Knowledge

Baeyer–Villiger oxidation

Source 📝

303: 262: 331: 351: 477: 402: 806: 449: 198: 607: 783: 666: 739:, that is, for an application in organic synthesis. Considering the environmental concerns for most of the chemical catalysts, the use of enzymes is considered a greener alternative. BVMOs in particular are interesting for application because they fulfil a range of criteria typically sought for in biocatalysis: besides their ability to catalyse a synthetically useful reaction, some natural 326:
of the Criegee intermediate). Keeping this structure in mind, it makes sense that the substituent that can maintain positive charge the best would be most likely to migrate. The higher the degree of substitution, the more stable a carbocation generally is. Therefore, the tertiary > secondary >
346:
between the peroxyacid and the non-migrating substituent. If the bulkier group is placed antiperiplanar to the peroxide group, the gauche interaction between the substituent on the forming ester and the carbonyl group of the peroxyacid will be reduced. Thus, it is the bulkier group that will prefer
774:
Zoapatanol is a biologically active molecule that occurs naturally in the zeopatle plant, which has been used in Mexico to make a tea that can induce menstruation and labor. In 1981, Vinayak Kane and Donald Doyle reported a synthesis of zoapatanol. They used the Baeyer–Villiger oxidation to make a
2262:
Levine, Seymour D.; Adams, Richard E.; Chen, Robert; Cotter, Mary Lou; Hirsch, Allen F.; Kane, Vinayak V.; Kanojia, Ramesh M.; Shaw, Charles; Wachter, Michael P.; Chin, Eva; Huettemann, Richard; Ostrowski, Paul (1979). "Zoapatanol and Montanol, Novel Oxepane Diterpenoids, from the Mexican Plant
628:
would be advantageous, making the reaction more environmentally friendly as the sole byproduct is water. Benzeneseleninic acid derivatives as catalysts have been reported to give high selectivity with hydrogen peroxide as the oxidant. Another class of catalysts which show high selectivity with
468:. The three different mechanisms would each lead to a different distribution of labelled products. The Criegee intermediate would lead to a product only labelled on the carbonyl oxygen. The product of the Wittig and Pieper intermediate is only labeled on the 318:
on the substituent decrease the rate of migration. There are two explanations for this trend in migration ability. One explanation relies on the buildup of positive charge in the transition state for breakdown of the Criegee intermediate (illustrated by the
629:
hydrogen peroxide as the oxidant are solid Lewis acid catalysts such as stannosilicates. Among stannosilicates, particularly the zeotype Sn-beta and the amorphous Sn-MCM-41 show promising activity and close to full selectivity towards the desired product.
472:
of the ester. The Baeyer and Villiger intermediate leads to a 1:1 distribution of both of the above products. The outcome of the labelling experiment supported the Criegee intermediate, which is now the generally accepted pathway.
2015:
Fiorentini, Filippo; Geier, Martina; Binda, Claudia; Winkler, Margit; Faber, Kurt; Hall, Mélanie; Mattevi, Andrea (15 April 2016). "Biocatalytic Characterization of Human FMO5: Unearthing Baeyer–Villiger Reactions in Humans".
756:
and/or reactivity. Another advantage of using enzymes for the reaction is their frequently observed regio- and enantioselectivity, owed to the steric control of substrate orientation during catalysis within the enzyme's
1727:
Renz, M; Blasco, T; Corma, A; Fornés, V; Jensen, R; Nemeth, L (18 October 2002). "Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-beta zeolites and H2O2".
743:
were found to have a very large substrate scope (i.e. their reactivity was not restricted to a single compound, as often assumed in enzyme catalysis), they can be easily produced on a large scale, and because the
1660:
Ferrini, Paola; Dijkmans, Jan; Clercq, Rik De; Vyver, Stijn Van de; Dusselier, Michiel; Jacobs, Pierre A.; Sels, Bert F. (2017). "Lewis acid catalysis on single site Sn centers incorporated into silica hosts".
1462:
Cavarzan, Alessandra; Scarso, Alessandro; Sgarbossa, Paolo; Michelin, Rino A.; Strukul, Giorgio (2010). "Green Catalytic Baeyer–Villiger Oxidation with Hydrogen Peroxide in Water Mediated by Pt(II) Catalysts".
1624:
ten Brink, Gerd-Jan; Vis, Jan-Martijn; Arends, Isabel W. C. E.; Sheldon, Roger A. (2001). "Selenium-Catalyzed Oxidations with Aqueous Hydrogen Peroxide. 2. Baeyer−Villiger Reactions in Homogeneous Solution".
293:
group to be antiperiplanar to the migrating group. This allows for optimum overlap of the oxygen nonbonding orbital with the 𝛔* orbital of the migrating group. This migration step is also (at least
5592: 599:. However, methods have been developed that will allow for the tolerance of these functional groups. In 1962, G. B. Payne reported that the use of hydrogen peroxide in the presence of a 1823:
Sheng, Dawei; Ballou, David P.; Massey, Vincent (1 September 2001). "Mechanistic Studies of Cyclohexanone Monooxygenase: Chemical Properties of Intermediates Involved in Catalysis".
966:
Crudden, Cathleen M.; Chen, Austin C.; Calhoun, Larry A. (2000). "A Demonstration of the Primary Stereoelectronic Effect in the Baeyer-Villiger Oxidation of α-Fluorocyclohexanones".
705:, and theoretical studies suggest that the reaction proceeds through the same Criegee intermediate as observed in the chemical reaction. After the rearrangement step forming the 261: 1866:
Polyak, Iakov; Reetz, Manfred T.; Thiel, Walter (8 February 2012). "Quantum Mechanical/Molecular Mechanical Study on the Mechanism of the Enzymatic Baeyer–Villiger Reaction".
222:. This makes the carbonyl group more susceptible to be attacked by the peroxyacid. Next, the peroxyacid attacks the carbon of the carbonyl group forming what is known as the 4708: 4653: 330: 5421: 4763: 1688:
Corma, A; Navarro, MT; Nemeth, L; Renz, M (7 November 2001). "Sn-MCM-41—a heterogeneous selective catalyst for the Baeyer-Villiger oxidation with hydrogen peroxide".
4913: 3547: 358:
The migrating group in acyclic ketones, usually, is not 1° alkyl group. However, they may be persuaded to migrate in preference to the 2° or 3° groups by using CF
5642: 1127:
Hawthorne, M. Frederick; Emmons, William D.; McCallum, K. S. (1958). "A Re-examination of the Peroxyacid Cleavage of Ketones. I. Relative Migratory Aptitudes".
5416: 4518: 1498:
Schweitzer-Chaput, Bertrand; Kurtén, Theo; Klussmann, Martin (2015). "Acid-Mediated Formation of Radicals or Baeyer-Villiger Oxidation from Criegee Adducts".
413:
of the Baeyer–Villiger oxidation that seemed to fit with observed reaction outcomes. These three reaction mechanisms can really be split into two pathways of
3242: 302: 4288: 2439: 5088: 3032: 338:
Another explanation uses stereoelectronic effects and steric arguments. As mentioned, the substituent that is antiperiplanar to the peroxide group in the
5183: 3287: 5163: 4658: 3825: 677:
called Baeyer-Villiger monooxygenases (BVMOs) perform the oxidation analogously to the chemical reaction. To facilitate this chemistry, BVMOs contain a
3706: 3262: 386:
In 1899, Adolf Baeyer and Victor Villiger first published a demonstration of the reaction that we now know as the Baeyer–Villiger oxidation. They used
5253: 350: 273:. The primary stereoelectronic effect in the Baeyer–Villiger oxidation refers to the necessity of the oxygen-oxygen bond in the peroxide group to be 5008: 732:. Human FMO5 was in fact shown to be able to catalyse Baeyer-Villiger reactions, indicating that the reaction may occur in the human body as well. 2475: 2205:
Li, Guangyue; Garcia-Borràs, Marc; Fürst, Maximilian J. L. J.; Ilie, Adriana; Fraaije, Marco W.; Houk, K. N.; Reetz, Manfred T. (22 August 2018).
3840: 5486: 4943: 5436: 5048: 5028: 4988: 3795: 1597:
Payne, G. B. (1962). "A Simplified Procedure for Epoxidation by Benzonitrile-Hydrogen Peroxide. Selective Oxidation of 2-Allylcyclohexanone".
5582: 5507: 5391: 4003: 3407: 2738: 1554: 1222: 1171: 873: 5577: 5406: 5063: 4918: 4548: 1347:
Doering, W. von E.; Dorfman, Edwin (1953). "Mechanism of the Peracid Ketone-Ester Conversion. Analysis of Organic Compounds for Oxygen-18".
141: 5741: 4393: 3630: 4753: 4243: 3918: 1322: 5657: 5441: 4463: 802:
to anticancer agent testololactone by use of a Baeyer–Villiger oxidation induced by fungus that produces Baeyer-Villiger monooxygenases.
5018: 5652: 5366: 5228: 4983: 943: 5542: 5013: 4928: 4898: 4878: 4743: 4738: 4113: 4038: 3681: 3635: 3502: 2763: 5746: 5481: 1991: 5647: 5607: 5557: 5033: 4783: 4713: 3202: 1435:
Gallagher, T. F.; Kritchevsky, Theodore H. (1950). "Perbenzoic Acid Oxidation of 20-Ketosteroids and the Stereochemistry of C-17".
