Knowledge (XXG)

Microbial metabolism

Source đź“ť

500:) requires several different organisms, with one breaking down the polymer into its constituent monomers, one able to use the monomers and excreting simpler waste compounds as by-products, and one able to use the excreted wastes. There are many variations on this theme, as different organisms are able to degrade different polymers and secrete different waste products. Some organisms are even able to degrade more recalcitrant compounds such as petroleum compounds or pesticides, making them useful in 1130:
kJ/mol, but ΔG' = -8.9 kJ/mol at 10 atm hydrogen and even lower if also the initially produced acetate is further metabolized by methanogens). Conversely, the available free energy from methanogenesis is lowered from ΔGº'= -131 kJ/mol under standard conditions to ΔG' = -17 kJ/mol at 10 atm hydrogen. This is an example of intraspecies hydrogen transfer. In this way, low energy-yielding carbon sources can be used by a consortium of organisms to achieve further degradation and eventual
1041:) chemolithoautotrophically. These methanogens can often be found in environments containing fermentative organisms. The tight association of methanogens and fermentative bacteria can be considered to be syntrophic (see below) because the methanogens, which rely on the fermentors for hydrogen, relieve feedback inhibition of the fermentors by the build-up of excess hydrogen that would otherwise inhibit their growth. This type of syntrophic relationship is specifically known as 2057:. Generally, the oxidation of sulfide occurs in stages, with inorganic sulfur being stored either inside or outside of the cell until needed. This two step process occurs because energetically sulfide is a better electron donor than inorganic sulfur or thiosulfate, allowing for a greater number of protons to be translocated across the membrane. Sulfur-oxidizing organisms generate reducing power for carbon dioxide fixation via the Calvin cycle using 1886:, and when reduced to TMA produces a strong odor. DMSO is a common marine and freshwater chemical which is also odiferous when reduced to DMS. Reductive dechlorination is the process by which chlorinated organic compounds are reduced to form their non-chlorinated endproducts. As chlorinated organic compounds are often important (and difficult to degrade) environmental pollutants, reductive dechlorination is an important process in bioremediation. 114: 36: 2705:), which is easily assimilated by all organisms. These prokaryotes, therefore, are very important ecologically and are often essential for the survival of entire ecosystems. This is especially true in the ocean, where nitrogen-fixing cyanobacteria are often the only sources of fixed nitrogen, and in soils, where specialized symbioses exist between 2647:
of electron flow in which electrons eventually are used to form NADH. Two different reaction centers (photosystems) are used and proton motive force is generated both by using cyclic electron flow and the quinone pool. In anoxygenic photosynthetic bacteria, electron flow is cyclic, with all electrons
1150:
Aerobic metabolism occurs in Bacteria, Archaea and Eucarya. Although most bacterial species are anaerobic, many are facultative or obligate aerobes. The majority of archaeal species live in extreme environments that are often highly anaerobic. There are, however, several cases of aerobic archaea such
2332:
coupled to proton translocation by a very short electron transport chain, again leading to very low growth rates for these organisms. Oxygen is required in both ammonia and nitrite oxidation, meaning that both nitrosifying and nitrite-oxidizing bacteria are aerobes. As in sulfur and iron oxidation,
1626:
in all homoacetogens occurs by the acetyl-CoA pathway. This pathway is also used for carbon fixation by autotrophic sulfate-reducing bacteria and hydrogenotrophic methanogens. Often homoacetogens can also be fermentative, using the hydrogen and carbon dioxide produced as a result of fermentation to
904:
and NADH is produced during these oxidations to produce a proton motive force and therefore ATP generation. Methylotrophs and methanotrophs are not considered as autotrophic, because they are able to incorporate some of the oxidized methane (or other metabolites) into cellular carbon before it is
1129:
of the butyrate oxidation reaction under standard conditions (ΔGº') to non-standard conditions (ΔG'). Because the concentration of one product is lowered, the reaction is "pulled" towards the products and shifted towards net energetically favorable conditions (for butyrate oxidation: ΔGº'= +48.2
1571:
All sulfate-reducing organisms are strict anaerobes. Because sulfate is energetically stable, before it can be metabolized it must first be activated by adenylation to form APS (adenosine 5'-phosphosulfate) thereby consuming ATP. The APS is then reduced by the enzyme APS reductase to form
1234:
Most respiring anaerobes are heterotrophs, although some do live autotrophically. All of the processes described below are dissimilative, meaning that they are used during energy production and not to provide nutrients for the cell (assimilative). Assimilative pathways for many forms of
2394:
lipid membrane. These lipids are unique in nature, as is the use of hydrazine as a metabolic intermediate. Anammox organisms are autotrophs although the mechanism for carbon dioxide fixation is unclear. Because of this property, these organisms could be used to remove nitrogen in
1897:
is a type of metabolism where energy is obtained from the oxidation of inorganic compounds. Most chemolithotrophic organisms are also autotrophic. There are two major objectives to chemolithotrophy: the generation of energy (ATP) and the generation of reducing power (NADH).
1269:) as a terminal electron acceptor. It is a widespread process that is used by many members of the Pseudomonadota. Many facultative anaerobes use denitrification because nitrate, like oxygen, has a high reduction potential. Many denitrifying bacteria can also use ferric 1345:, nitric oxide reductase, and nitrous oxide reductase, respectively. Protons are transported across the membrane by the initial NADH reductase, quinones, and nitrous oxide reductase to produce the electrochemical gradient critical for respiration. Some organisms (e.g. 743:. Fermentative organisms are very important industrially and are used to make many different types of food products. The different metabolic end products produced by each specific bacterial species are responsible for the different tastes and properties of each food. 2652:, an energetically favorable reaction. In purple bacteria, NADH is formed by reverse electron flow due to the lower chemical potential of this reaction center. In all cases, however, a proton motive force is generated and used to drive ATP production via an ATPase. 2390:– rocket fuel) is produced as an intermediate during anammox metabolism. To deal with the high toxicity of hydrazine, anammox bacteria contain a hydrazine-containing intracellular organelle called the anammoxasome, surrounded by highly compact (and unusual) 2648:
used in photosynthesis eventually being transferred back to the single reaction center. A proton motive force is generated using only the quinone pool. In heliobacteria, Green sulfur, and Green non-sulfur bacteria, NADH is formed using the protein
1592:. In organisms that use carbon compounds as electron donors, the ATP consumed is accounted for by fermentation of the carbon substrate. The hydrogen produced during fermentation is actually what drives respiration during sulfate reduction. 565:. The metabolic diversity and ability of prokaryotes to use a large variety of organic compounds arises from the much deeper evolutionary history and diversity of prokaryotes, as compared to eukaryotes. It is also noteworthy that the 2225:, which use ferrous iron to produce NADH for autotrophic carbon dioxide fixation. Biochemically, aerobic iron oxidation is a very energetically poor process which therefore requires large amounts of iron to be oxidized by the enzyme 2327:
Electron and proton cycling are very complex but as a net result only one proton is translocated across the membrane per molecule of ammonia oxidized. Nitrite oxidation is much simpler, with nitrite being oxidized by the enzyme
386:
obtain energy from light, carbon and reducing equivalents for biosynthetic reactions from organic compounds. Some species are strictly heterotrophic, many others can also fix carbon dioxide and are mixotrophic. Examples:
438:
Some microbes are heterotrophic (more precisely chemoorganoheterotrophic), using organic compounds as both carbon and energy sources. Heterotrophic microbes live off of nutrients that they scavenge from living hosts (as
2716:, responsible for nitrogen fixation, is very sensitive to oxygen which will inhibit it irreversibly, all nitrogen-fixing organisms must possess some mechanism to keep the concentration of oxygen low. Examples include: 479:
bacteria can be viewed as heterotrophic parasites of humans or the other eukaryotic species they affect. Heterotrophic microbes are extremely abundant in nature and are responsible for the breakdown of large organic
1622:) as an electron acceptor to produce acetate, the same electron donors and acceptors used in methanogenesis (see above). Bacteria that can autotrophically synthesize acetate are called homoacetogens. Carbon dioxide 1062:
as only carbon source. The biochemistry of this process is quite different from that of the carbon dioxide-reducing methanogens. Lastly, a third group of methanogens produce both methane and carbon dioxide from
2291:). Both of these processes are extremely energetically poor leading to very slow growth rates for both types of organisms. Biochemically, ammonia oxidation occurs by the stepwise oxidation of ammonia to 92:
strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's
2561:) can also be used by some organisms. Phylogenetically, all oxygenic photosynthetic bacteria are Cyanobacteria, while anoxygenic photosynthetic bacteria belong to the purple bacteria (Pseudomonadota), 2399:
processes. Anammox has also been shown to have widespread occurrence in anaerobic aquatic systems and has been speculated to account for approximately 50% of nitrogen gas production in the ocean.
539:. These basic pathways are well conserved because they are also involved in biosynthesis of many conserved building blocks needed for cell growth (sometimes in reverse direction). However, many 1013:
gradient across the outer membrane thereby driving ATP synthesis. Several types of methanogenesis occur, differing in the starting compounds oxidized. Some methanogens reduce carbon dioxide (CO
2604:
As befits the large diversity of photosynthetic bacteria, there are many different mechanisms by which light is converted into energy for metabolism. All photosynthetic organisms locate their
1505:) are capable of sulfur disproportionation (splitting one compound into two different compounds, in this case an electron donor and an electron acceptor) using elemental sulfur (S), sulfite ( 1087:) with the acetate being split between the two carbons. These acetate-cleaving organisms are the only chemoorganoheterotrophic methanogens. All autotrophic methanogens use a variation of the 1363:) reduce nitrate completely. Complete denitrification is an environmentally significant process because some intermediates of denitrification (nitric oxide and nitrous oxide) are important 2620:(Green sulfur and non-sulfur bacteria), or the cytoplasmic membrane itself (heliobacteria). Different photosynthetic bacteria also contain different photosynthetic pigments, such as 2354:
Anammox stands for anaerobic ammonia oxidation and the organisms responsible were relatively recently discovered, in the late 1990s. This form of metabolism occurs in members of the
2229:
to facilitate the formation of proton motive force. Like sulfur oxidation, reverse electron flow must be used to form the NADH used for carbon dioxide fixation via the Calvin cycle.
1841:
A number of organisms, instead of using inorganic compounds as terminal electron acceptors, are able to use organic compounds to accept electrons from respiration. Examples include:
511:
heterotrophic metabolism is much more versatile than that of eukaryotic organisms, although many prokaryotes share the most basic metabolic models with eukaryotes, e. g. using
2097:). In all cases the energy liberated is transferred to the electron transport chain for ATP and NADH production. In addition to aerobic sulfur oxidation, some organisms (e.g. 2760:
The production and activity of nitrogenases is very highly regulated, both because nitrogen fixation is an extremely energetically expensive process (16–24 ATP are used per
2333:
NADH for carbon dioxide fixation using the Calvin cycle is generated by reverse electron flow, thereby placing a further metabolic burden on an already energy-poor process.
1970:), often inhabit oxic-anoxic interfaces in nature to take advantage of the hydrogen produced by anaerobic fermentative organisms while still maintaining a supply of oxygen. 3288:
van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads; Nielsen, Per H.; Op den Camp, Huub J. M.; Kartal, Boran; Jetten, Mike S. M.; LĂĽcker, Sebastian (2015-12-24).
