zechiedrich 506:prokaryotes 423:Termination 279:John Cairns 225:methylation 90:Replication 1965:Categories 1841:Proteinoid 1836:Coacervate 1789:Nitroplast 1782:Trophosome 1777:Bacteriome 1762:Apicoplast 1757:Leucoplast 1598:Chromosome 1516:Resistance 1224:Parakaryon 665:References 596:Paracoccus 502:supercoils 497:DNA gyrase 413:DNA damage 406:DNA ligase 385:protein). 379:RNA primer 295:nucleoside 269:Elongation 263:DNA gyrase 200:bacterial 146:Initiation 124:replichore 65:eukaryotes 1850:Research 1831:Protocell 1570:Retrozyme 1529:Virulence 1511:Fertility 1358:Virophage 1346:Satellite 1337:dependent 1189:Eukaryota 676:article " 482:catenanes 355:monomeric 291:thymidine 186:bacterial 182:conserved 168:, called 128:replisome 74:) to the 72:telomeres 1877:Organism 1870:See also 1846:Sulphobe 1823:Ribozyme 1818:RNA life 1725:Mitosome 1669:Prophage 1664:Provirus 1652:Replicon 1608:Circular 1555:Phagemid 1472:Mobilome 1464:elements 1374:Virusoid 1297:Subviral 1209:Protista 1194:Animalia 1179:Bacteria 1122:30410477 1096:: 2553. 1052:85445608 1044:30897350 1009:20080407 971:11756688 895:19298368 633:Nucleoid 623:Catenane 616:See also 536:Brucella 446:E. coli. 240:helicase 229:adenines 190:proteins 63:of most 45:bacteria 1859:Jeewanu 1773:Organs 1737:Plastid 1537:Cryptic 1506:Plasmid 1204:Plantae 1184:Archaea 1113:6209633 939:Bibcode 859:2723712 851:9605402 638:Plasmid 587:chromid 575:chromid 522:in vivo 490:E. coli 460:E. coli 351:dimeric 344:E. coli 333:E. coli 248:primase 202:histone 163:E. coli 120:enzymes 49:archaea 1950:Virome 1928:Nanobe 1625:Genome 1603:Linear 1548:Fosmid 1543:Cosmid 1308:Viroid 1299:agents 1120:  1110:  1050:  1042:  1007:  969:  962:117579 959:  893:  857:  849:  604:Vibrio 548:Vibrio 545:, and 311:E.coli 293:. The 55:, and 1424:Prion 1395:Other 1242:Virus 1199:Fungi 1048:S2CID 855:S2CID 555:Many 303:X-ray 275:theta 35:Yuen) 1938:HeLa 1882:Cell 1630:Gene 1118:PMID 1040:PMID 1005:PMID 967:PMID 891:PMID 847:PMID 686:GFDL 609:oriC 567:oriC 470:The 383:DnaG 342:The 244:DnaB 206:oriC 197:oriC 178:DnaA 170:oriC 161:The 155:oriC 116:oriC 108:and 1521:Col 1409:DNA 1406:RNA 1385:DNA 1382:RNA 1108:PMC 1098:doi 1032:doi 997:doi 957:PMC 947:doi 839:doi 458:in 456:Tus 233:ori 227:of 76:DNA 1967:: 1533:Ti 1116:. 1106:. 1092:. 1088:. 1069:. 1046:. 1038:. 1028:65 1026:. 1003:. 993:18 991:. 979:^ 965:. 955:. 945:. 935:99 933:. 929:. 853:. 845:. 833:. 821:^ 539:, 396:. 250:. 242:, 86:. 67:. 51:, 47:, 39:A 1926:? 1920:? 1829:† 1816:? 1531:/ 1376:) 1360:) 1154:e 1147:t 1140:v 1124:. 1100:: 1094:9 1073:. 1054:. 1034:: 1011:. 999:: 973:. 949:: 941:: 861:. 841:: 835:3 688:. 577:. 338:. 20:)

Index

Bacterial DNA

bacteria
archaea
mitochondria
chloroplasts
linear chromosome
eukaryotes
telomeres
DNA
replicate the DNA
cell division

Escherichia coli
Bacillus subtilis
oriC
enzymes
replichore
replisome
DNA helicase
replication fork
DNA polymerase

origin of replication
DNA sequences
DnaA
conserved
bacterial
proteins
histone

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.