979: 5243: 4848: 3741: 3462: 2297:
Kane, Vinayak V.; Doyle, Donald L. (1981). "Total Synthesis of (±) Zoapatanol: A Stereospecific Synthesis of a Key Intermediate".
1741: 5736: 5233: 2773: 5401: 5158: 5108: 3898: 3830: 3721: 3297: 3052: 2977: 2758: 1777: 5113: 4923: 4398: 4308: 2432: 2095:
Fürst, Maximilian J. L. J.; Romero, Elvira; Gómez Castellanos, J. Rúben; Fraaije, Marco W.; Mattevi, Andrea (7 December 2018).
717: 5687: 5471: 5411: 4813: 4788: 4698: 4278: 4158: 3192: 2688: 1544: 559:. In addition, using organic peroxides and hydrogen peroxide tends to generate more side-reactivity due to their promiscuity. 5572: 5058: 4853: 3122: 1293: 915: 197: 5677: 5263: 4773: 4283: 4228: 4073: 3865: 3620: 3337: 3187: 669:
Reaction mechanism of the flavin cofactor to catalyse the Baeyer-Villiger reaction in Baeyer-Villiger monooxygenase enzymes.
5637: 5198: 5153: 4643: 4498: 510: 282: 5672: 5587: 5446: 5361: 5258: 4333: 3988: 3656: 3067: 2628: 5562: 5537: 5522: 5218: 5083: 5038: 4803: 4348: 4198: 3412: 3092: 3037: 5567: 5512: 5043: 4458: 4173: 4168: 3661: 3477: 3467: 3182: 3042: 2992: 2987: 2962: 2868: 5622: 5223: 5143: 4758: 4723: 4568: 3993: 3953: 3850: 3625: 3377: 3322: 2922: 2633: 2623: 2598: 678: 460:
and Edwin Dorfman elucidated the correct pathway for the reaction mechanism of the Baeyer–Villiger oxidation by using
5597: 5298: 5103: 4538: 4103: 4078: 4018: 3610: 3317: 2967: 3152: 476: 401: 4888: 4423: 3875: 3097: 3062: 2658: 2593: 2425: 525: 457: 315: 134: 5456: 5078: 4138: 4063: 3587: 3422: 3107: 2883: 2843: 2588: 1576: 1540: 126: 5697: 5602: 5336: 5308: 5278: 5193: 5123: 5053: 4973: 4873: 4833: 4528: 4148: 3447: 3442: 2904: 2768: 1546:
Comprehensive Organic Synthesis – Selectivity, Strategy and Efficiency in Modern Organic Chemistry, Volumes 1 – 9
610:
Payne reported that different reagents will give different outcomes when there are more than one functional group
5662: 5532: 5396: 5238: 5098: 4618: 3592: 3142: 3102: 2853: 5552: 5148: 5118: 4993: 4948: 4778: 4688: 4503: 4493: 4323: 3880: 3820: 3785: 3572: 3532: 3307: 3177: 2693: 2683: 2613: 805: 638: 552: 269:
The products of the Baeyer–Villiger oxidation are believed to be controlled through both primary and secondary
5128: 4108: 3132: 2678: 2558: 5341: 2062:
Fürst, Maximilian J. L. J.; Gran-Scheuch, Alejandro; Aalbers, Friso S.; Fraaije, Marco W. (6 December 2019).
809:Świzdor reported that a Baeyer-Villiger monooxygenase could change dehydroepiandrosterone into testololactone 5751: 5632: 5491: 5283: 5208: 5188: 4908: 4858: 4718: 4683: 4623: 4553: 3855: 3835: 3567: 3487: 3382: 3342: 3312: 3247: 3117: 3027: 3017: 2893: 2603: 1195: 682: 603:
catalyst will produce the epoxide from alkenyl ketones, while use of peroxyacetic acid will form the ester.
535:
in the case of the peroxides). Therefore, the reactivity trend shows TFPAA > 4-nitroperbenzoic acid >
517: 448: 387: 270: 2207:"Overriding Traditional Electronic Effects in Biocatalytic Baeyer–Villiger Reactions by Directed Evolution" 5371: 5093: 4843: 4823: 4798: 4748: 4663: 4638: 4593: 4563: 4543: 4513: 4478: 4433: 4408: 4383: 4268: 4193: 3973: 3666: 3602: 3402: 3127: 3047: 2733: 2708: 2485: 2480: 1967: 799: 555:. The peroxides are much less reactive than the peroxyacids. The use of hydrogen peroxide even requires a 521: 57: 5707: 4453: 3077: 1009: 299:) assisted by two or three peroxyacid units enabling the hydroxyl proton to shuttle to its new position. 5293: 5248: 4963: 4933: 4903: 4838: 4818: 4733: 4728: 4693: 4648: 4633: 4628: 4608: 4598: 4533: 4523: 4403: 3923: 3726: 3302: 3257: 3087: 2823: 2543: 2505: 1968:"Molecular Mechanism of Phase I and Phase II Drug-Metabolizing Enzymes: Implications for Detoxification" 745: 505:
Although many different peroxyacids are used for the Baeyer–Villiger oxidation, some of the more common
422: 323: 243: 2753: 2748: 5346: 1935: 1910: 5476: 5426: 5376: 5356: 5203: 5178: 4893: 4883: 4768: 4583: 4578: 4508: 4293: 4093: 4053: 3983: 3948: 3903: 3870: 3736: 3711: 3691: 3512: 3472: 3432: 3397: 3327: 3082: 2952: 2927: 2465: 1072:; Sheldon, R. A. (2004). "The Baeyer-Villiger Reaction: New Developments toward Greener Procedures". 710: 698: 442: 223: 5692: 5682: 5667: 5313: 5288: 5273: 5268: 4998: 4953: 4938: 4828: 4808: 4703: 4588: 4573: 4418: 4363: 4353: 4343: 4318: 4083: 3958: 3933: 3845: 3701: 3686: 3671: 3527: 3492: 3437: 3207: 3057: 3002: 2873: 2788: 2648: 2573: 1381:
Doering, W. von E.; Speers, Louise (1950). "The Peracetic Acid Cleavage of Unsymmetrical Ketones".
749: 702: 532: 343: 227: 2718: 865: 314:
groups are more apt to migrate than primary alkyl groups but less so than secondary alkyl groups.
5431: 5381: 5351: 5213: 5003: 4793: 4678: 4613: 4603: 4368: 4298: 4263: 4258: 4238: 4233: 4178: 4088: 3938: 3800: 3790: 3696: 3482: 3427: 3357: 3277: 3172: 3072: 3007: 2932: 2778: 2643: 2578: 1480: 740: 410: 211: 2563: 2148:"Stabilization of cyclohexanone monooxygenase by computational and experimental library design" 1163: 441:. In this pathway, the peracid attacks the carbonyl carbon, producing what is now known as the 5168: 4488: 4373: 4338: 4303: 4248: 4203: 4163: 4118: 4098: 4048: 4043: 4013: 3998: 3908: 3815: 3751: 3716: 3542: 3417: 3292: 3217: 3197: 3112: 2947: 2942: 2888: 2798: 2703: 2663: 2618: 2500: 2495: 2460: 2412: 2391: 2244: 2226: 2187: 2169: 2128: 2041: 2033: 1997: 1987: 1948: 1940: 1891: 1883: 1848: 1840: 1805: 1797: 1753: 1745: 1709: 1701: 1642: 1550: 1515: 1289: 1218: 1167: 1089: 1043: 983: 939: 911: 869: 720:(FMOs), enzymes that also occur in the human body, functioning within the frontline metabolic 606: 595:. For instance, alkenes in the substrate, particularly when electron-rich, may be oxidized to 580: 548: 5702: 5547: 5517: 5461: 5386: 5318: 5073: 5023: 4868: 4673: 4448: 4443: 4388: 4378: 4153: 3963: 3943: 3913: 3810: 3746: 3731: 3562: 3517: 3507: 3497: 3392: 3372: 3367: 3352: 3347: 3227: 3222: 3162: 3147: 3137: 2982: 2972: 2838: 2828: 2818: 2728: 2723: 2698: 2638: 2490: 2449: 2381: 2371: 2336: 2306: 2276: 2234: 2218: 2177: 2159: 2118: 2108: 2075: 2025: 1979: 1930: 1922: 1875: 1832: 1789: 1737: 1693: 1670: 1634: 1606: 1507: 1472: 1444: 1417: 1390: 1356: 1318: 1281: 1251: 1155: 1136: 1081: 1035: 975: 903: 857: 779:
that served as a crucial building block that ultimately led to the synthesis of zoapatanol.
642: 339: 285:
of the peroxide group. The secondary stereoelectronic effect refers to the necessity of the
187: 159: 43: 5612: 5303: 5138: 5133: 4428: 4413: 4358: 4313: 4273: 4223: 4188: 4183: 4128: 4123: 4058: 4008: 3928: 3756: 3640: 3615: 3577: 3552: 3537: 3522: 3457: 3332: 3282: 3272: 3252: 3212: 3022: 3012: 2997: 2793: 2713: 2538: 2533: 753: 729: 721: 686: 490: 239: 191: 47: 2583: 2553: 2146:
Fürst, Maximilian J. L. J.; Boonstra, Marjon; Bandstra, Selle; Fraaije, Marco W. (2019).