3136:
Jugder, Bat-Erdene; Welch, Jeffrey; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P. (2013). "Fundamentals and electrochemical applications of -uptake hydrogenases".
1956:. In many organisms, a second cytoplasmic hydrogenase is used to generate reducing power in the form of NADH, which is subsequently used to fix carbon dioxide via the 1685:
ions in anaerobic respiration. While these processes may often be less significant ecologically, they are of considerable interest for bioremediation, especially when
2659:) are photoheterotrophs, meaning that they use organic carbon compounds as a carbon source for growth. Some photosynthetic organisms also fix nitrogen (see below). 3353:
Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra; Han, Ping; Herbold, Craig; Albertsen, Mads; Jehmlich, Nico; Palatinszky, Marton; Vierheilig, Julia (2015-12-24).
1681:
Although ferric iron is the most prevalent inorganic electron acceptor, a number of organisms (including the iron-reducing bacteria mentioned above) can use other
4644: 3897: 2712:
Nitrogen fixation can be found distributed throughout nearly all bacterial lineages and physiological classes but is not a universal property. Because the enzyme
1650:, ending in oxygen or nitrate, except that in ferric iron-reducing organisms the final enzyme in this system is a ferric iron reductase. Model organisms include 1646:) is a widespread anaerobic terminal electron acceptor both for autotrophic and heterotrophic organisms. Electron flow in these organisms is similar to those in 1125:(hydrogen-using) methanogen is present the use of the hydrogen gas will significantly lower the concentration of hydrogen (down to 10 atm) and thereby shift the 1928:
have been mentioned previously (e.g. sulfate reducing- and acetogenic bacteria), the chemical energy of hydrogen can be used in the aerobic Knallgas reaction:
1107:
that, on its own, would be energetically unfavorable. The best studied example of this process is the oxidation of fermentative end products (such as acetate,
819:. Several other less common substrates may also be used for metabolism, all of which lack carbon-carbon bonds. Examples of methylotrophs include the bacteria 4788: 3715: 2936:
Ishimoto M, Koyama J, Nagai Y (September 1954). "Biochemical Studies on Sulfate-Reducing Bacteria: IV. The Cytochrome System of Sulfate-Reducing Bacteria".
2504:
can also be applied to chloroplasts. In addition to oxygenic photosynthesis, many bacteria can also photosynthesize anaerobically, typically using sulfide (
938:
In addition to aerobic methylotrophy, methane can also be oxidized anaerobically. This occurs by a consortium of sulfate-reducing bacteria and relatives of
2365:") and involves the coupling of ammonia oxidation to nitrite reduction. As oxygen is not required for this process, these organisms are strict anaerobes. 4858: 2820:
Tang, K.-H., Tang, Y. J., Blankenship, R. E. (2011). "Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications"
2221:) live at the oxic-anoxic interfaces and are microaerophiles. The third type of iron-oxidizing microbes are anaerobic photosynthetic bacteria such as 57: 44: 4395: 3233:"Isolation and Characterization of a Genetically Tractable Photoautotrophic Fe(II)-Oxidizing Bacterium, Rhodopseudomonas palustris Strain TIE-1" 2643:
Biochemically, anoxygenic photosynthesis is very different from oxygenic photosynthesis. Cyanobacteria (and by extension, chloroplasts) use the
4868: 4596: 3725: 3493: 2093:. Some organisms, however, accomplish the same oxidation using a reversal of the APS reductase system used by sulfate-reducing bacteria (see 629:
instead of oxygen as a terminal electron acceptor. This means that these organisms do not use an electron transport chain to oxidize NADH to
4873: 2693:. Throughout all of nature, only specialized bacteria and Archaea are capable of nitrogen fixation, converting dinitrogen gas into ammonia ( 1351:) only produce nitrate reductase and therefore can accomplish only the first reduction leading to the accumulation of nitrite. Others (e.g. 4430: 547:
utilize alternative metabolic pathways other than glycolysis and the citric acid cycle. A well-studied example is sugar metabolism via the
611:
that may be used. As discussed below, the use of terminal electron acceptors other than oxygen has important biogeochemical consequences.
5061: 246:
obtain energy from light and carbon from the fixation of carbon dioxide, using reducing equivalents from inorganic compounds. Examples:
4478: 4814: 4637: 3890: 2809: 1674:
as a carbon source, there is significant interest in using these organisms as bioremediation agents in ferric iron-rich contaminated
4150: 2135: 2640:
in Cyanobacteria and chlorosomes in Green sulfur and non-sulfur bacteria), allowing for increased efficiency in light utilization.
651:
for the proper functioning of normal metabolic pathways (e.g. glycolysis). As oxygen is not required, fermentative organisms are
569:, the small membrane-bound intracellular organelle that is the site of eukaryotic oxygen-using energy metabolism, arose from the 4893: 4606: 4473: 4185: 2396: 1405: 676: 5151: 2963:
Mizuno O, Li YY, Noike T (May 1998). "The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion".
2655:
Most photosynthetic microbes are autotrophic, fixing carbon dioxide via the Calvin cycle. Some photosynthetic bacteria (e.g.
2605: 2180: 1042: 687:
to form ATP. As a result of the need to produce high energy phosphate-containing organic compounds (generally in the form of
5278: 4923: 1231:
can use either oxygen or alternative terminal electron acceptors for respiration depending on the environmental conditions.
496:
which are generally indigestible to larger animals. Generally, the oxidative breakdown of large polymers to carbon dioxide (
2726:) where one cell does not photosynthesize but instead fixes nitrogen for its neighbors which in turn provide it with energy 2147:
or under anaerobic conditions. Under aerobic, moderate pH conditions ferrous iron is oxidized spontaneously to the ferric (
5324: 4878: 4630: 3883: 3616: 750:. Instead, some organisms are able to couple the oxidation of low-energy organic compounds directly to the formation of a 4756: 552: 475:(predators of other bacteria which are killed and used by cooperating swarms of many single cells of Myxobacteria). Most 3537:
Op den Camp HJ (February 2006). "Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria".
2317: 1489: 1088: 5113: 4004: 3823: 2186: 1907: 782:. These reactions are extremely low-energy yielding. Humans and other higher animals also use fermentation to produce 620: 363:
obtain energy, carbon, and hydrogen for biosynthetic reactions from organic compounds. Examples: most bacteria, e. g.
2840: 2673:
Nitrogen is an element required for growth by all biological systems. While extremely common (80% by volume) in the
1449:
Many sulfate reducers are organotrophic, using carbon compounds such as lactate and pyruvate (among many others) as
926: 5178: 4898: 4102: 3999: 2217: 2099: 2048: 1216: 608: 122: 945:
working syntrophically (see below). Little is currently known about the biochemistry and ecology of this process.
229:
obtain energy from the oxidation of inorganic compounds and carbon from the fixation of carbon dioxide. Examples:
49: 5359: 4971: 4863: 4721: 4706: 4701: 4092: 2572: 1400: 562: 355: 5118: 3192:. Purification, Characterization, and Molecular Biology of a Heterodimeric Member of the Sulfite Oxidase Family" 5454: 5349: 5344: 5314: 4581: 4463: 2743: 2629: 2439: 1353: 1131: 600: 497: 3114: 1121:. Alone, the oxidation of butyrate to acetate and hydrogen gas is energetically unfavorable. However, when a 786:
from excess NADH, although this is not the major form of metabolism as it is in fermentative microorganisms.
516: 5193: 5056: 4966: 4834: 4716: 4686: 4543: 4508: 4228: 4195: 4170: 2205: 1652: 1589: 1409: 998: 768: 692: 591:. Therefore, it is not surprising that all mitrochondriate eukaryotes share metabolic properties with these 234: 1383:
treatment where it is used to reduce the amount of nitrogen released into the environment thereby reducing
5339: 5283: 5218: 5081: 5016: 4951: 4611: 4513: 4301: 4009: 3989: 2752: 2445: 2329: 2203:. The second type of microbes oxidize ferrous iron at near-neutral pH. These micro-organisms (for example 2175: 2053: 1854: 1388: 1103:
Syntrophy, in the context of microbial metabolism, refers to the pairing of multiple species to achieve a
778: 528: 3590: 451:). Microbial metabolism is the main contribution for the bodily decay of all organisms after death. Many 5243: 5188: 5051: 5036: 4819: 4776: 4766: 4761: 4518: 4498: 4354: 4344: 4286: 4281: 4117: 3969: 2562: 2362: 2309: 2265:). Nitrification is actually the net result of two distinct processes: oxidation of ammonia to nitrite ( 2058: 1236: 893: 684: 1441:) is produced as a metabolic end product. For sulfate reduction electron donors and energy are needed. 640:
and therefore must have an alternative method of using this reducing power and maintaining a supply of
5369: 5334: 5329: 5253: 5248: 5203: 5101: 5071: 5066: 4918: 4781: 4771: 4155: 3944: 3788: 3654: 3476:
Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008). "Biological Removal of Nitrogen from Wastewater".
3434: 3366: 3301: 3244: 3145: 3070: 3015: 2972: 2609: 1359: 1228: 1224: 1188: 1135: 1126: 672: 660: 596: 469:(an intracellular parasite of other bacteria, causing death of its victims) and Myxobacteria such as 3875: 1138:
over geologic time scales, releasing it back to the biosphere in usable forms such as methane and CO
1058:) as a substrate for methanogenesis. These are chemoorganotrophic, but still autotrophic in using CO 910: 401: 5449: 5419: 5394: 5258: 5228: 5173: 5086: 4976: 4961: 4908: 4741: 4676: 4558: 4488: 4019: 2781: 2408: 2211: 1712: 931: 827: 755: 751: 716: 656: 230: 171: 4622: 3744:
Bryant DA, Frigaard NU (November 2006). "Prokaryotic photosynthesis and phototrophy illuminated".
2492:. Along with plants these microbes are responsible for all biological generation of oxygen gas on 800: 548: 5430: 5379: 5374: 5183: 5146: 4844: 4809: 4666: 4591: 4493: 4425: 4415: 4349: 4296: 4107: 4052: 4014: 3939: 3696: 3572: 3511: 3458: 3039: 2613: 2601:, a light-driven proton pump. However, there are no known Archaea that carry out photosynthesis. 2200: 2044: 1966: 1868: 1647: 1467: 1220: 963: 952: 652: 316: 184: 4888: 2500:
were derived from a lineage of the Cyanobacteria, the general principles of metabolism in these
1408:
is a relatively energetically poor process used by many Gram-negative bacteria found within the
1164: 3419: 174:(hydrogen atoms or electrons) used either in energy conservation or in biosynthetic reactions: 5319: 5288: 5076: 4903: 4711: 4576: 4553: 4410: 4291: 4067: 3979: 3964: 3949: 3929: 3845: 3804: 3761: 3721: 3688: 3670: 3564: 3499: 3489: 3450: 3400: 3382: 3335: 3317: 3270: 3213: 3161: 3096: 3031: 2918: 2910: 2871: 2805: 2709:
and their nitrogen-fixing partners to provide the nitrogen needed by these plants for growth.
2690: 2668: 2644: 2598: 1342: 1338: 1285: 1104: 664: 520: 351: 238: 216: 667:
fermentative organisms usually do not have a complete citric acid cycle. Instead of using an
5273: 5136: 5128: 5046: 4928: 4913: 4849: 4829: 4746: 4736: 4731: 4696: 4528: 4468: 4339: 4140: 4082: 3994: 3954: 3835: 3796: 3753: 3678: 3662: 3554: 3546: 3481: 3442: 3390: 3374: 3325: 3309: 3260: 3252: 3203: 3153: 3086: 3078: 3023: 2980: 2945: 2902: 2863: 2785: 2633: 2585:(Low %G+C Gram positives). In addition to these organisms, some microbes (e.g. the Archaeon 2449: 2222: 2159: 2065:
gradient to produce NADH. Biochemically, reduced sulfur compounds are converted to sulfite (
1894: 1872: 1501: 1495: 1425: 1414: 1212: 1193: 1180: 1122: 969: 626: 561:. Moreover, there is a third alternative sugar-catabolic pathway used by some bacteria, the 395: 365: 273: 156: 94: 2472:
for electron transfer during photosynthesis. Phototrophic bacteria are found in the phyla "
2199:. These microbes oxidize iron in environments that have a very low pH and are important in 997:. The biochemistry of methanogenesis is unique in nature in its use of a number of unusual 5409: 5268: 5238: 5233: 5223: 5156: 5141: 5021: 5001: 4883: 4751: 4657: 4548: 4458: 4400: 4385: 3984: 3910: 3523: 2949: 2355: 2090: 1817: 1248: 897: 747: 310:
obtain energy from the oxidation of inorganic compounds, but cannot fix carbon dioxide (CO
102: 3182:
Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (May 2000).
3792: 3658: 3438: 3370: 3305: 3248: 3149: 3074: 3019: 2999: 2976: 2867: 2444:
Many microbes (phototrophs) are capable of using light as a source of energy to produce
5389: 5213: 5166: 5096: 5091: 4986: 4853: 4726: 4533: 4523: 4503: 4380: 4306: 4271: 4210: 4087: 4042: 3934: 3683: 3642: 3395: 3354: 3330: 3289: 3265: 3232: 2736: 2481: 2469: 2140: 1862: 1450: 1384: 1364: 1117: 981: 975: 948: 592: 501: 407: 377: 140: 3800: 2984: 2906: 2636:. Some groups of organisms contain more specialized light-harvesting structures (e.g. 222:
In practice, these terms are almost freely combined. Typical examples are as follows:
5443: 5414: 4390: 4364: 4321: 4311: 4266: 4253: 4233: 4125: 3959: 3914: 3700: 3091: 3058: 2637: 2587: 2582: 2485: 2473: 2292: 2062: 2013: 1978:
Sulfur oxidation involves the oxidation of reduced sulfur compounds (such as sulfide
1420: 1309: 1203:) can also use an unrelated cytochrome bd complex as a respiratory terminal oxidase. 1172: 1168: 1152: 957: 921: 759: 587: 570: 566: 419: 268: 264: 247: 98: 81: 17: 3256: 3082: 2174:). There are three distinct types of ferrous iron-oxidizing microbes. The first are 951:
is the biological production of methane. It is carried out by methanogens, strictly
5399: 5384: 5041: 5011: 4956: 4839: 4804: 4681: 4180: 3576: 3462: 3043: 2890: 2577: 2501: 2453: 2281: 1957: 1690: 1686: 1601: 1305: 1156: 1006: 993: 987: 915: 832: 821: 812: 808: 740: 720: 712: 668: 465: 425: 288: 2804:
Morris, J. et al. (2019). "Biology: How Life Works", 3rd edition, W. H. Freeman.
1009:. These cofactors are responsible (among other things) for the establishment of a 1465:) as an electron donor. Some unusual autotrophic sulfate-reducing bacteria (e.g. 4691: 4420: 4238: 4200: 4175: 4165: 4130: 4077: 4057: 3485: 2713: 2625: 2621: 2593: 2497: 2477: 2287: 2226: 2195: 1949: 1667: 1199: 816: 783: 736: 732: 557: 508: 413: 389: 328: 190: 151: 1223:
use other electron acceptors. These inorganic compounds release less energy in
896:. As oxygen is required for this process, all (conventional) methanotrophs are 5404: 4981: 4946: 4586: 4538: 4483: 4453: 4359: 4276: 4220: 4097: 4047: 3757: 3666: 3027: 2854:
DiMarco AA, Bobik TA, Wolfe RS (1990). "Unusual coenzymes of methanogenesis".
2674: 2649: 2617: 2567: 2421: 2338: 2285:) and oxidation of nitrite to nitrate by the nitrite-oxidizing bacteria (e.g. 1953: 1380: 1176: 1160: 1002: 939: 724: 688: 575: 512: 471: 460: 452: 448: 440: 211: 203: 179: 113: 89: 3674: 3386: 3321: 3208: 3183: 3165: 2914: 2828: 166:– carbon is obtained from both organic compounds and by fixing carbon dioxide 5309: 5263: 4991: 4435: 4405: 4205: 4160: 4135: 4072: 4062: 4037: 4029: 3974: 3004:
sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate"
2731: 2489: 2416: 2391: 2366: 2321: 2313: 2039: 1925: 1849: 1697: 1682: 1658: 1472: 1376: 763: 680: 581: 485: 456: 334: 322: 162: 135: 3849: 3808: 3765: 3692: 3568: 3503: 3454: 3404: 3339: 3274: 3217: 3100: 3035: 35: 3840: 2922: 2875: 2468:
are particularly significant because they are oxygenic, using water as an
5364: 5293: 4824: 4331: 4243: 4190: 4145: 2722: 2343: 2191: 1845: 1761: 1745: 1729: 1368: 1167:. Most of the known eukaryotes carry out aerobic metabolism within their 1112: 804: 696: 695:
to produce many different reduced metabolic by-products, often including
540: 476: 444: 371: 127:
All microbial metabolisms can be arranged according to three principles:
3378: 3313: 2772:
fixed) and due to the extreme sensitivity of the nitrogenase to oxygen.
1924:) as a source of energy. While several mechanisms of anaerobic hydrogen 5354: 5161: 5031: 5026: 4653: 4601: 4261: 3906: 3550: 3157: 2735:) with plants that supply oxygen to the bacteria bound to molecules of 2461: 2419:
after performing unrelated experiments and named its bacterial species
2267: 2238: 1783: 1767: 1675: 1671: 1573: 1347: 1289: 1254: 1184: 1108: 1064: 942: 901: 836: 773: 728: 544: 536: 524: 481: 117:
Flow chart to determine the metabolic characteristics of microorganisms
88:) it needs to live and reproduce. Microbes use many different types of 3559: 2316:, followed by the oxidation of hydroxylamine to nitrite by the enzyme 2061:, an energy-requiring process that pushes the electrons against their 625:
Fermentation is a specific type of heterotrophic metabolism that uses
2891:"Evolution of energetic metabolism: the respiration-early hypothesis" 2706: 2597:, among others) can utilize light to produce energy using the enzyme 1952:
causing proton pumping via electron transfer to various quinones and
1801: 1010: 655:. Many organisms can use fermentation under anaerobic conditions and 604: 493: 489: 85: 3779:
McFadden G (1999). "Endosymbiosis and evolution of the plant cell".
3059:"Thiosulfate Disproportionation by Desulfotomaculum thermobenzoicum" 2115:) as a terminal electron acceptor and therefore grow anaerobically. 1606:
Acetogenesis is a type of microbial metabolism that uses hydrogen (
1001:
to sequentially reduce methanogenic substrates to methane, such as
3446: 2493: 2465: 2457: 1623: 1372: 112: 3617:"Bacteria that eats metal accidentally discovered by scientists" 1883: 1288:. Denitrification involves the stepwise reduction of nitrate to 1270: 532: 4626: 3879: 2628:, allowing them to take advantage of different portions of the 851:) as a carbon source by oxidizing it sequentially to methanol ( 130:
1. How the organism obtains carbon for synthesizing cell mass:
835:
are a specific type of methylotroph that are also able to use
29: 2517:) as an electron donor to produce sulfate. Inorganic sulfur ( 2336:
In 2015, two groups independently showed the microbial genus
1948:
In these organisms, hydrogen is oxidized by a membrane-bound
27:
Biochemical pathways used by microbes to satisfy energy needs
1134:
of these compounds. These reactions help prevent the excess
683:
group is transferred from a high-energy organic compound to
2144: 198:
3. How the organism obtains energy for living and growing:
3591:"Bacteria with a metal diet discovered in dirty glassware" 2143:
is a soluble form of iron that is stable at extremely low
799:
Methylotrophy refers to the ability of an organism to use
762:. Examples of these unusual forms of fermentation include 194:– reducing equivalents are obtained from organic compounds 3418:
Strous M, Fuerst JA, Kramer EH, et al. (July 1999).
2689:) is generally biologically inaccessible due to its high 2616:("Cyanobacteria"), specialized antenna structures called 3643:"Bacterial chemolithoautotrophy via manganese oxidation" 2037:). A classic example of a sulfur-oxidizing bacterium is 1227:, which leads to slower growth rates than aerobes. Many 3822:
Cabello P, Roldán MD, Moreno-Vivián C (November 2004).
2998:
Schink B, Thiemann V, Laue H, Friedrich MW (May 2002).
711:). These reduced organic compounds are generally small 3231:
Jiao Y, Kappler A, Croal LR, Newman DK (August 2005).
1627:
produce acetate, which is secreted as an end product.