858: 17: 782: 665: 5617: 5527: 5466: 4558: 4468: 4438: 4213: 4068: 3805: 3582: 3452: 3267: 3237: 2937: 2833: 2608: 2470: 2386: 2355: 2239: 2206: 2182: 2147: 2123: 2097:"Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme" 2096: 819: 649:
ketone used dioxygen as the oxidant with a copper catalyst. Other catalysts, including
544: 540: 438: 418: 274: 235: 219: 2340: 2310: 1983: 1610: 5730: 5627: 5328: 5173: 5068: 4863: 4253: 4218: 4208: 4143: 4133: 4023: 3860: 3676: 3387: 3362: 3232: 2878: 2863: 2848: 2743: 2673: 2653: 2568: 1156: 1069: 247: 1484: 1026:
Yamabe, Shinichi (2007). "The Role of Hydrogen Bonds in Baeyer−Villiger Reactions".
4668: 4028: 3780: 3557: 3157: 2957: 2808: 2803: 2668: 2523: 1309:
Renz, Michael; Meunier, Bernard (1999). "100 Years of Baeyer-Villiger Oxidations".
736: 646: 645:
Baeyer–Villiger oxidations. The first reported instance of one such oxidation of a
469: 465: 430: 251: 1926: 1408:
Turner, Richard B. (1950). "Stereochemistry of the Peracid Oxidation of Ketones".
347:
to be antiperiplanar to the peroxide group, enhancing its aptitude for migration.
1272:
Hassall, C. H. (1957). "The Baeyer-Villiger Oxidation of Aldehydes and Ketones".
894:
Krow, Grant R. (1993). "The Baeyer-Villiger Oxidation of Ketones and Aldehydes".
3167: 2813: 2783: 2548: 2327:
Kane, Vinayak V.; Doyle, Donald L. (1981). "Total Synthesis of (±) Zoapatanol".
1285: 907: 758: 568: 320: 310:
The migratory ability is ranked tertiary > secondary > aryl > primary.
277:
to the group that migrates. This orientation facilitates optimum overlap of the
175: 82: 2376: 2029: 5451: 4978: 4328: 2417: 1674: 1255: 414: 278: 215: 2230: 2173: 2113: 2080: 2063: 2037: 1944: 1887: 1844: 1801: 1749: 1705: 1323:
10.1002/(SICI)1099-0690(199904)1999:4<737::AID-EJOC737>3.0.CO;2-B
480:
The different possible outcomes of Dorfman and Doering's labelling experiment
654: 576: 572: 461: 426: 295: 286: 179: 2395: 2248: 2191: 2132: 2045: 2001: 1952: 1895: 1852: 1809: 1757: 1713: 1646: 1519: 1511: 1476: 1093: 1047: 987: 980:
10.1002/1521-3773(20000818)39:16<2851::aid-anie2851>3.0.co;2-y
2858: 2528: 2222: 1742:
10.1002/1521-3765(20021018)8:20<4708::AID-CHEM4708>3.0.CO;2-U
650: 600: 592: 556: 506: 434: 395: 290: 2280: 1911:"Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts" 1909:
van Berkel, W. J. H.; Kamerbeek, N. M.; Fraaije, M. W. (5 August 2006).
1448: 1421: 1394: 1360: 1140: 786:
Kane and Doyle used a Baeyer-Villiger oxidation to synthesize zoapatanol
575:
when performing the Baeyer–Villiger oxidation can cause the undesirable
2518: 796: 776: 697:
first reduces the cofactor, which allows it subsequently to react with
625: 596: 584: 391: 311: 183: 171: 2164: 1879: 1836: 1793: 1638: 1085: 1039: 1697: 701:. The resulting peroxyflavin is the catalytic entity oxygenating the 674: 588: 231: 167: 1239: 713:
water to form oxidized flavin, thereby closing the catalytic cycle.
864:. Burlington; San Diego; London: Elsevier Academic Press. p.  804: 781: 725: 706: 694: 690: 664: 605: 536: 531:(i.e.: stronger acidity) of the corresponding carboxylic acid (or 475: 447: 400: 255: 163: 90: 1776:
Leisch, Hannes; Morley, Krista; Lau, Peter C. K. (13 July 2011).
2064:"Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts" 1778:"Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry" 2902: 2421: 860:
Strategic Applications of Named Reactions in Organic Synthesis
1162:(4th ed.). Canada: W. W. Norton & Company. p.  437:
with no dioxirane formation. Carbon attack was suggested by
349: 329: 301: 260: 196: 936:
Advanced Organic Chemistry: Part B: Reactions and Synthesis
795:
In 2013, Alina Świzdor reported the transformation of the
735:
BVMOs have been widely studied due to their potential as
709:
product, a hydroxyflavin remains, which spontaneously
5593:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
265:
Reaction mechanism of the Baeyer-Villiger oxidation.
5500: 5327: 4962: 4477: 3972: 3889: 3769: 3649: 3601: 2911: 2356:"Baeyer-Villiger Oxidation of Some C19 Steroids by 752:could be applied to produce variants with improved 417:attack – on either the oxygen or the carbon of the 1109:Name Reactions of Functional Group Transformations 938:(5th ed.). New York: Springer. p. 1135. 405:Original reactions reported by Baeyer and Villiger 4654:Divinylcyclopropane-cycloheptadiene rearrangement 1577:"Page 1 The Asymmetric Baeyer-Villiger Oxidation" 1154:Jones, Jr., Maitland; Fleming, Steven A. (2010). 242:leaves. This migration step is thought to be the 934:Carey, Francis A.; Sundberg, Richard J. (2007). 452:Proposed Baeyer-Villiger oxidation intermediates 334:Resonance structures of the Criegee intermediate 4914:Thermal rearrangement of aromatic hydrocarbons 3548:Thermal rearrangement of aromatic hydrocarbons 1543:(1991). Trost, Barry M.; Fleming, Ian (eds.). 1240:"Einwirkung des Caro'schen Reagens auf Ketone" 421:. Attack on oxygen could lead to two possible 5643:Lectka enantioselective beta-lactam synthesis 2433: 8: 5422:Inverse electron-demand Diels–Alder reaction 3243:Heterogeneous metal catalyzed cross-coupling 1342: 1340: 1338: 1336: 1334: 1332: 4764:Lobry de Bruyn–Van Ekenstein transformation 1570: 1568: 1566: 5324: 3598: 2899: 2440: 2426: 2418: 2413:Animation of the Baeyer–Villiger oxidation 1936:11370/99a1ac5c-d4a4-4612-90a3-4fe1d4d03a11 1267: 1265: 1122: 1120: 1118: 929: 927: 520:(TFPAA). The general trend is that higher 342:will migrate. This transition state has a 31: 5254:Petrenko-Kritschenko piperidone synthesis 4709:Fritsch–Buttenberg–Wiechell rearrangement 2385: 2375: 2238: 2181: 2163: 2122: 2112: 2079: 1934: 1771: 1769: 1767: 1376: 1374: 1372: 1370: 1107:Li, Jie Jack; Corey, E. J., eds. (2007). 1063: 1061: 1059: 1057: 493:of the group that transfers, i.e.: it is 194:who first reported the reaction in 1899. 5417:Intramolecular Diels–Alder cycloaddition 2211:Journal of the American Chemical Society 2057: 2055: 1868:Journal of the American Chemical Society 1535: 1533: 1531: 1529: 1383:Journal of the American Chemical Society 1238:Baeyer, Adolf; Villiger, Victor (1899). 1189: 1187: 1185: 1183: 961: 959: 957: 955: 689:(see figure on the right), the cellular 390:to make the corresponding lactones from 68: 2322: 2320: 1500:Angewandte Chemie International Edition 1003: 1001: 999: 997: 851: 849: 847: 845: 843: 841: 839: 837: 835: 831: 5437:Metal-centered cycloaddition reactions 5089:Debus–Radziszewski imidazole synthesis 3033:Bodroux–Chichibabin aldehyde synthesis 2292: 2290: 1215:Reactions, Rearrangements and Reagents 889: 887: 885: 856:Kürti, László; Czakó, Barbara (2005). 5583:Diazoalkane 1,3-dipolar cycloaddition 5487:Vinylcyclopropane (5+2) cycloaddition 5392:Diazoalkane 1,3-dipolar cycloaddition 5164:Hurd–Mori 1,2,3-thiadiazole synthesis 4659:Dowd–Beckwith ring-expansion reaction 3826:Hurd–Mori 1,2,3-thiadiazole synthesis 2739:LFER solvent coefficients (data page) 7: 4394:Sharpless asymmetric dihydroxylation 3631:Methoxymethylenetriphenylphosphorane 633:Asymmetric Baeyer-Villiger oxidation 591:are a few of the groups that can be 234:group migrates to the oxygen of the 4519:Allen–Millar–Trippett rearrangement 1966:Iyanagi, Takashi (1 January 2007). 1010:"Chemistry 115 Handouts: Oxidation" 748:of many BVMOs has been determined, 624:The use of hydrogen peroxide as an 620:Catalytic Baeyer-Villiger oxidation 5658:Nitrone-olefin (3+2) cycloaddition 5653:Niementowski quinazoline synthesis 5442:Nitrone-olefin (3+2) cycloaddition 5367:Azide-alkyne Huisgen cycloaddition 5229:Niementowski quinazoline synthesis 4984:Azide-alkyne Huisgen cycloaddition 4289:Meerwein–Ponndorf–Verley reduction 3841:Leimgruber–Batcho indole synthesis 1111:. Hoboken, NJ: Wiley-Interscience. 489:The migration does not change the 425:: Baeyer and Villiger suggested a 25: 5482:Trimethylenemethane cycloaddition 5184:Johnson–Corey–Chaykovsky reaction 5049:Cadogan–Sundberg indole synthesis 5029:Bohlmann–Rahtz pyridine synthesis 4989:Baeyer–Emmerling indole synthesis 3796:Cadogan–Sundberg indole synthesis 3288:Johnson–Corey–Chaykovsky reaction 716:BVMOs are closely related to the 354:Steric bulk influencing migration 230:, one of the substituents on the 5578:Cook–Heilbron thiazole synthesis 5407:Hexadehydro Diels–Alder reaction 5234:Niementowski quinoline synthesis 5064:Cook–Heilbron thiazole synthesis 5009:Bischler–Möhlau indole synthesis 4919:Tiffeneau–Demjanov rearrangement 4549:Baker–Venkataraman rearrangement 3707:Horner–Wadsworth–Emmons reaction 3378:Mizoroki-Heck vs. Reductive Heck 3263:Horner–Wadsworth–Emmons reaction 2774:Neighbouring group participation 2152:Biotechnology and Bioengineering 1972:International Review of Cytology 1028:The Journal of Organic Chemistry 718:flavin-containing monooxygenases 637:There have been attempts to use 5114:Fiesselmann thiophene synthesis 4944:Westphalen–Lettré rearrangement 4924:Vinylcyclopropane rearrangement 4754:Kornblum–DeLaMare rearrangement 4399:Epoxidation of allylic alcohols 4309:Noyori asymmetric hydrogenation 4244:Kornblum–DeLaMare rearrangement 3919:Gallagher–Hollander degradation 5573:Chichibabin pyridine synthesis 5059:Chichibabin pyridine synthesis 5019:Blum–Ittah aziridine synthesis 4854:Ring expansion and contraction 3123:Cross dehydrogenative coupling 1663:Coordination Chemistry Reviews 1549:. Elsevier. pp. 671–688. 1200:Chemistry 206 (Fall 2006-2007) 730:cytochrome P450 monooxygenases 661:Baeyer-Villiger monooxygenases 433:and Gustav Pieper suggested a 281:of the migrating group to the 186:. The reaction is named after 1: 5543:Bischler–Napieralski reaction 5501:Heterocycle forming reactions 5154:Hemetsberger indole synthesis 5014:Bischler–Napieralski reaction 4929:Wagner–Meerwein rearrangement 4899:Sommelet–Hauser rearrangement 4879:Seyferth–Gilbert homologation 4744:Ireland–Claisen rearrangement 4739:Hofmann–Martius rearrangement 4499:2,3-sigmatropic rearrangement 4114:Corey–Winter olefin synthesis 4039:Barton–McCombie deoxygenation 3682:Corey–Winter olefin synthesis 3636:Seyferth–Gilbert homologation 3503:Seyferth–Gilbert homologation 2341:10.1016/S0040-4039(01)81819-0 2311:10.1016/S0040-4039(01)81818-9 1984:10.1016/S0074-7696(06)60002-8 1927:10.1016/j.jbiotec.2006.03.044 1730:Chemistry: A European Journal 1611:10.1016/S0040-4020(01)92726-7 218:protonates the oxygen of the 5648:Lehmstedt–Tanasescu reaction 5608:Gabriel–Colman rearrangement 5563:Bucherer carbazole synthesis 5558:Borsche–Drechsel cyclization 5538:Bernthsen acridine synthesis 5523:Bamberger triazine synthesis 5508:Algar–Flynn–Oyamada reaction 5219:Nazarov cyclization reaction 5084:De Kimpe aziridine synthesis 5039:Bucherer carbazole synthesis 5034:Borsche–Drechsel cyclization 4804:Nazarov cyclization reaction 4784:Meyer–Schuster rearrangement 4714:Gabriel–Colman rearrangement 4464:Wolffenstein–Böters reaction 4349:Reduction of nitro compounds 4199:Grundmann aldehyde synthesis 4004:Algar–Flynn–Oyamada reaction 3413:Olefin conversion technology 3408:Nozaki–Hiyama–Kishi reaction 3203:Gabriel–Colman rearrangement 3093:Claisen-Schmidt condensation 3038:Bouveault aldehyde synthesis 1196:"Stereoelectronic Effects-2" 174:from a cyclic ketone, using 5742:Organic oxidation reactions 5623:Hantzsch pyridine synthesis 5402:Enone–alkene cycloadditions 5224:Nenitzescu indole synthesis 5144:Hantzsch pyridine synthesis 5109:Ferrario–Ackermann reaction 4759:Kowalski ester homologation 4724:Halogen dance rearrangement 4569:Benzilic acid rearrangement 3994:Akabori amino-acid reaction 3954:Von Braun amide degradation 3899:Barbier–Wieland degradation 3851:Nenitzescu indole synthesis 3831:Kharasch–Sosnovsky reaction 3722:Julia–Kocienski olefination 3626:Kowalski ester homologation 3323:Kowalski ester homologation 3298:Julia–Kocienski olefination 3053:Cadiot–Chodkiewicz coupling 2978:Aza-Baylis–Hillman reaction 2923:Acetoacetic ester synthesis 2634:Dynamic binding (chemistry) 2624:Conrotatory and disrotatory 2599:Charge remote fragmentation 2358:Penicillium lanosocoeruleum 1286:10.1002/0471264180.or009.03 908:10.1002/0471264180.or043.03 746:three-dimensional structure 679:flavin adenine dinucleotide 409:There were three suggested 327:primary trend is observed. 316:Electron-withdrawing groups 5768: 5688:Robinson–Gabriel synthesis 5638:Kröhnke pyridine synthesis 5472:Retro-Diels–Alder reaction 5412:Imine Diels–Alder reaction 5199:Kröhnke pyridine synthesis 4814:Newman–Kwart rearrangement 4789:Mislow–Evans rearrangement 4699:Fischer–Hepp rearrangement 4644:Di-π-methane rearrangement 4424:Stephen aldehyde synthesis 4159:Eschweiler–Clarke reaction 3876:Williamson ether synthesis 3193:Fujiwara–Moritani reaction 3098:Combes quinoline synthesis 3063:Carbonyl olefin metathesis 2764:More O'Ferrall–Jencks plot 2689:Grunwald–Winstein equation 2659:Electron-withdrawing group 2594:Catalytic resonance theory 2377:10.3390/molecules181113812 2030:10.1021/acschembio.5b01016 1978:. Academic Press: 35–112. 1217:(4 ed.). p. 90. 458:William von Eggers Doering 35:Baeyer-Villiger oxidation 5698:Urech hydantoin synthesis 5678:Pomeranz–Fritsch reaction 5603:Fischer oxazole synthesis 5337:1,3-Dipolar cycloaddition 5309:Urech hydantoin synthesis 5279:Reissert indole synthesis 5264:Pomeranz–Fritsch reaction 5194:Knorr quinoline synthesis 5124:Fischer oxazole synthesis 5054:Camps quinoline synthesis 4974:1,3-Dipolar cycloaddition 4874:Semipinacol rearrangement 4849:Ramberg–Bäcklund reaction 4834:Piancatelli rearrangement 4774:McFadyen–Stevens reaction 4529:Alpha-ketol rearrangement 4284:McFadyen–Stevens reaction 4229:Kiliani–Fischer synthesis 4149:Elbs persulfate oxidation 4074:Bouveault–Blanc reduction 4034:Baeyer–Villiger oxidation 3866:Schotten–Baumann reaction 3742:Ramberg–Bäcklund reaction 3621:Kiliani–Fischer synthesis 3463:Ramberg–Bäcklund reaction 3448:Pinacol coupling reaction 3443:Piancatelli rearrangement 3338:Liebeskind–Srogl coupling 3188:Fujimoto–Belleau reaction 2905:List of organic reactions 2769:Negative hyperconjugation 2514: 2456: 1675:10.1016/j.ccr.2017.05.010 1256:10.1002/cber.189903203151 524:is correlated with lower 398:, and tetrahydrocarvone. 