1191:
super family, but some members of the Pseudomonadota (
3824:"Nitrate reduction and the nitrogen cycle in archaea" 3478:
Reviews of Environmental Contamination and Toxicology
2608:
within a membrane, which may be invaginations of the
1453:, while others are lithotrophic, using hydrogen gas ( 429:(alternatively to photolithoautotrophy with hydrogen) 3420:"Missing lithotroph identified as new planctomycete" 5302: 5202: 5127: 5000: 4937: 4797: 4665: 4567: 4446: 4373: 4330: 4252: 4219: 4116: 4028: 3922: 746:Not all fermentative organisms use substrate-level 691:-esters) fermentative organisms use NADH and other 97:, and often allow for that microbe to be useful in 3290:"Complete nitrification by a single microorganism" 2889:Castresana, Jose; Saraste, Matti (November 1995). 2158:) form and is hydrolyzed abiotically to insoluble 1693:are used as electron acceptors. Examples include: 1596:Acetogenesis – carbon dioxide as electron acceptor 1379:. Denitrification is also important in biological 1029:) using electrons (most often) from hydrogen gas ( 2407:In July 2020 researchers report the discovery of 1662:. Since some ferric iron-reducing bacteria (e.g. 909:(at the level of formaldehyde), using either the 573:of a bacterium related to obligate intracellular 463:, properties also found in some bacteria such as 2841:"Chemolithotrophy | Boundless Microbiology" 1395:Sulfate reduction – sulfate as electron acceptor 3867:Madigan, Michael T.; Martinko, John M. (2005). 3355:"Complete nitrification by Nitrospira bacteria" 675:, ATP in fermentative organisms is produced by 1912:Many organisms are capable of using hydrogen ( 1243:Denitrification – nitrate as electron acceptor 1045:. A second group of methanogens use methanol ( 447:) or find in dead organic matter of all kind ( 4638: 3891: 1618:) as an electron donor and carbon dioxide (CO 935:), depending on the species of methylotroph. 8: 3641:Yu, Hang; Leadbetter, Jared R. (July 2020). 1487:) as an electron donor whereas others (e.g. 659:when oxygen is present. These organisms are 263:) as reducing equivalent = hydrogen donor), 803:as energy sources. These compounds include 4859:Latitudinal gradients in species diversity 4645: 4631: 4623: 3898: 3884: 3876: 3177: 3175: 1991:), inorganic sulfur (S), and thiosulfate ( 1387:. Denitrification can be determined via a 3839: 3739: 3737: 3682: 3558: 3394: 3329: 3264: 3207: 3090: 2829:http://dx.doi.org/10.3389/micb.2011.00165 2720:heterocyst formation (cyanobacteria e.g. 2094: 2077:) and subsequently converted to sulfate ( 183:– reducing equivalents are obtained from 4757:Predator–prey (Lotka–Volterra) equations 4396:Tritrophic interactions in plant defense 3057:Jackson BE, McInerney MJ (August 2000). 1960:. Hydrogen-oxidizing organisms, such as 1882:TMAO is a chemical commonly produced by 60:of all important aspects of the article. 4789:Random generalized Lotka–Volterra model 3714:Gräber, Peter; Milazzo, Giulio (1997). 2797: 1375:to produce nitric acid, a component of 663:. To avoid the overproduction of NADH, 84:obtains the energy and nutrients (e.g. 4597:Herbivore adaptations to plant defense 3519: 3509: 2342:is capable of complete nitrification ( 2237:Nitrification is the process by which 1760:) and selenite reduction to inorganic 1412:, Gram-positive organisms relating to 1253:Denitrification is the utilization of 56:Please consider expanding the lead to 2950:10.1093/oxfordjournals.jbchem.a126495 2412: 7: 4612:Predator avoidance in schooling fish 2043:, a microbe originally described by 1538:) to produce both hydrogen sulfide ( 455:microorganisms are heterotrophic by 350:as reducing equivalent donor), some 5062:Intermediate disturbance hypothesis 2868:10.1146/annurev.bi.59.070190.002035 1837:Organic terminal electron acceptors 1215:during respiration use oxygen as a 549:keto-deoxy-phosphogluconate pathway 215:– energy is obtained from external 4815:Ecological effects of biodiversity 3480:. Vol. 192. pp. 159–95. 1631:Other inorganic electron acceptors 531:and reducing power in the form of 527:, producing energy in the form of 434:Heterotrophic microbial metabolism 25: 4151:Generalist and specialist species 2279:) by nitrosifying bacteria (e.g. 2136:Acidophiles in acid mine drainage 1171:which is an organelle that had a 4874:Occupancy–abundance relationship 900:. Reducing power in the form of 34: 4894:Relative abundance distribution 4607:Plant defense against herbivory 4474:Competitive exclusion principle 4186:Mesopredator release hypothesis 3869:Brock Biology of Microorganisms 3257:10.1128/AEM.71.8.4487-4496.2005 3083:10.1128/AEM.66.8.3650-3653.2000 2606:photosynthetic reaction centers 2397:industrial wastewater treatment 1406:Dissimilatory sulfate reduction 677:substrate-level phosphorylation 579:, and also to plant-associated 519:) for sugar metabolism and the 304:) as reducing equivalent donor) 207:– energy is obtained from light 48:may be too short to adequately 4479:Consumer–resource interactions 2895:Trends in Biochemical Sciences 2784:, a minority of bacteria with 2632:and thereby inhabit different 2181:Acidithiobacillus ferrooxidans 1043:interspecies hydrogen transfer 927:ribulose monophosphate pathway 58:provide an accessible overview 1: 5325:Biological data visualization 5152:Environmental niche modelling 4879:Population viability analysis 3801:10.1016/S1369-5266(99)00025-4 3002:Desulfotignum phosphitoxidans 2985:10.1016/S0043-1354(97)00372-2 2907:10.1016/s0968-0004(00)89098-2 1468:Desulfotignum phosphitoxidans 233:, sulfur-oxidizing bacteria, 4810:Density-dependent inhibition 2729:root nodule symbioses (e.g. 2424:Manganitrophus noduliformans 2318:hydroxylamine oxidoreductase 1490:Desulfovibrio sulfodismutans 1095:and obtain cellular carbon. 1089:reductive acetyl-CoA pathway 790:Special metabolic properties 170:2. How the organism obtains 5279:Liebig's law of the minimum 5114:Resource selection function 4005:Metabolic theory of ecology 3486:10.1007/978-0-387-71724-1_5 2750:very fast metabolism (e.g. 2253:) is converted to nitrate ( 2187:Leptospirillum ferrooxidans 1908:Hydrogen oxidizing bacteria 892:initially using the enzyme 621:Fermentation (biochemistry) 5471: 5179:Niche apportionment models 4899:Relative species abundance 4103:Primary nutritional groups 4000:List of feeding behaviours 3720:. Birkhäuser. p. 80. 2741:anaerobic lifestyle (e.g. 2666: 2437: 2428:Ramlibacter lithotrophicus 2218:Mariprofundus ferrooxydans 2133: 2100:Thiobacillus denitrificans 2049:environmental microbiology 1905: 1599: 1496:Desulfocapsa thiozymogenes 1398: 1246: 1217:terminal electron acceptor 618: 609:terminal electron acceptor 155:– carbon is obtained from 139:– carbon is obtained from 123:Primary nutritional groups 120: 5428: 5360:Ecosystem based fisheries 4972:Interspecific competition 4864:Minimum viable population 4722:Maximum sustainable yield 4707:Intraspecific competition 4702:Effective population size 4582:Anti-predator adaptations 4093:Photosynthetic efficiency 3758:10.1016/j.tim.2006.09.001 3667:10.1038/s41586-020-2468-5 3028:10.1007/s00203-002-0402-x 2822:Frontiers in Microbiology 2573:green non-sulfur bacteria 2047:, one of the founders of 1659:Geobacter metallireducens 1502:Desulfocapsa sulfoexigens 1401:Sulfate-reducing bacteria 905:completely oxidized to CO 563:pentose phosphate pathway 356:sulfate-reducing bacteria 5350:Ecological stoichiometry 5315:Alternative stable state 3871:. Pearson Prentice Hall. 3209:10.1074/jbc.275.18.13202 2744:Clostridium pasteurianum 2630:electromagnetic spectrum 2440:Phototrophic prokaryotes 1878:Reductive dechlorination 1354:Paracoccus denitrificans 888:), and carbon dioxide CO 601:electron transport chain 80:is the means by which a 5194:Ontogenetic niche shift 5057:Ideal free distribution 4967:Ecological facilitation 4717:Malthusian growth model 4687:Consumer-resource model 4544:Paradox of the plankton 4509:Energy systems language 4229:Chemoorganoheterotrophy 4196:Optimal foraging theory 4171:Heterotrophic nutrition 2411:bacterial culture that 2178:, such as the bacteria 1653:Shewanella putrefaciens 1410:Thermodesulfobacteriota 1136:sequestration of carbon 1115:) by organisms such as 769:Propionigenium modestum 384:photoorganoheterotrophs 361:chemoorganoheterotrophs 235:iron-oxidizing bacteria 5340:Ecological forecasting 5284:Marginal value theorem 5082:Landscape epidemiology 5017:Cross-boundary subsidy 4952:Biological interaction 4302:Microbial intelligence 3990:Green world hypothesis 3237:Appl Environ Microbiol 3063:Appl Environ Microbiol 2753:Azotobacter vinelandii 2330:nitrite oxidoreductase 2206:Gallionella ferruginea 1389:nitrate reductase test 779:Oxalobacter formigenes 