210:In the first step of the 201:Baeyer-Villiger oxidation 156:Baeyer–Villiger oxidation 148: 127:baeyer-villiger-oxidation 122:Organic Chemistry Portal 116: 105: 96: 79: 72: 63: 34: 18:Baeyer-Villiger oxidation 5747:Esterification reactions 5673:Pictet–Spengler reaction 5588:Einhorn–Brunner reaction 5553:Boger pyridine synthesis 5447:Oxo-Diels–Alder reaction 5362:Aza-Diels–Alder reaction 5259:Pictet–Spengler reaction 5159:Hofmann–Löffler reaction 5149:Hegedus indole synthesis 5119:Fischer indole synthesis 4994:Bartoli indole synthesis 4949:Willgerodt rearrangement 4779:McLafferty rearrangement 4689:Ferrier carbocyclization 4504:2,3-Wittig rearrangement 4494:1,2-Wittig rearrangement 4334:Parikh–Doering oxidation 4324:Oxygen rebound mechanism 3989:Adkins–Peterson reaction 3881:Yamaguchi esterification 3821:Hegedus indole synthesis 3786:Bartoli indole synthesis 3657:Bamford–Stevens reaction 3573:Weinreb ketone synthesis 3533:Stork enamine alkylation 3308:Knoevenagel condensation 3178:Ferrier carbocyclization 3068:Castro–Stephens coupling 2694:Hammett acidity function 2684:Free-energy relationship 2629:Curtin–Hammett principle 2614:Conformational isomerism 2114:10.1021/acscatal.8b03793 2081:10.1021/acscatal.9b03396 1915:Journal of Biotechnology 639:organometallic catalysts 553:tert-butyl hydroperoxide 306:Stereoelectronic effects 271:stereoelectronic effects 5737:Organic redox reactions 5633:Knorr pyrrole synthesis 5568:Bucherer–Bergs reaction 5513:Allan–Robinson reaction 5492:Wagner-Jauregg reaction 5284:Ring-closing metathesis 5209:Larock indole synthesis 5189:Knorr pyrrole synthesis 5044:Bucherer–Bergs reaction 4909:Stieglitz rearrangement 4889:Skattebøl rearrangement 4859:Ring-closing metathesis 4719:Group transfer reaction 4684:Favorskii rearrangement 4624:Cornforth rearrangement 4554:Bamberger rearrangement 4459:Wolff–Kishner reduction 4279:Markó–Lam deoxygenation 4174:Fleming–Tamao oxidation 4169:Fischer–Tropsch process 3856:Oxymercuration reaction 3836:Knorr pyrrole synthesis 3662:Barton–Kellogg reaction 3568:Wagner-Jauregg reaction 3488:Ring-closing metathesis 3478:Reimer–Tiemann reaction 3468:Rauhut–Currier reaction 3383:Nef isocyanide reaction 3343:Malonic ester synthesis 3313:Knorr pyrrole synthesis 3248:High dilution principle 3183:Friedel–Crafts reaction 3118:Cross-coupling reaction 3043:Bucherer–Bergs reaction 3028:Blanc chloromethylation 3018:Blaise ketone synthesis 2993:Baylis–Hillman reaction 2988:Barton–Kellogg reaction 2963:Allan–Robinson reaction 2869:Woodward–Hoffmann rules 2604:Charge-transfer complex 2354:Świzdor, Alina (2013). 1690:Chemical Communications 518:trifluoroperacetic acid 388:peroxymonosulfuric acid 5598:Feist–Benary synthesis 5372:Bradsher cycloaddition 5342:4+4 Photocycloaddition 5299:Simmons–Smith reaction 5244:Paternò–Büchi reaction 5104:Feist–Benary synthesis 5094:Dieckmann condensation 4844:Pummerer rearrangement 4824:Oxy-Cope rearrangement 4799:Myers allene synthesis 4749:Jacobsen rearrangement 4664:Electrocyclic reaction 4639:Demjanov rearrangement 4594:Buchner ring expansion 4564:Beckmann rearrangement 4544:Aza-Cope rearrangement 4539:Arndt–Eistert reaction 4514:Alkyne zipper reaction 4434:Transfer hydrogenation 4409:Sharpless oxyamination 4384:Selenoxide elimination 4269:Lombardo methylenation 4194:Griesbaum coozonolysis 4104:Corey–Itsuno reduction 4079:Boyland–Sims oxidation 4019:Angeli–Rimini reaction 3667:Boord olefin synthesis 3611:Arndt–Eistert reaction 3603:Homologation reactions 3403:Nitro-Mannich reaction 3318:Kolbe–Schmitt reaction 3128:Cross-coupling partner 3048:Buchner ring expansion 2968:Arndt–Eistert reaction 2734:Kinetic isotope effect 2481:Rearrangement reaction 1512:10.1002/anie.201505648 1477:10.1002/cctc.201000088 810: 800:dehydroepiandrosterone 787: 670: 611: 514:-chloroperbenzoic acid 481: 453: 406: 355: 335: 307: 266: 202: 58:Organic redox reaction 5457:Pauson–Khand reaction 5294:Sharpless epoxidation 5249:Pechmann condensation 5129:Friedländer synthesis 5079:Davis–Beirut reaction 4934:Wallach rearrangement 4904:Stevens rearrangement 4839:Pinacol rearrangement 4819:Overman rearrangement 4734:Hofmann rearrangement 4729:Hayashi rearrangement 4694:Ferrier rearrangement 4649:Dimroth rearrangement 4634:Curtius rearrangement 4629:Criegee rearrangement 4609:Claisen rearrangement 4599:Carroll rearrangement 4534:Amadori rearrangement 4524:Allylic rearrangement 4404:Sharpless epoxidation 4139:Dess–Martin oxidation 4064:Bohn–Schmidt reaction 3924:Hofmann rearrangement 3727:Kauffmann olefination 3650:Olefination reactions 3588:Wurtz–Fittig reaction 3423:Palladium–NHC complex 3303:Kauffmann olefination 3258:Homologation reaction 3108:Corey–House synthesis 3088:Claisen rearrangement 2884:Yukawa–Tsuno equation 2844:Swain–Lupton equation 2824:Spherical aromaticity 2759:Möbius–Hückel concept 2544:Aromatic ring current 2506:Substitution reaction 1244:Ber. Dtsch. Chem. Ges 1213:Sanyal, S.N. (2003). 1015:. Harvard University. 808: 785: 668: 657:compounds, followed. 609: 479: 451: 404: 382:Historical background 353: 333: 305: 289:on the oxygen of the 264: 244:rate determining step 200: 5663:Paal–Knorr synthesis 5533:Barton–Zard reaction 5477:Staudinger synthesis 5427:Ketene cycloaddition 5397:Diels–Alder reaction 5377:Cheletropic reaction 5357:Alkyne trimerisation 5239:Paal–Knorr synthesis 5204:Kulinkovich reaction 5179:Jacobsen epoxidation 5099:Diels–Alder reaction 4894:Smiles rearrangement 4884:Sigmatropic reaction 4769:Lossen rearrangement 4619:Corey–Fuchs reaction 4584:Boekelheide reaction 4579:Bergmann degradation 4509:Achmatowicz reaction 4294:Methionine sulfoxide 4094:Clemmensen reduction 4054:Bergmann degradation 3984:Acyloin condensation 3949:Strecker degradation 3904:Bergmann degradation 3871:Ullmann condensation 3737:Peterson olefination 3712:Hydrazone iodination 3692:Elimination reaction 3593:Zincke–Suhl reaction 3513:Sonogashira coupling 3473:Reformatsky reaction 3433:Peterson olefination 3398:Nierenstein reaction 3328:Kulinkovich reaction 3143:Diels–Alder reaction 3103:Corey–Fuchs reaction 3083:Claisen condensation 2953:Alkyne trimerisation 2928:Acyloin condensation 2894:Σ-bishomoaromaticity 2854:Thorpe–Ingold effect 2466:Elimination reaction 2223:10.1021/jacs.8b04742 2018:ACS Chemical Biology 968:Angew. Chem. Int. Ed 443:Criegee intermediate 429:intermediate, while 224:Criegee intermediate 5683:Prilezhaev reaction 5668:Pellizzari reaction 5347:(4+3) cycloaddition 5314:Van Leusen reaction 5289:Robinson annulation 5274:Pschorr cyclization 5269:Prilezhaev reaction 4999:Bergman cyclization 4954:Wolff rearrangement 4939:Weerman degradation 4829:Pericyclic reaction 4809:Neber rearrangement 4704:Fries rearrangement 4589:Brook rearrangement 4574:Bergman cyclization 4419:Staudinger reaction 4364:Rosenmund reduction 4354:Reductive amination 4319:Oppenauer oxidation 4109:Corey–Kim oxidation 4084:Cannizzaro reaction 3959:Weerman degradation 3934:Isosaccharinic acid 3846:Mukaiyama hydration 3702:Hofmann elimination 3687:Dehydrohalogenation 3672:Chugaev elimination 3493:Robinson annulation 3438:Pfitzinger reaction 3208:Gattermann reaction 3153:Wulff–Dötz reaction 3133:Dakin–West reaction 3058:Carbonyl allylation 3003:Bergman cyclization 2789:Kennedy J. P. Orton 2709:Hammond's postulate 2679:Flippin–Lodge angle 2649:Electromeric effect 2574:Beta-silicon effect 2559:Baker–Nathan effect 2370:(11): 13812–13822. 2281:10.1021/ja00506a057 2217:(33): 10464–10472. 2107:(12): 11648–11656. 2074:(12): 11207–11241. 1831:(37): 11156–11167. 1506:(40): 11848–11851. 