308:chemolithoheterotrophs 286:) as hydrogen donor), 118: 5345:Ecological humanities 5244:Ecological energetics 5189:Niche differentiation 5052:Habitat fragmentation 4820:Ecological extinction 4767:Small population size 4519:Feed conversion ratio 4499:Ecological succession 4431:San Francisco Estuary 4345:Ecological efficiency 4287:Microbial cooperation 3841:10.1099/mic.0.27303-0 3190:Thiobacillus novellus 2563:green sulfur bacteria 2409:chemolithoautotrophic 2363:Brocadia anammoxidans 2310:ammonia monooxygenase 2134:Further information: 2059:reverse electron flow 2051:. Another example is 1237:anaerobic respiration 1229:facultative anaerobes 1207:Anaerobic respiration 894:methane monooxygenase 723:, the end product of 661:facultative anaerobes 116: 18:Bacterial metabolisms 5370:Evolutionary ecology 5335:Ecological footprint 5330:Ecological economics 5254:Ecological threshold 5249:Ecological indicator 5119:Source–sink dynamics 5072:Land change modeling 5067:Insular biogeography 4919:Species distribution 4658:Modelling ecosystems 4317:Microbial metabolism 4156:Intraguild predation 3945:Biogeochemical cycle 3911:Modelling ecosystems 3781:Curr Opin Plant Biol 3188:Oxidoreductase from 3184:"Sulfite:Cytochrome 2610:cytoplasmic membrane 2550:) and ferrous iron ( 1871:(DMSO) reduction to 1861:(TMAO) reduction to 1567:Energy for reduction 1517:), and thiosulfate ( 1360:Pseudomonas stutzeri 1225:cellular respiration 244:photolithoautotrophs 227:chemolithoautotrophs 172:reducing equivalents 99:industrial processes 78:Microbial metabolism 5420:Theoretical ecology 5395:Natural environment 5259:Ecosystem diversity 5229:Ecological collapse 5219:Bateman's principle 5174:Limiting similarity 5087:Landscape limnology 4909:Species homogeneity 4747:Population modeling 4742:Population dynamics 4559:Trophic state index 3793:1999COPB....2..513M 3659:2020Natur.583..453Y 3439:1999Natur.400..446S 3379:10.1038/nature16461 3371:2015Natur.528..504D 3314:10.1038/nature16459 3306:2015Natur.528..555V 3249:2005ApEnM..71.4487J 3150:2013RSCAd...3.8142J 3115:"knallgas reaction" 3075:2000ApEnM..66.3650J 3020:2002ArMic.177..381S 2977:1998WatRe..32.1626M 2782:Lipophilic bacteria 2614:thylakoid membranes 2403:Manganese oxidation 2212:Leptothrix ochracea 1962:Cupriavidus necator 1325:), and dinitrogen ( 1284:) and some organic 1221:anaerobic organisms 1146:Aerobic respiration 756:sodium-motive force 752:proton motive force 727:. Examples include 657:aerobic respiration 271:(hydrogen sulfide ( 231:Nitrifying bacteria 185:inorganic compounds 101:or responsible for 5431:Outline of ecology 5380:Industrial ecology 5375:Functional ecology 5239:Ecological deficit 5184:Niche construction 5147:Ecosystem engineer 4924:Species–area curve 4845:Introduced species 4660:: Other components 4592:Deimatic behaviour 4494:Ecological network 4426:North Pacific Gyre 4411:hydrothermal vents 4350:Ecological pyramid 4297:Microbial food web 4108:Primary production 4053:Foundation species 3834:(Pt 11): 3527–46. 3551:10.1042/BST0340174 3158:10.1039/c3ra22668a 3117:. Oxford Reference 2856:Annu. Rev. Biochem 2677:, dinitrogen gas ( 2612:(Pseudomonadota), 2201:acid mine drainage 2045:Sergei Winogradsky 1967:Ralstonia eutropha 1902:Hydrogen oxidation 1869:Dimethyl sulfoxide 1664:G. metallireducens 1648:electron transport 1286:electron acceptors 1189:cytochrome oxidase 964:Methanocaldococcus 314:). Examples: some 217:chemical compounds 119: 5437: 5436: 5320:Balance of nature 5077:Landscape ecology 4962:Community ecology 4904:Species diversity 4840:Indicator species 4835:Gradient analysis 4712:Logistic function 4620: 4619: 4577:Animal coloration 4554:Trophic mutualism 4292:Microbial ecology 4083:Photoheterotrophs 4068:Myco-heterotrophy 3980:Ecosystem ecology 3965:Carrying capacity 3930:Abiotic component 3727:978-3-7643-5295-0 3653:(7816): 453–458. 3539:Biochem Soc Trans 3495:978-0-387-71723-4 3365:(7583): 504–509. 3300:(7583): 555–559. 2691:activation energy 2669:Nitrogen fixation 2663:Nitrogen fixation 2599:bacteriorhodopsin 2591:or the bacterium 2450:organic compounds 2190:, as well as the 1343:nitrite reductase 1339:nitrate reductase 1337:) by the enzymes 1213:aerobic organisms 1181:aerobic organisms 1105:chemical reaction 864:), formaldehyde ( 521:citric acid cycle 352:Knallgas-bacteria 239:Knallgas-bacteria 157:organic compounds 75: 74: 16:(Redirected from 5462: 5137:Ecological niche 5109:selection theory 4929:Umbrella species 4914:Species richness 4850:Invasive species 4830:Flagship species 4737:Population cycle 4732:Overexploitation 4697:Ecological yield 4647: 4640: 4633: 4624: 4529:Mesotrophic soil 4469:Climax community 4401:Marine food webs 4340:Biomagnification 4141:Chemoorganotroph 3995:Keystone species 3955:Biotic component 3900: 3893: 3886: 3877: 3872: 3854: 3853: 3843: 3819: 3813: 3812: 3776: 3770: 3769: 3746:Trends Microbiol 3741: 3732: 3731: 3711: 3705: 3704: 3686: 3638: 3632: 3631: 3629: 3627: 3612: 3606: 3605: 3603: 3601: 3587: 3581: 3580: 3562: 3534: 3528: 3527: 3521: 3517: 3515: 3507: 3473: 3467: 3466: 3424: 3415: 3409: 3408: 3398: 3350: 3344: 3343: 3333: 3285: 3279: 3278: 3268: 3228: 3222: 3221: 3211: 3202:(18): 13202–12. 3179: 3170: 3169: 3133: 3127: 3126: 3124: 3122: 3111: 3105: 3104: 3094: 3054: 3048: 3047: 2995: 2989: 2988: 2960: 2954: 2953: 2933: 2927: 2926: 2886: 2880: 2879: 2851: 2845: 2844: 2837: 2831: 2818: 2812: 2802: 2786:lipid metabolism 2771: 2770: 2769: 2704: 2703: 2702: 2688: 2687: 2686: 2560: 2559: 2558: 2549: 2548: 2547: 2539: 2538: 2529:), thiosulfate ( 2528: 2527: 2526: 2516: 2514: 2513: 2389: 2388: 2387: 2379: 2378: 2308:) by the enzyme 2307: 2305: 2304: 2278: 2276: 2275: 2264: 2263: 2262: 2252: 2251: 2250: 2223:Rhodopseudomonas 2173: 2172: 2171: 2160:ferric hydroxide 2157: 2156: 2155: 2129: 2128: 2127: 2114: 2113: 2112: 2089:) by the enzyme 2088: 2087: 2086: 2076: 2075: 2074: 2036: 2035: 2034: 2026: 2025: 2011: 2010: 2009: 2001: 2000: 1990: 1988: 1987: 1974:Sulfur oxidation 1923: 1922: 1921: 1895:Chemolithotrophy 1890:Chemolithotrophy 1873:dimethyl sulfide 1831: 1830: 1829: 1815: 1814: 1813: 1797: 1796: 1795: 1781: 1780: 1779: 1759: 1758: 1757: 1743: 1742: 1741: 1725: 1724: 1723: 1710: 1709: 1708: 1666:) can use toxic 1645: 1644: 1643: 1617: 1616: 1615: 1587: 1586: 1585: 1562: 1561: 1560: 1550: 1548: 1547: 1537: 1536: 1535: 1527: 1526: 1516: 1515: 1514: 1486: 1485: 1484: 1464: 1463: 1462: 1440: 1438: 1437: 1426:Hydrogen sulfide 1418:or the archaeon 1415:Desulfotomaculum 1367:that react with 1365:greenhouse gases 1336: 1335: 1334: 1324: 1322: 1321: 1303: 1302: 1301: 1283: 1282: 1281: 1268: 1267: 1266: 1239:are also known. 1123:hydrogenotrophic 1086: 1085: 1084: 1077: 1076: 1057: 1055: 1054: 1040: 1039: 1038: 1028: 1027: 1026: 970:Methanobacterium 955:Archaea such as 898:obligate aerobes 887: 886: 885: 876: 874: 873: 863: 861: 860: 850: 849: 848: 776:fermentation by 766:fermentation by 710: 709: 708: 650: 649: 648: 639: 638: 637: 607:is not the only 595:. Most microbes 396:Rhodopseudomonas 366:Escherichia coli 349: 348: 347: 303: 302: 301: 285: 282: 281: 262: 260: 259: 95:ecological niche 70: 67: 61: 38: 30: 21: 5470: 5469: 5465: 5464: 5463: 5461: 5460: 5459: 5455:Trophic ecology 5440: 5439: 5438: 5433: 5424: 5410:Systems ecology 5298: 5269:Extinction debt 5234:Ecological debt 5224:Bioluminescence 5205: 5198: 5167:marine habitats 5142:Ecological trap 5123: 5003: 4996: 4939: 4933: 4889:Rapoport's rule 4884:Priority effect 4825:Endemic species 4793: 4752:Population size 4668: 4661: 4651: 4621: 4616: 4569: 4563: 4549:Trophic cascade 4459:Bioaccumulation 4442: 4369: 4326: 4248: 4215: 4112: 4024: 3985:Ecosystem model 3918: 3904: 3866: 3863: 3861:Further reading 3858: 3857: 3821: 3820: 3816: 3778: 3777: 3773: 3743: 3742: 3735: 3728: 3713: 3712: 3708: 3640: 3639: 3635: 3625: 3623: 3615:Woodyatt, Amy. 3614: 3613: 3609: 3599: 3597: 3589: 3588: 3584: 3545:(Pt 1): 174–8. 3536: 3535: 3531: 3518: 3508: 3496: 3475: 3474: 3470: 3433:(6743): 446–9. 3422: 3417: 3416: 3412: 3352: 3351: 3347: 3287: 3286: 3282: 3230: 3229: 3225: 3181: 3180: 3173: 3135: 3134: 3130: 3120: 3118: 3113: 3112: 3108: 3056: 3055: 3051: 2997: 2996: 2992: 2962: 2961: 2957: 2935: 2934: 2930: 2901:(11): 443–448. 