1449:10.1021/ja01158a062 1422:10.1021/ja01158a061 1395:10.1021/ja01168a041 1361:10.1021/ja01118a035 1141:10.1021/ja01556a057 411:reaction mechanisms 324:resonance structure 228:concerted mechanism 5432:McCormack reaction 5382:Conia-ene reaction 5214:Madelung synthesis 5004:Biginelli reaction 4794:Mumm rearrangement 4679:Favorskii reaction 4614:Cope rearrangement 4604:Chan rearrangement 4369:Rubottom oxidation 4299:Miyaura borylation 4264:Lipid peroxidation 4259:Lindgren oxidation 4239:Kornblum oxidation 4234:Kolbe electrolysis 4179:Fukuyama reduction 4089:Carbonyl reduction 3939:Marker degradation 3801:Diazonium compound 3791:Boudouard reaction 3770:Carbon-heteroatom 3697:Grieco elimination 3483:Rieche formylation 3428:Passerini reaction 3358:Meerwein arylation 3278:Hydroxymethylation 3173:Favorskii reaction 3073:Chan rearrangement 3008:Biginelli reaction 2933:Aldol condensation 2779:2-Norbornyl cation 2754:Möbius aromaticity 2749:Markovnikov's rule 2644:Effective molarity 2589:Bürgi–Dunitz angle 2579:Bicycloaromaticity 2265:Montanoa tomentosa 1068:ten Brink, G.-J.; 811: 788: 750:enzyme engineering 671: 612: 482: 454: 407: 356: 344:gauche interaction 336: 308: 267: 212:reaction mechanism 206:Reaction mechanism 203: 5724: 5723: 5720: 5719: 5716: 5715: 5708:Wohl–Aue reaction 5352:6+4 Cycloaddition 5169:Iodolactonization 4489:1,2-rearrangement 4454:Wohl–Aue reaction 4374:Sabatier reaction 4339:Pinnick oxidation 4304:Mozingo reduction 4249:Leuckart reaction 4204:Haloform reaction 4119:Criegee oxidation 4099:Collins oxidation 4049:Benkeser reaction 4044:Bechamp reduction 4014:Andrussow process 3999:Alcohol oxidation 3909:Edman degradation 3816:Haloform reaction 3765: 3764: 3752:Takai olefination 3717:Julia olefination 3543:Takai olefination 3418:Olefin metathesis 3293:Julia olefination 3218:Grignard reaction 3198:Fukuyama coupling 3113:Coupling reaction 3078:Chan–Lam coupling 2948:Alkyne metathesis 2943:Alkane metathesis 2799:Phosphaethynolate 2704:George S. Hammond 2664:Electronic effect 2619:Conjugated system 2501:Stereospecificity 2496:Stereoselectivity 2461:Addition reaction 2450:organic reactions 2335:(32): 3031–3034. 2305:(32): 3027–3030. 2275:(12): 3405–3407. 2165:10.1002/bit.27022 1880:10.1021/ja2103839 1837:10.1021/bi011153h 1794:10.1021/cr1003437 1639:10.1021/jo0057710 1556:978-0-08-035930-4 1471:(10): 1296–1302. 1389:(12): 5515–5518. 1355:(22): 5595–5598. 1311:Eur. J. Org. Chem 1274:Organic Reactions 1224:978-81-7709-605-7 1173:978-0-393-93149-5 1158:Organic Chemistry 1135:(23): 6393–6398. 1086:10.1021/cr030011l 1040:10.1021/jo0626562 1008:Myers, Andrew G. 974:(16): 2851–2855. 896:Organic Reactions 875:978-0-12-369483-6 581:functional groups 549:hydrogen peroxide 254:ion produces the 152: 151: 112: 111: 16:(Redirected from 5759: 5703:Wenker synthesis 5693:Stollé synthesis 5548:Bobbitt reaction 5518:Auwers synthesis 5462:Povarov reaction 5387:Cyclopropanation 5325: 5319:Wenker synthesis 5074:Darzens reaction 5024:Bobbitt reaction 4869:Schmidt reaction 4674:Enyne metathesis 4449:Whiting reaction 4444:Wharton reaction 4389:Shapiro reaction 4379:Sarett oxidation 4344:Prévost reaction 4154:Emde degradation 3964:Wohl degradation 3944:Ruff degradation 3914:Emde degradation 3811:Grignard reagent 3747:Shapiro reaction 3732:McMurry reaction 3599: 3563:Ullmann reaction 3528:Stollé synthesis 3518:Stetter reaction 3508:Shapiro reaction 3498:Sakurai reaction 3393:Negishi coupling 3373:Minisci reaction 3368:Michael reaction 3353:McMurry reaction 3348:Mannich reaction 3228:Hammick reaction 3223:Grignard reagent 3163:Enyne metathesis 3148:Doebner reaction 3138:Darzens reaction 2983:Barbier reaction 2973:Auwers synthesis 2900: 2874:Woodward's rules 2839:Superaromaticity 2829:Spiroaromaticity 2729:Inductive effect 2724:Hyperconjugation 2699:Hammett equation 2639:Edwards equation 2491:Regioselectivity 2442: 2435: 2428: 2419: 2400: 2399: 2389: 2379: 2351: 2345: 2344: 2329:Tetrahedron Lett 2324: 2315: 2314: 2299:Tetrahedron Lett 2294: 2285: 2284: 2269:J. Am. Chem. Soc 2259: 2253: 2252: 2242: 2202: 2196: 2195: 2185: 2167: 2158:(9): 2167–2177. 2143: 2137: 2136: 2126: 2116: 2092: 2086: 2085: 2083: 2059: 2050: 2049: 2024:(4): 1039–1048. 2012: 2006: 2005: 1963: 1957: 1956: 1938: 1906: 1900: 1899: 1874:(5): 2732–2741. 1863: 1857: 1856: 1820: 1814: 1813: 1788:(7): 4165–4222. 1782:Chemical Reviews 1773: 1762: 1761: 1724: 1718: 1717: 1698:10.1039/B105927K 1685: 1679: 1678: 1657: 1651: 1650: 1633:(7): 2429–2433. 1621: 1615: 1614: 1594: 1588: 1587: 1584:scs.illinois.edu 1581: 1575:Seymour, Craig. 1572: 1561: 1560: 1537: 1524: 1523: 1495: 1489: 1488: 1459: 1453: 1452: 1437:J. Am. Chem. Soc 1432: 1426: 1425: 1410:J. Am. Chem. Soc 1405: 1399: 1398: 1378: 1365: 1364: 1349:J. Am. Chem. Soc 1344: 1327: 1326: 1306: 1300: 1299: 1269: 1260: 1259: 1250:(3): 3625–3633. 1235: 1229: 1228: 1210: 1204: 1203: 1191: 1178: 1177: 1161: 1151: 1145: 1144: 1129:J. Am. Chem. Soc 1124: 1113: 1112: 1104: 1098: 1097: 1080:(9): 4105–4123. 1070:Arends, W. C. E. 1065: 1052: 1051: 1034:(8): 3031–3041. 1023: 1017: 1016: 1014: 1005: 992: 991: 963: 950: 949: 931: 922: 921: 891: 880: 879: 863: 853: 699:molecular oxygen 643:enantioselective 340:transition state 188:Adolf von Baeyer 160:organic reaction 144: 129: 107:Ester or Lactone 100: 70: 69: 44:Adolf von Baeyer 32: 27:Organic reaction 21: 5767: 5766: 5762: 5761: 5760: 5758: 5757: 5756: 5727: 5726: 5725: 5712: 5613:Gewald reaction 5496: 5323: 5304:Skraup reaction 5139:Graham reaction 5134:Gewald reaction 4965: 4958: 4480: 4473: 4429:Swern oxidation 4414:Stahl oxidation 4359:Riley oxidation 4314:Omega oxidation 4274:Luche reduction 4224:Jones oxidation 4189:Glycol cleavage 4184:Ganem oxidation 4129:Davis oxidation 4124:Dakin oxidation 4059:Birch reduction 4009:Amide reduction 3975: 3968: 3929:Hooker reaction 3891: 3885: 3773: 3771: 3761: 3757:Wittig reaction 3645: 3641:Wittig reaction 3616:Hooker reaction 3597: 3578:Wittig reaction 3553:Thorpe reaction 3538:Suzuki reaction 3523:Stille reaction 3458:Quelet reaction 3333:Kumada coupling 3283:Ivanov reaction 3273:Hydrovinylation 3253:Hiyama coupling 3213:Glaser coupling 3023:Blaise reaction 3013:Bingel reaction 2998:Benary reaction 2915: 2913: 2907: 2898: 2794:Passive binding 2714:Homoaromaticity 2564:Baldwin's rules 2539:Antiaromaticity 2534:Anomeric effect 2510: 2452: 2446: 2409: 2404: 2403: 2353: 2352: 2348: 2326: 2325: 2318: 2296: 2295: 2288: 2261: 2260: 2256: 2204: 2203: 2199: 2145: 2144: 2140: 2094: 2093: 2089: 2061: 2060: 2053: 2014: 2013: 2009: 1994: 1965: 1964: 1960: 1908: 1907: 1903: 1865: 1864: 1860: 1822: 1821: 1817: 1775: 1774: 1765: 1736:(20): 4708–17. 1726: 1725: 1721: 1687: 1686: 1682: 1659: 1658: 1654: 1623: 1622: 1618: 1596: 1595: 1591: 1579: 1574: 1573: 1564: 1557: 1539: 1538: 1527: 1497: 1496: 1492: 1461: 1460: 1456: 1434: 1433: 1429: 1407: 1406: 1402: 1380: 1379: 1368: 1346: 1345: 1330: 1308: 1307: 1303: 1296: 1271: 1270: 1263: 1237: 1236: 1232: 1225: 1212: 1211: 1207: 1193: 1192: 1181: 1174: 1153: 1152: 1148: 1126: 1125: 1116: 1106: 1105: 1101: 1067: 1066: 1055: 1025: 1024: 1020: 1012: 1007: 1006: 995: 965: 964: 953: 946: 933: 932: 925: 918: 893: 892: 883: 876: 855: 854: 833: 828: 816: 793: 772: 767: 754:thermostability 687:catalytic cycle 663: 635: 622: 617: 565: 529: 503: 495:stereoretentive 491:stereochemistry 487: 485:Stereochemistry 384: 377: 373: 369: 365: 361: 240:carboxylic acid 208: 192:Victor Villiger 140: 125: 98: 86: 81: 48:Victor Villiger 46: 28: 23: 22: 15: 12: 11: 5: 5765: 5763: 5755: 5754: 5752:Name reactions 5749: 5744: 5739: 5729: 5728: 5722: 5721: 5718: 5717: 5714: 5713: 5711: 5710: 5705: 5700: 5695: 5690: 5685: 5680: 5675: 5670: 5665: 5660: 5655: 5650: 5645: 5640: 5635: 5630: 5625: 5620: 5618:Hantzsch ester 5615: 5610: 5605: 5600: 5595: 5590: 5585: 5580: 5575: 5570: 5565: 5560: 5555: 5550: 5545: 5540: 5535: 5530: 5528:Banert cascade 5525: 5520: 5515: 5510: 5504: 5502: 5498: 5497: 5495: 5494: 5489: 5484: 5479: 5474: 5469: 5467:Prato reaction 5464: 5459: 5454: 5449: 5444: 5439: 5434: 5429: 5424: 5419: 5414: 5409: 5404: 5399: 5394: 5389: 5384: 5379: 5374: 5369: 5364: 5359: 5354: 5349: 5344: 5339: 5333: 5331: 5322: 5321: 5316: 5311: 5306: 5301: 5296: 5291: 5286: 5281: 5276: 5271: 5266: 5261: 5256: 5251: 5246: 5241: 5236: 5231: 5226: 5221: 5216: 5211: 5206: 5201: 5196: 5191: 5186: 5181: 5176: 5171: 5166: 5161: 5156: 5151: 5146: 5141: 5136: 5131: 5126: 5121: 5116: 5111: 5106: 5101: 5096: 5091: 5086: 5081: 5076: 5071: 5066: 5061: 5056: 5051: 5046: 5041: 5036: 5031: 5026: 5021: 5016: 5011: 5006: 5001: 4996: 4991: 4986: 4981: 4976: 4970: 4968: 4960: 4959: 4957: 4956: 4951: 4946: 4941: 4936: 4931: 4926: 4921: 4916: 4911: 4906: 4901: 4896: 4891: 4886: 4881: 4876: 4871: 4866: 4861: 4856: 4851: 4846: 4841: 4836: 4831: 4826: 4821: 4816: 4811: 4806: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4696: 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4591: 4586: 4581: 4576: 4571: 4566: 4561: 4559:Banert cascade 4556: 4551: 4546: 4541: 4536: 4531: 4526: 4521: 4516: 4511: 4506: 4501: 4496: 4491: 4485: 4483: 4479:Rearrangement 4475: 4474: 4472: 4471: 4469:Zinin reaction 4466: 4461: 4456: 4451: 4446: 4441: 4439:Wacker process 4436: 4431: 4426: 4421: 4416: 4411: 4406: 4401: 4396: 4391: 4386: 4381: 4376: 4371: 4366: 4361: 4356: 4351: 4346: 4341: 4336: 4331: 4326: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4214:Hydrogenolysis 4211: 4206: 4201: 4196: 4191: 4186: 4181: 4176: 4171: 4166: 4164:Étard reaction 4161: 4156: 4151: 4146: 4141: 4136: 4131: 4126: 4121: 4116: 4111: 4106: 4101: 4096: 4091: 4086: 4081: 4076: 4071: 4069:Bosch reaction 4066: 4061: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4011: 4006: 4001: 3996: 3991: 3986: 3980: 3978: 3974:Organic redox 3970: 3969: 3967: 3966: 3961: 3956: 3951: 3946: 3941: 3936: 3931: 3926: 3921: 3916: 3911: 3906: 3901: 3895: 3893: 3887: 3886: 3884: 3883: 3878: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3838: 3833: 3828: 3823: 3818: 3813: 3808: 3806:Esterification 3803: 3798: 3793: 3788: 3783: 3777: 3775: 3767: 3766: 3763: 3762: 3760: 3759: 3754: 3749: 3744: 3739: 3734: 3729: 3724: 3719: 3714: 3709: 3704: 3699: 3694: 3689: 3684: 3679: 3674: 3669: 3664: 3659: 3653: 3651: 3647: 3646: 3644: 3643: 3638: 3633: 3628: 3623: 3618: 3613: 3607: 3605: 3596: 3595: 3590: 3585: 3583:Wurtz reaction 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3510: 3505: 3500: 3495: 3490: 3485: 3480: 3475: 3470: 3465: 3460: 3455: 3453:Prins reaction 3450: 3445: 3440: 3435: 3430: 3425: 3420: 3415: 3410: 3405: 3400: 3395: 3390: 3385: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3345: 3340: 3335: 3330: 3325: 3320: 3315: 3310: 3305: 3300: 3295: 3290: 3285: 3280: 3275: 3270: 3268:Hydrocyanation 3265: 3260: 3255: 3250: 3245: 3240: 3238:Henry reaction 3235: 3230: 3225: 3220: 3215: 3210: 3205: 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3090: 3085: 3080: 3075: 3070: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3020: 3015: 3010: 3005: 3000: 2995: 2990: 2985: 2980: 2975: 2970: 2965: 2960: 2955: 2950: 2945: 2940: 2938:Aldol reaction 2935: 2930: 2925: 2919: 2917: 2912:Carbon-carbon 2909: 2908: 2903: 2897: 2896: 2891: 2889:Zaitsev's rule 2886: 2881: 2876: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2834:Steric effects 2831: 2826: 2821: 2816: 2811: 2806: 2801: 2796: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2531: 2526: 2521: 2515: 2512: 2511: 2509: 2508: 2503: 2498: 2493: 2488: 2486:Redox reaction 2483: 2478: 2473: 2471:Polymerization 2468: 2463: 2457: 2454: 2453: 2447: 2445: 2444: 2437: 2430: 2422: 2416: 2415: 2408: 2407:External links 2405: 2402: 2401: 2346: 2316: 2286: 2254: 2197: 2138: 2087: 2051: 2007: 1992: 1958: 1921:(4): 670–689. 1901: 1858: 1815: 1763: 1719: 1692:(21): 2190–1. 1680: 1652: 1616: 1605:(6): 763–765. 1589: 1562: 1555: 1525: 1490: 1454: 1443:(2): 882–885. 1427: 1416:(2): 878–882. 1400: 1366: 1328: 1317:(4): 737–750. 1301: 1294: 1261: 1230: 1223: 1205: 1179: 1172: 1146: 1114: 1099: 1053: 1018: 993: 951: 945:978-0387683546 944: 923: 916: 902:(3): 251–798. 881: 874: 830: 829: 827: 824: 823: 822: 820:Dakin reaction 815: 812: 792: 789: 771: 768: 766: 763: 724:system of the 722:detoxification 662: 659: 634: 631: 621: 618: 616: 613: 564: 561: 545:peracetic acid 541:performic acid 527: 502: 499: 486: 483: 464:-labelling of 439:Rudolf Criegee 419:carbonyl group 383: 380: 375: 371: 367: 363: 359: 275:antiperiplanar 236:peroxide group 220:carbonyl group 207: 204: 162:that forms an 150: 149: 146: 145: 138: 131: 130: 123: 119: 118: 114: 113: 110: 109: 103: 102: 94: 93: 84: 77: 76: 66: 65: 61: 60: 55: 54:Reaction type 51: 50: 41: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5764: 5753: 5750: 5748: 5745: 5743: 5740: 5738: 5735: 5734: 5732: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5689: 5686: 5684: 5681: 5679: 5676: 5674: 5671: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5649: 5646: 5644: 5641: 5639: 5636: 5634: 5631: 5629: 5628:Herz reaction 5626: 5624: 5621: 5619: 5616: 5614: 5611: 5609: 5606: 5604: 5601: 5599: 5596: 5594: 5591: 5589: 5586: 5584: 5581: 5579: 5576: 5574: 5571: 5569: 5566: 5564: 5561: 5559: 5556: 5554: 5551: 5549: 5546: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5505: 5503: 5499: 5493: 5490: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5468: 5465: 5463: 5460: 5458: 5455: 5453: 5450: 5448: 5445: 5443: 5440: 5438: 5435: 5433: 5430: 5428: 5425: 5423: 5420: 5418: 5415: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5383: 5380: 5378: 5375: 5373: 5370: 5368: 5365: 5363: 5360: 5358: 5355: 5353: 5350: 5348: 5345: 5343: 5340: 5338: 5335: 5334: 5332: 5330: 5329:Cycloaddition 5326: 5320: 5317: 5315: 5312: 5310: 5307: 5305: 5302: 5300: 5297: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5215: 5212: 5210: 5207: 5205: 5202: 5200: 5197: 5195: 5192: 5190: 5187: 5185: 5182: 5180: 5177: 5175: 5174:Isay reaction 5172: 5170: 5167: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5132: 5130: 5127: 5125: 5122: 5120: 5117: 5115: 5112: 5110: 5107: 5105: 5102: 5100: 5097: 5095: 5092: 5090: 5087: 5085: 5082: 5080: 5077: 5075: 5072: 5070: 5069:Cycloaddition 5067: 5065: 5062: 5060: 5057: 5055: 5052: 5050: 5047: 5045: 5042: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5007: 5005: 5002: 5000: 4997: 4995: 4992: 4990: 4987: 4985: 4982: 4980: 4977: 4975: 4972: 4971: 4969: 4967: 4964:Ring forming 4961: 4955: 4952: 4950: 4947: 4945: 4942: 4940: 4937: 4935: 4932: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4870: 4867: 4865: 4864:Rupe reaction 4862: 4860: 4857: 4855: 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4832: 4830: 4827: 4825: 4822: 4820: 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4486: 4484: 4482: 4476: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4445: 4442: 4440: 4437: 4435: 4432: 4430: 4427: 4425: 4422: 4420: 4417: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4365: 