2888: 2887: 2883: 2853: 2852: 2848: 2839: 2838: 2834: 2819: 2815: 2803: 2799: 2794: 2778: 2768: 2765: 2764: 2763: 2761: 2701: 2698: 2697: 2696: 2694: 2685: 2682: 2681: 2680: 2678: 2671: 2665: 2557: 2555: 2554: 2553: 2551: 2546: 2543: 2542: 2541: 2537: 2534: 2533: 2532: 2530: 2525: 2522: 2521: 2520: 2518: 2512: 2509: 2508: 2507: 2505: 2442: 2436: 2405: 2386: 2383: 2382: 2381: 2377: 2374: 2373: 2372: 2370: 2356:Planctomycetota 2352: 2303: 2300: 2299: 2298: 2296: 2274: 2271: 2270: 2269: 2266: 2261: 2258: 2257: 2256: 2254: 2249: 2246: 2245: 2244: 2242: 2235: 2170: 2167: 2166: 2165: 2163: 2154: 2152: 2151: 2150: 2148: 2138: 2132: 2126: 2124: 2123: 2122: 2120: 2111: 2108: 2107: 2106: 2104: 2103:) use nitrate ( 2091:sulfite oxidase 2085: 2082: 2081: 2080: 2078: 2073: 2070: 2069: 2068: 2066: 2033: 2030: 2029: 2028: 2024: 2021: 2020: 2019: 2017: 2008: 2005: 2004: 2003: 1999: 1996: 1995: 1994: 1992: 1986: 1983: 1982: 1981: 1979: 1976: 1943: 1939: 1935: 1920: 1917: 1916: 1915: 1913: 1910: 1904: 1892: 1855:Trimethylamine 1839: 1828: 1825: 1824: 1823: 1821: 1818:uranium dioxide 1816:) reduction to 1812: 1809: 1808: 1807: 1805: 1794: 1791: 1790: 1789: 1787: 1782:) reduction to 1778: 1775: 1774: 1773: 1771: 1756: 1753: 1752: 1751: 1749: 1744:) reduction to 1740: 1737: 1736: 1735: 1733: 1722: 1720: 1719: 1718: 1716: 1711:) reduction to 1707: 1705: 1704: 1703: 1701: 1642: 1640: 1639: 1638: 1636: 1633: 1621: 1614: 1611: 1610: 1609: 1607: 1604: 1598: 1584: 1581: 1580: 1579: 1577: 1569: 1559: 1556: 1555: 1554: 1552: 1551:) and sulfate ( 1546: 1543: 1542: 1541: 1539: 1534: 1531: 1530: 1529: 1525: 1522: 1521: 1520: 1518: 1513: 1510: 1509: 1508: 1506: 1483: 1480: 1479: 1478: 1476: 1461: 1458: 1457: 1456: 1454: 1451:electron donors 1447: 1445:Electron donors 1436: 1433: 1432: 1431: 1429: 1403: 1397: 1333: 1330: 1329: 1328: 1326: 1320: 1317: 1316: 1315: 1313: 1300: 1297: 1296: 1295: 1293: 1280: 1278: 1277: 1276: 1274: 1265: 1262: 1261: 1260: 1258: 1251: 1249:Denitrification 1245: 1209: 1148: 1141: 1101: 1094: 1083: 1081: 1080: 1079: 1075: 1072: 1071: 1070: 1068: 1061: 1053: 1050: 1049: 1048: 1046: 1037: 1034: 1033: 1032: 1030: 1025: 1022: 1021: 1020: 1018: 1016: 908: 891: 884: 882: 881: 880: 878: 872: 869: 868: 867: 865: 859: 856: 855: 854: 852: 847: 844: 843: 842: 840: 797: 792: 748:phosphorylation 707: 704: 703: 702: 700: 647: 645: 644: 643: 641: 636: 634: 633: 632: 630: 623: 617: 507:Biochemically, 436: 346: 343: 342: 341: 339: 313: 300: 297: 296: 295: 293: 280: 277: 276: 275: 272: 258: 255: 254: 253: 251: 146: 125: 111: 71: 65: 62: 55: 43:This article's 39: 28: 23: 22: 15: 12: 11: 5: 5468: 5466: 5458: 5457: 5452: 5442: 5441: 5435: 5434: 5429: 5426: 5425: 5423: 5422: 5417: 5412: 5407: 5402: 5397: 5392: 5390:Microecosystem 5387: 5382: 5377: 5372: 5367: 5362: 5357: 5352: 5347: 5342: 5337: 5332: 5327: 5322: 5317: 5312: 5306: 5304: 5300: 5299: 5297: 5296: 5291: 5289:Thorson's rule 5286: 5281: 5276: 5271: 5266: 5261: 5256: 5251: 5246: 5241: 5236: 5231: 5226: 5221: 5216: 5214:Assembly rules 5210: 5208: 5200: 5199: 5197: 5196: 5191: 5186: 5181: 5176: 5171: 5170: 5169: 5159: 5154: 5149: 5144: 5139: 5133: 5131: 5125: 5124: 5122: 5121: 5116: 5111: 5099: 5097:Patch dynamics 5094: 5092:Metapopulation 5089: 5084: 5079: 5074: 5069: 5064: 5059: 5054: 5049: 5044: 5039: 5034: 5029: 5024: 5019: 5014: 5008: 5006: 4998: 4997: 4995: 4994: 4989: 4987:Storage effect 4984: 4979: 4974: 4969: 4964: 4959: 4954: 4949: 4943: 4941: 4935: 4934: 4932: 4931: 4926: 4921: 4916: 4911: 4906: 4901: 4896: 4891: 4886: 4881: 4876: 4871: 4869:Neutral theory 4866: 4861: 4856: 4854:Native species 4847: 4842: 4837: 4832: 4827: 4822: 4817: 4812: 4807: 4801: 4799: 4795: 4794: 4792: 4791: 4786: 4785: 4784: 4779: 4769: 4764: 4759: 4754: 4749: 4744: 4739: 4734: 4729: 4727:Overpopulation 4724: 4719: 4714: 4709: 4704: 4699: 4694: 4689: 4684: 4679: 4673: 4671: 4663: 4662: 4652: 4650: 4649: 4642: 4635: 4627: 4618: 4617: 4615: 4614: 4609: 4604: 4599: 4594: 4589: 4584: 4579: 4573: 4571: 4565: 4564: 4562: 4561: 4556: 4551: 4546: 4541: 4536: 4534:Nutrient cycle 4531: 4526: 4524:Feeding frenzy 4521: 4516: 4511: 4506: 4504:Energy quality 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4464:Cascade effect 4461: 4456: 4450: 4448: 4444: 4443: 4441: 4440: 4439: 4438: 4433: 4428: 4423: 4418: 4413: 4408: 4398: 4393: 4388: 4383: 4377: 4375: 4371: 4370: 4368: 4367: 4362: 4357: 4352: 4347: 4342: 4336: 4334: 4328: 4327: 4325: 4324: 4319: 4314: 4309: 4307:Microbial loop 4304: 4299: 4294: 4289: 4284: 4279: 4274: 4272:Lithoautotroph 4269: 4264: 4258: 4256: 4254:Microorganisms 4250: 4249: 4247: 4246: 4241: 4236: 4231: 4225: 4223: 4217: 4216: 4214: 4213: 4211:Prey switching 4208: 4203: 4198: 4193: 4188: 4183: 4178: 4173: 4168: 4163: 4158: 4153: 4148: 4143: 4138: 4133: 4128: 4122: 4120: 4114: 4113: 4111: 4110: 4105: 4100: 4095: 4090: 4088:Photosynthesis 4085: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4043:Chemosynthesis 4040: 4034: 4032: 4026: 4025: 4023: 4022: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3937: 3935:Abiotic stress 3932: 3926: 3924: 3920: 3919: 3905: 3903: 3902: 3895: 3888: 3880: 3874: 3873: 3862: 3859: 3856: 3855: 3814: 3771: 3752:(11): 488–96. 3733: 3726: 3706: 3633: 3607: 3582: 3529: 3520:|journal= 3494: 3468: 3410: 3345: 3280: 3243:(8): 4487–96. 3223: 3171: 3128: 3106: 3049: 3008:Arch Microbiol 2990: 2971:(5): 1626–34. 2965:Water Research 2955: 2928: 2881: 2846: 2832: 2813: 2810:978-1319017637 2796: 2795: 2793: 2790: 2789: 2788: 2777: 2774: 2766: 2758: 2757: 2748: 2739: 2737:leghaemoglobin 2727: 2699: 2683: 2667:Main article: 2664: 2661: 2638:phycobilisomes 2556: 2544: 2535: 2523: 2510: 2482:Pseudomonadota 2470:electron donor 2438:Main article: 2435: 2432: 2404: 2401: 2384: 2375: 2351: 2348: 2301: 2272: 2259: 2247: 2234: 2231: 2168: 2153: 2131: 2125: 2119:Ferrous iron ( 2117: 2109: 2083: 2071: 2031: 2022: 2006: 1997: 1984: 1975: 1972: 1946: 1945: 1941: 1937: 1933: 1918: 1906:Main article: 1903: 1900: 1891: 1888: 1880: 1879: 1876: 1866: 1863:trimethylamine 1852: 1838: 1835: 1834: 1833: 1826: 1810: 1799: 1792: 1776: 1765: 1754: 1738: 1727: 1721: 1706: 1641: 1632: 1629: 1619: 1612: 1600:Main article: 1597: 1594: 1582: 1568: 1565: 1557: 1544: 1532: 1523: 1511: 1481: 1459: 1446: 1443: 1434: 1399:Main article: 1396: 1393: 1385:eutrophication 1331: 1318: 1298: 1279: 1263: 1247:Main article: 1244: 1241: 1208: 1205: 1147: 1144: 1139: 1132:mineralization 1118:Syntrophomonas 1100: 1097: 1092: 1082: 1073: 1059: 1051: 1035: 1023: 1017:) to methane ( 1014: 982:Methanosarcina 976:Methanothermus 949:Methanogenesis 911:serine pathway 906: 889: 883: 870: 857: 845: 796: 793: 791: 788: 758:and therefore 705: 646: 635: 627:organic carbon 619:Main article: 616: 613: 593:Pseudomonadota 502:bioremediation 498:mineralization 435: 432: 431: 430: 420:Heliobacterium 408:Rhodomicrobium 402:Rhodospirillum 381: 378:Actinomycetota 358: 344: 311: 305: 298: 278: 256: 241: 220: 219: 208: 196: 195: 187: 168: 167: 159: 148: 144: 141:carbon dioxide 121:Main article: 110: 107: 103:biogeochemical 73: 72: 52:the key points 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5467: 5456: 5453: 5451: 5448: 5447: 5445: 5432: 5427: 5421: 5418: 5416: 5415:Urban ecology 5413: 5411: 5408: 5406: 5403: 5401: 5398: 5396: 5393: 5391: 5388: 5386: 5383: 5381: 5378: 5376: 5373: 5371: 5368: 5366: 5363: 5361: 5358: 5356: 5353: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5326: 5323: 5321: 5318: 5316: 5313: 5311: 5308: 5307: 5305: 5301: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5275: 5274:Kleiber's law 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5215: 5212: 5211: 5209: 5207: 5201: 5195: 5192: 5190: 5187: 5185: 5182: 5180: 5177: 5175: 5172: 5168: 5165: 5164: 5163: 5160: 5158: 5155: 5153: 5150: 5148: 5145: 5143: 5140: 5138: 5135: 5134: 5132: 5130: 5126: 5120: 5117: 5115: 5112: 5110: 5108: 5104: 5100: 5098: 5095: 5093: 5090: 5088: 5085: 5083: 5080: 5078: 5075: 5073: 5070: 5068: 5065: 5063: 5060: 5058: 5055: 5053: 5050: 5048: 5047:Foster's rule 5045: 5043: 5040: 5038: 5035: 5033: 5030: 5028: 5025: 5023: 5020: 5018: 5015: 5013: 5010: 5009: 5007: 5005: 4999: 4993: 4990: 4988: 4985: 4983: 4980: 4978: 4975: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4950: 4948: 4945: 4944: 4942: 4936: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4870: 4867: 4865: 4862: 4860: 4857: 4855: 4851: 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4816: 4813: 4811: 4808: 4806: 4803: 4802: 4800: 4796: 4790: 4787: 4783: 4780: 4778: 4775: 4774: 4773: 4770: 4768: 4765: 4763: 4760: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4735: 4733: 4730: 4728: 4725: 4723: 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4703: 4700: 4698: 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4678: 4675: 4674: 4672: 4670: 4664: 4659: 4655: 4648: 4643: 4641: 4636: 4634: 4629: 4628: 4625: 4613: 4610: 4608: 4605: 4603: 4600: 4598: 4595: 4593: 4590: 4588: 4585: 4583: 4580: 4578: 4575: 4574: 4572: 4566: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4451: 4449: 4445: 4437: 4434: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4403: 4402: 4399: 4397: 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4378: 4376: 4372: 4366: 4365:Trophic level 4363: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4337: 4335: 4333: 4329: 4323: 4322:Phage ecology 4320: 4318: 4315: 4313: 4312:Microbial mat 4310: 4308: 4305: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4267:Bacteriophage 4265: 4263: 4260: 4259: 4257: 4255: 4251: 4245: 4242: 4240: 4237: 4235: 4234:Decomposition 4232: 4230: 4227: 4226: 4224: 4222: 4218: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4189: 4187: 4184: 4182: 4181:Mesopredators 4179: 4177: 4174: 4172: 4169: 4167: 4164: 4162: 4159: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4137: 4134: 4132: 4129: 4127: 4126:Apex predator 4124: 4123: 4121: 4119: 4115: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4035: 4033: 4031: 4027: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3960:Biotic stress 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3927: 3925: 3921: 3916: 3912: 3908: 3901: 3896: 3894: 3889: 3887: 3882: 3881: 3878: 3870: 3865: 3864: 3860: 3851: 3847: 3842: 3837: 3833: 3829: 3825: 3818: 3815: 3810: 3806: 3802: 3798: 3794: 3790: 3786: 3782: 3775: 3772: 3767: 3763: 3759: 3755: 3751: 3747: 3740: 3738: 3734: 3729: 3723: 3719: 3718: 3717:Bioenergetics 3710: 3707: 3702: 3698: 3694: 3690: 3685: 3680: 3676: 3672: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3637: 3634: 3622: 3618: 3611: 3608: 3596: 3592: 3586: 3583: 3578: 3574: 3570: 3566: 3561: 3556: 3552: 3548: 3544: 3540: 3533: 3530: 3525: 3513: 3505: 3501: 3497: 3491: 3487: 3483: 3479: 3472: 3469: 3464: 3460: 3456: 3452: 3448: 3447:10.1038/22749 3444: 3440: 3436: 3432: 3428: 3421: 3414: 3411: 3406: 3402: 3397: 3392: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3349: 3346: 3341: 3337: 3332: 3327: 3323: 3319: 3315: 3311: 3307: 3303: 3299: 3295: 3291: 3284: 3281: 3276: 3272: 3267: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3234: 3227: 3224: 3219: 3215: 3210: 3205: 3201: 3197: 3193: 3191: 3187: 3178: 3176: 3172: 3167: 3163: 3159: 3155: 3151: 3147: 3143: 3139: 3132: 3129: 3116: 3110: 3107: 3102: 3098: 3093: 3088: 3084: 3080: 3076: 3072: 3069:(8): 3650–3. 3068: 3064: 3060: 3053: 3050: 3045: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3014:(5): 381–91. 3013: 3009: 3005: 3003: 2994: 2991: 2986: 2982: 2978: 2974: 2970: 2966: 2959: 2956: 2951: 2947: 2944:(6): 763–70. 2943: 2939: 2932: 2929: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2885: 2882: 2877: 2873: 2869: 2865: 2861: 2857: 2850: 2847: 2842: 2836: 2833: 2830: 2827:: Atc. 165. 2826: 2823: 2817: 2814: 2811: 2807: 2801: 2798: 2791: 2787: 2783: 2780: 2779: 2775: 2773: 2755: 2754: 2749: 2746: 2745: 2740: 2738: 2734: 2733: 2728: 2725: 2724: 2719: 2718: 2717: 2715: 2710: 2708: 2692: 2676: 2670: 2662: 2660: 2658: 2653: 2651: 2646: 2641: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2602: 2600: 2596: 2595: 2590: 2589: 2588:Halobacterium 2584: 2583:heliobacteria 2580: 2579: 2574: 2570: 2569: 2564: 2503: 2502:endosymbionts 2499: 2495: 2491: 2487: 2486:Chloroflexota 2483: 2479: 2475: 2474:Cyanobacteria 2471: 2467: 2463: 2459: 2455: 2454:carbohydrates 2451: 2447: 2441: 2433: 2431: 2429: 2425: 2423: 2418: 2414: 2410: 2402: 2400: 2398: 2393: 2368: 2364: 2361: 2357: 2349: 2347: 2345: 2341: 2340: 2334: 2331: 2325: 2323: 2319: 2315: 2311: 2294: 2293:hydroxylamine 2290: 2289: 2284: 2283: 2277: 2240: 2233:Nitrification 2232: 2230: 2228: 2224: 2220: 2219: 2214: 2213: 2208: 2207: 2202: 2198: 2197: 2193: 2189: 2188: 2183: 2182: 2177: 2161: 2146: 2142: 2137: 2118: 2116: 2102: 2101: 2096: 2092: 2064: 2063:thermodynamic 2060: 2056: 2055: 2050: 2046: 2042: 2041: 2015: 2014:sulfuric acid 1973: 1971: 1969: 1968: 1963: 1959: 1955: 1951: 1931: 1930: 1929: 1927: 1909: 1901: 1899: 1896: 1889: 1887: 1885: 1877: 1874: 1870: 1867: 1864: 1860: 1858: 1853: 1851: 1848:reduction to 1847: 1844: 1843: 1842: 1836: 1819: 1803: 1800: 1785: 1769: 1766: 1763: 1747: 1731: 1728: 1714: 1713:manganous ion 1699: 1696: 1695: 1694: 1692: 1691:radionuclides 1688: 1684: 1679: 1677: 1673: 1669: 1665: 1661: 1660: 1655: 1654: 1649: 1635:Ferric iron ( 1630: 1628: 1625: 1603: 1595: 1593: 1591: 1575: 1566: 1564: 1504: 1503: 1498: 1497: 1492: 1491: 1474: 1470: 1469: 1452: 1444: 1442: 1427: 1423: 1422: 1421:Archaeoglobus 1417: 1416: 1411: 1407: 1402: 1394: 1392: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1361: 1356: 1355: 1350: 1349: 1344: 1340: 1311: 1310:nitrous oxide 1307: 1291: 1287: 1272: 1256: 1250: 1242: 1240: 1238: 1232: 1230: 1226: 1222: 1218: 1214: 1206: 1204: 1202: 1201: 1196: 1195: 1190: 1186: 1182: 1178: 1174: 1173:symbiogenesis 1170: 1166: 1162: 1158: 1154: 1153:Haiobacterium 1145: 1143: 1137: 1133: 1128: 1124: 1120: 1119: 1114: 1110: 1106: 1098: 1096: 1090: 1066: 1044: 1012: 1008: 1004: 1000: 996: 995: 990: 989: 984: 983: 978: 977: 972: 971: 966: 965: 960: 959: 958:Methanococcus 954: 950: 946: 944: 941: 936: 934: 933: 932:Methylococcus 928: 924: 923: 922:Methylocystis 918: 917: 912: 903: 899: 895: 838: 834: 833:Methanotrophs 830: 829: 828:Methylobacter 824: 823: 818: 814: 810: 809:methyl amines 806: 802: 795:Methylotrophy 794: 789: 787: 785: 781: 780: 775: 771: 770: 765: 761: 760:ATP synthesis 757: 753: 749: 744: 742: 738: 734: 730: 726: 722: 719:derived from 718: 714: 713:organic acids 698: 694: 690: 686: 682: 678: 674: 670: 666: 662: 658: 654: 628: 622: 614: 612: 610: 606: 602: 598: 594: 590: 589: 588:Agrobacterium 584: 583: 578: 577: 572: 571:endosymbiosis 568: 567:mitochondrion 564: 560: 559: 554: 551:(also called 550: 546: 542: 538: 534: 530: 526: 522: 518: 515:(also called 514: 510: 505: 503: 499: 495: 491: 487: 483: 478: 474: 473: 468: 467: 462: 458: 454: 450: 446: 442: 433: 428: 427: 422: 421: 416: 415: 410: 409: 404: 403: 398: 397: 392: 391: 385: 382: 380: 379: 374: 373: 368: 367: 362: 359: 357: 353: 337: 336: 331: 330: 325: 324: 319: 318: 309: 306: 291: 290: 284: 270: 269:Chromatiaceae 266: 265:Chlorobiaceae 249: 248:Cyanobacteria 245: 242: 240: 236: 232: 228: 225: 224: 223: 218: 214: 213: 209: 206: 205: 201: 200: 199: 193: 192: 191:organotrophic 188: 186: 182: 181: 177: 176: 175: 173: 165: 164: 160: 158: 154: 153: 152:heterotrophic 149: 142: 138: 137: 133: 132: 131: 128: 124: 115: 108: 106: 104: 100: 96: 91: 87: 83: 79: 69: 66:December 2020 59: 53: 51: 46: 41: 37: 32: 31: 19: 5400:Regime shift 5385:Macroecology 5106: 5102: 5042:Edge effects 5012:Biogeography 4957:Commensalism 4805:Biodiversity 4682:Allee effect 4421:kelp forests 4374:Example webs 4316: 4239:Detritivores 4078:Organotrophs 4058:Kinetotrophs 4010:Productivity 3868: 3831: 3828:Microbiology 3827: 3817: 3787:(6): 513–9. 3784: 3780: 3774: 3749: 3745: 3716: 3709: 3650: 3646: 3636: 3624:. Retrieved 3620: 3610: 3598:. Retrieved 3594: 3585: 3542: 3538: 3532: 3477: 3471: 3430: 3426: 3413: 3362: 3358: 3348: 3297: 3293: 3283: 3240: 3236: 3226: 3199: 3195: 3189: 3185: 3144:(22): 8142. 3141: 3138:RSC Advances 3137: 3131: 3119:. Retrieved 3109: 3066: 3062: 3052: 3011: 3007: 3001: 2993: 2968: 2964: 2958: 2941: 2937: 2931: 2898: 2894: 2884: 2859: 2855: 2849: 2835: 2824: 2821: 2816: 2800: 2759: 2751: 2742: 2730: 2721: 2711: 2672: 2657:Chloroflexus 2656: 2654: 2642: 2622:chlorophylls 2603: 2592: 2586: 2578:Chloroflexus 2576: 2566: 2498:chloroplasts 2464:. Of these, 2443: 2427: 2420: 2406: 2359: 2353: 2337: 2335: 2326: 2286: 2282:Nitrosomonas 2280: 2236: 2216: 2210: 2204: 2194: 2185: 2179: 2141:Ferrous iron 2139: 2098: 2052: 2038: 1977: 1965: 1961: 1958:Calvin cycle 1947: 1911: 1893: 1881: 1856: 1840: 1698:Manganic ion 1687:heavy metals 1680: 1668:hydrocarbons 1663: 1657: 1651: 1634: 1605: 1602:Acetogenesis 1570: 1500: 1494: 1488: 1466: 1448: 1419: 1413: 1404: 1358: 1352: 1346: 1306:nitric oxide 1252: 1233: 1210: 1198: 1192: 1175:origin from 1169:mitochondria 1157:Thermoplasma 1149: 1116: 1102: 1007:methanofuran 994:Methanopyrus 992: 988:Methanosaeta 986: 980: 974: 968: 962: 956: 947: 940:methanogenic 937: 930: 920: 916:Methylosinus 914: 877:), formate ( 826: 822:Methylomonas 820: 813:formaldehyde 801:C1-compounds 798: 777: 767: 745: 669:ATP synthase 624: 615:Fermentation 603:), although 586: 580: 574: 556: 506: 470: 466:Bdellovibrio 464: 437: 426:Chloroflexus 424: 418: 412: 406: 400: 394: 388: 383: 376: 370: 364: 360: 333: 327: 321: 315: 307: 289:Chloroflexus 287: 243: 226: 221: 212:chemotrophic 210: 204:phototrophic 202: 197: 189: 180:lithotrophic 178: 169: 161: 150: 134: 129: 126: 77: 76: 63: 47: 45:lead section 5037:Disturbance 4940:interaction 4762:Recruitment 4692:Depensation 4484:Copiotrophs 4355:Energy flow 4277:Lithotrophy 4221:Decomposers 4201:Planktivore 4176:Insectivore 4166:Heterotroph 4131:Bacterivore 4098:Phototrophs 4048:Chemotrophs 4020:Restoration 3970:Competition 3196:J Biol Chem 2714:nitrogenase 2626:carotenoids 2618:chlorosomes 2594:Roseobacter 2478:Chlorobiota 2434:Phototrophy 2288:Nitrobacter 2227:rusticyanin 2196:Ferroplasma 2176:acidophiles 2130:) oxidation 1954:cytochromes 1950:hydrogenase 1200:Acetobacter 1127:equilibrium 673:respiration 558:Pseudomonas 523:to degrade 517:EMP pathway 509:prokaryotic 449:saprophages 414:Rhodocyclus 390:Rhodobacter 329:Nitrobacter 317:Thiobacilus 292:(hydrogen ( 163:mixotrophic 136:autotrophic 5450:Metabolism 5444:Categories 5405:Sexecology 4982:Parasitism 4947:Antibiosis 4782:Resistance 4777:Resilience 4667:Population 4587:Camouflage 4539:Oligotroph 4454:Ascendency 4416:intertidal 4406:cold seeps 4360:Food chain 4161:Herbivores 4136:Carnivores 4063:Mixotrophs 4038:Autotrophs 3917:components 3560:2066/35814 3121:August 19, 2862:: 355–94. 2792:References 2675:atmosphere 2650:ferredoxin 2581:), or the 2568:Chlorobium 2496:. Because 2422:Candidatus 2415:the metal 2360:Candidatus 2339:Nitrospira 2054:Paracoccus 2012:) to form 1964:(formerly 1944:O + energy 1802:Uranyl ion 1471:) can use 1381:wastewater 1165:Yymbaculum 1161:Sulfolobus 1003:coenzyme M 725:glycolysis 689:Coenzyme A 665:obligately 576:Rickettsia 553:ED pathway 513:glycolysis 477:pathogenic 472:Myxococcus 461:parasitism 453:eukaryotic 441:commensals 5310:Allometry 5264:Emergence 4992:Symbiosis 4977:Mutualism 4772:Stability 4677:Abundance 4489:Dominance 4447:Processes 4436:tide pool 4332:Food webs 4206:Predation 4191:Omnivores 4118:Consumers 4073:Mycotroph 4030:Producers 3975:Ecosystem 3940:Behaviour 3701:220541911 3675:1476-4687 3626:16 August 3600:16 August 3522:ignored ( 3512:cite book 3387:0028-0836 3322:0028-0836 3166:2046-2069 2938:J Biochem 2915:0968-0004 2732:Rhizobium 2490:Bacillota 2417:manganese 2392:ladderane 2367:Hydrazine 2322:periplasm 2314:cytoplasm 2040:Beggiatoa 1926:oxidation 1850:succinate 1683:inorganic 1624:reduction 1473:phosphite 1377:acid rain 1099:Syntrophy 1091:to fix CO 999:cofactors 953:anaerobic 925:) or the 764:succinate 693:cofactors 681:phosphate 653:anaerobic 582:Rhizobium 486:cellulose 457:predation 445:parasites 335:Wolinella 323:Beggiatoa 90:metabolic 50:summarize 5365:Endolith 5294:Xerosere 5206:networks 5022:Ecocline 4568:Defense, 4244:Detritus 4146:Foraging 4015:Resource 3850:15528644 3809:10607659 3766:16997562 3693:32669693 3595:phys.org 3569:16417514 3504:18020306 3455:10440372 3405:26610024 3340:26610025 3275:16085840 3218:10788424 3101:10919837 3036:11976747 2776:See also 2723:Anabaena 2645:Z scheme 2462:proteins 2452:such as 2413:feeds on 2344:Comammox 2192:archaeon 1846:Fumarate 1784:arsenite 1768:Arsenate 1762:selenium 1746:selenite 1730:Selenate 1676:aquifers 1670:such as 1369:sunlight 1185:oxidases 1183:contain 1177:prokarya 1113:butyrate 902:quinones 805:methanol 741:butyrate 721:pyruvate 717:alcohols 697:hydrogen 679:where a 599:(use an 541:bacteria 484:such as 482:polymers 372:Bacillus 250:(water ( 105:cycles. 5355:Ecopath 5162:Habitat 5032:Ecotype 5027:Ecotone 5004:ecology 5002:Spatial 4938:Species 4798:Species 4669:ecology 4654:Ecology 4602:Mimicry 4570:counter 4514:f-ratio 4262:Archaea 3950:Biomass 3923:General 3915:Trophic 3907:Ecology 3789:Bibcode 3684:7802741 3655:Bibcode 3577:1686978 3463:2222680 3435:Bibcode 3396:5152751 3367:Bibcode 3331:4878690 3302:Bibcode 3266:1183355 3245:Bibcode 3146:Bibcode 3071:Bibcode 3044:7112305 3016:Bibcode 2973:Bibcode 2923:8578586 2876:2115763 2707:legumes 2575:(e.g., 2565:(e.g., 2358:(e.g. " 2350:Anammox 2320:in the 2312:in the 2239:ammonia 1672:toluene 1574:sulfite 1348:E. coli 1290:nitrite 1255:nitrate 1194:E. coli 1187:of the 1109:ethanol 1065:acetate 943:Archaea 837:methane 817:formate 784:lactate 774:oxalate 737:lactate 733:acetate 729:ethanol 597:respire 545:archaea 537:quinols 525:acetate 354:, some 326:, some 320:, some 82:microbe 4386:Rivers 4282:Marine 3848:  3807:  3764:  3724:  3699:  3691:  3681:  3673:  3647:Nature 3575:  3567:  3502:  3492:  3461:  3453:  3427:Nature 3403:  3393:  3385:  3359:Nature 3338:  3328:  3320:  3294:Nature 3273:  3263:  3216:  3164:  3099:  3089:  3042:  3034:  2921:  2913:  2874:  2808:  2634:niches 2488:, and 2460:, and 2458:lipids 2164:Fe(OH) 1859:-oxide 1588:) and 1308:(NO), 1211:While 1179:. All 1011:proton 815:, and 739:, and 671:as in 605:oxygen 494:lignin 490:chitin 375:spp., 338:(with 332:spp., 86:carbon 5303:Other 5204:Other 5157:Guild 5129:Niche 4381:Lakes 3697:S2CID 3573:S2CID 3459:S2CID 3423:(PDF) 3092:92201 3040:S2CID 2494:Earth 2466:algae 2215:, or 2095:above 1940:→ 2 H 1875:(DMS) 1865:(TMA) 1373:ozone 699:gas ( 555:) in 109:Types 4391:Soil 3846:PMID 3805:PMID 3762:PMID 3722:ISBN 3689:PMID 3671:ISSN 3628:2020 3602:2020 3565:PMID 3524:help 3500:PMID 3490:ISBN 3451:PMID 3401:PMID 3383:ISSN 3336:PMID 3318:ISSN 3271:PMID 3214:PMID 3162:ISSN 3123:2017 3097:PMID 3032:PMID 2919:PMID 2911:ISSN 2872:PMID 2806:ISBN 2624:and 2448:and 2426:and 2184:and 1884:fish 1764:(Se) 1656:and 1371:and 1271:iron 1197:and 1163:and 1111:and 1005:and 991:and 879:HCOO 825:and 772:and 715:and 543:and 533:NADH 3836:doi 3832:150 3797:doi 3754:doi 3679:PMC 3663:doi 3651:583 3621:CNN 3555:hdl 3547:doi 3482:doi 3443:doi 3431:400 3391:PMC 3375:doi 3363:528 3326:PMC 3310:doi 3298:528 3261:PMC 3253:doi 3204:doi 3200:275 3154:doi 3087:PMC 3079:doi 3024:doi 3012:177 2981:doi 2946:doi 2903:doi 2864:doi 2571:), 2476:", 2446:ATP 2346:). 2145:pHs 1936:+ O 1932:2 H 1788:AsO 1772:AsO 1750:SeO 1734:SeO 1689:or 1590:AMP 1563:). 1477:HPO 1357:or 1304:), 1151:as 1078:COO 754:or 685:ADP 642:NAD 631:NAD 585:or 535:or 529:ATP 492:or 459:or 443:or 143:(CO 5446:: 4852:/ 4656:: 3913:: 3909:: 3844:. 3830:. 3826:. 3803:. 3795:. 3783:. 3760:. 3750:14 3748:. 3736:^ 3695:. 3687:. 3677:. 3669:. 3661:. 3649:. 3645:. 3619:. 3593:. 3571:. 3563:. 3553:. 3543:34 3541:. 3516:: 3514:}} 3510:{{ 3498:. 3488:. 3457:. 3449:. 3441:. 3429:. 3425:. 3399:. 3389:. 3381:. 3373:. 3361:. 3357:. 3334:. 3324:. 3316:. 3308:. 3296:. 3292:. 3269:. 3259:. 3251:. 3241:71 3239:. 3235:. 3212:. 3198:. 3194:. 3174:^ 3160:. 3152:. 3140:. 3095:. 3085:. 3077:. 3067:66 3065:. 3061:. 3038:. 3030:. 3022:. 3010:. 3006:. 2979:. 2969:32 2967:. 2942:41 2940:. 2917:. 2909:. 2899:20 2897:. 2893:. 2870:. 2860:59 2858:. 2695:NH 2552:Fe 2484:, 2480:, 2456:, 2430:. 2324:. 2306:OH 2297:NH 2268:NO 2255:NO 2243:NH 2209:, 2149:Fe 2121:Fe 2105:NO 2079:SO 2067:SO 2027:SO 1822:UO 1806:UO 1717:Mn 1702:Mn 1678:. 1637:Fe 1578:SO 1553:SO 1507:SO 1499:, 1493:, 1424:. 1391:. 1341:, 1294:NO 1275:Fe 1259:NO 1219:, 1159:, 1155:, 1142:. 1069:CH 1056:OH 1047:CH 1019:CH 985:, 979:, 973:, 967:, 961:, 919:, 866:CH 862:OH 853:CH 841:CH 831:. 811:, 807:, 735:, 731:, 504:. 488:, 423:, 417:, 411:, 405:, 399:, 393:, 369:, 267:, 237:, 5107:K 5105:/ 5103:r 4646:e 4639:t 4632:v 3899:e 3892:t 3885:v 3852:. 3838:: 3811:. 3799:: 3791:: 3785:2 3768:. 3756:: 3730:. 3703:. 3665:: 3657:: 3630:. 3604:. 3579:. 3557:: 3549:: 3526:) 3506:. 3484:: 3465:. 3445:: 3437:: 3407:. 3377:: 3369:: 3342:. 3312:: 3304:: 3277:. 3255:: 3247:: 3220:. 3206:: 3186:c 3168:. 3156:: 3148:: 3142:3 3125:. 3103:. 3081:: 3073:: 3046:. 3026:: 3018:: 3000:" 2987:. 2983:: 2975:: 2952:. 2948:: 2925:. 2905:: 2878:. 2866:: 2843:. 2825:2 2767:2 2762:N 2756:) 2747:) 2700:3 2684:2 2679:N 2545:3 2540:O 2536:2 2531:S 2524:0 2519:S 2515:S 2511:2 2506:H 2385:4 2380:H 2376:2 2371:N 2369:( 2302:2 2295:( 2273:2 2260:3 2248:3 2241:( 2169:3 2162:( 2110:3 2084:4 2072:3 2032:4 2023:2 2018:H 2016:( 2007:3 2002:O 1998:2 1993:S 1989:S 1985:2 1980:H 1942:2 1938:2 1934:2 1919:2 1914:H 1857:N 1832:) 1827:2 1820:( 1811:2 1804:( 1798:) 1793:3 1786:( 1777:4 1770:( 1755:3 1748:( 1739:4 1732:( 1726:) 1715:( 1700:( 1620:2 1613:2 1608:H 1583:3 1576:( 1558:4 1549:S 1545:2 1540:H 1533:3 1528:O 1524:2 1519:S 1512:3 1482:3 1475:( 1460:2 1455:H 1439:S 1435:2 1430:H 1428:( 1332:2 1327:N 1323:O 1319:2 1314:N 1312:( 1299:2 1292:( 1273:( 1264:3 1257:( 1140:2 1093:2 1074:3 1067:( 1060:2 1052:3 1036:2 1031:H 1024:4 1015:2 929:( 913:( 907:2 890:2 875:O 871:2 858:3 846:4 839:( 706:2 701:H 345:2 340:H 312:2 299:2 294:H 283:S 279:2 274:H 261:O 257:2 252:H 147:) 145:2 68:) 64:( 54:. 20:)

Index

Bacterial metabolisms

lead section
summarize
provide an accessible overview
microbe
carbon
metabolic
ecological niche
industrial processes
biogeochemical

Primary nutritional groups
autotrophic
carbon dioxide
heterotrophic
organic compounds
mixotrophic
reducing equivalents
lithotrophic
inorganic compounds
organotrophic
phototrophic
chemotrophic
chemical compounds
Nitrifying bacteria
iron-oxidizing bacteria
Knallgas-bacteria
Cyanobacteria
Chlorobiaceae

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