4362: 4360: 4357: 4355: 4352: 4350: 4347: 4345: 4342: 4340: 4337: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4254:Ley oxidation 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4219:Hydroxylation 4217: 4215: 4212: 4210: 4209:Hydrogenation 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4185: 4182: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4157: 4155: 4152: 4150: 4147: 4145: 4144:DNA oxidation 4142: 4140: 4137: 4135: 4134:Deoxygenation 4132: 4130: 4127: 4125: 4122: 4120: 4117: 4115: 4112: 4110: 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4090: 4087: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4024:Aromatization 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3981: 3979: 3977: 3971: 3965: 3962: 3960: 3957: 3955: 3952: 3950: 3947: 3945: 3942: 3940: 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3896: 3894: 3888: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3861:Reed reaction 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3782: 3779: 3778: 3776: 3772:bond forming 3768: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3713: 3710: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3677:Cope reaction 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3655: 3654: 3652: 3648: 3642: 3639: 3637: 3634: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3608: 3606: 3604: 3600: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3388:Nef synthesis 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3363:Methylenation 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3286: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3233:Heck reaction 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2929: 2926: 2924: 2921: 2920: 2918: 2914:bond forming 2910: 2906: 2901: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2879:Y-aromaticity 2877: 2875: 2872: 2870: 2867: 2865: 2864:Walsh diagram 2862: 2860: 2857: 2855: 2852: 2850: 2849:Taft equation 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2819:Σ-aromaticity 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2744:Marcus theory 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2719:Hückel's rule 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2674:Evelyn effect 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2654:Electron-rich 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2569:Bema Hapothle 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2516: 2513: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2458: 2455: 2451: 2443: 2438: 2436: 2431: 2429: 2424: 2423: 2420: 2414: 2411: 2410: 2406: 2397: 2393: 2388: 2383: 2378: 2373: 2369: 2365: 2361: 2359: 2350: 2347: 2342: 2338: 2334: 2330: 2323: 2321: 2317: 2312: 2308: 2304: 2300: 2293: 2291: 2287: 2282: 2278: 2274: 2270: 2266: 2258: 2255: 2250: 2246: 2241: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2201: 2198: 2193: 2189: 2184: 2179: 2175: 2171: 2166: 2161: 2157: 2153: 2149: 2142: 2139: 2134: 2130: 2125: 2120: 2115: 2110: 2106: 2102: 2101:ACS Catalysis 2098: 2091: 2088: 2082: 2077: 2073: 2069: 2068:ACS Catalysis 2065: 2058: 2056: 2052: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2011: 2008: 2003: 1999: 1995: 1993:9780123741141 1989: 1985: 1981: 1977: 1973: 1969: 1962: 1959: 1954: 1950: 1946: 1942: 1937: 1932: 1928: 1924: 1920: 1916: 1912: 1905: 1902: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1862: 1859: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1819: 1816: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1772: 1770: 1768: 1764: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1723: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1684: 1681: 1676: 1672: 1668: 1664: 1656: 1653: 1648: 1644: 1640: 1636: 1632: 1628: 1620: 1617: 1612: 1608: 1604: 1600: 1593: 1590: 1585: 1578: 1571: 1569: 1567: 1563: 1558: 1552: 1548: 1547: 1542: 1541:Grant R. Krow 1536: 1534: 1532: 1530: 1526: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1491: 1486: 1482: 1478: 1474: 1470: 1466: 1458: 1455: 1450: 1446: 1442: 1438: 1431: 1428: 1423: 1419: 1415: 1411: 1404: 1401: 1396: 1392: 1388: 1384: 1377: 1375: 1373: 1371: 1367: 1362: 1358: 1354: 1350: 1343: 1341: 1339: 1337: 1335: 1333: 1329: 1324: 1320: 1316: 1312: 1305: 1302: 1297: 1291: 1287: 1283: 1280:(3): 73–106. 1279: 1275: 1268: 1266: 1262: 1257: 1253: 1249: 1245: 1241: 1234: 1231: 1226: 1220: 1216: 1209: 1206: 1201: 1197: 1194:Evans, D. A. 1190: 1188: 1186: 1184: 1180: 1175: 1169: 1165: 1160: 1159: 1150: 1147: 1142: 1138: 1134: 1130: 1123: 1121: 1119: 1115: 1110: 1103: 1100: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1062: 1060: 1058: 1054: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1019: 1011: 1004: 1002: 1000: 998: 994: 989: 985: 981: 977: 973: 969: 962: 960: 958: 956: 952: 947: 941: 937: 930: 928: 924: 919: 913: 909: 905: 901: 897: 890: 888: 886: 882: 877: 871: 867: 862: 861: 852: 850: 848: 846: 844: 842: 840: 838: 836: 832: 825: 821: 818: 817: 813: 807: 803: 801: 798: 790: 784: 780: 778: 769: 764: 762: 760: 755: 751: 747: 742: 738: 733: 731: 727: 723: 719: 714: 712: 708: 704: 700: 696: 692: 688: 684: 680: 676: 667: 660: 658: 656: 652: 648: 644: 640: 632: 630: 627: 619: 615:Modifications 614: 608: 604: 602: 598: 594: 590: 586: 582: 578: 574: 570: 562: 560: 558: 554: 550: 546: 542: 538: 534: 530: 523: 519: 515: 513: 508: 500: 498: 496: 492: 484: 478: 474: 471: 467: 463: 459: 450: 446: 444: 440: 436: 432: 428: 424: 423:intermediates 420: 416: 412: 403: 399: 397: 393: 389: 381: 379: 378:as reagents. 352: 348: 345: 341: 332: 328: 325: 322: 317: 313: 304: 300: 298: 297: 292: 288: 284: 280: 276: 272: 263: 259: 257: 253: 249: 248:deprotonation 245: 241: 237: 233: 229: 225: 221: 217: 213: 205: 199: 195: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 147: 143: 139: 136: 133: 132: 128: 124: 121: 120: 115: 108: 104: 101: 95: 92: 88: 78: 75: 71: 67: 62: 59: 56: 53: 52: 49: 45: 42: 39: 38: 33: 30: 19: 4669:Ene reaction 4033: 4029:Autoxidation 3890:Degradation 3781:Azo coupling 3558:Ugi reaction 3158:Ene reaction 2958:Alkynylation 2809:Polyfluorene 2804:Polar effect 2669:Electrophile 2584:Bredt's rule 2554:Baird's rule 2524:Alpha effect 2367: 2363: 2357: 2349: 2332: 2328: 2302: 2298: 2272: 2268: 2264: 2257: 2214: 2210: 2200: 2155: 2151: 2141: 2104: 2100: 2090: 2071: 2067: 2021: 2017: 2010: 1975: 1971: 1961: 1918: 1914: 1904: 1871: 1867: 1861: 1828: 1825:Biochemistry 1824: 1818: 1785: 1781: 1733: 1729: 1722: 1689: 1683: 1666: 1662: 1655: 1630: 1627:J. Org. Chem 1626: 1619: 1602: 1598: 1592: 1583: 1545: 1503: 1499: 1493: 1468: 1464: 1457: 1440: 1436: 1430: 1413: 1409: 1403: 1386: 1382: 1352: 1348: 1314: 1310: 1304: 1277: 1273: 1247: 1243: 1233: 1214: 1208: 1199: 1157: 1149: 1132: 1128: 1108: 1102: 1077: 1073: 1031: 1027: 1021: 971: 967: 935: 899: 895: 859: 794: 773: 765:Applications 737:biocatalysts 734: 715: 672: 636: 623: 566: 516:(mCPBA) and 511: 504: 494: 488: 470:alkoxy group 466:benzophenone 455: 431:Georg Wittig 408: 385: 357: 337: 309: 294: 268: 252:oxocarbenium 226:. Through a 209: 155: 153: 142:RXNO:0000031 137:ontology ID 117:Identifiers 106: 97: 73: 40:Named after 29: 3168:Ethenolysis 2814:Ring strain 2784:Nucleophile 2609:Clar's rule 2549:Aromaticity 1669:: 220–255. 1599:Tetrahedron 1465:ChemCatChem 759:active site 693:equivalent 673:In nature, 641:to perform 569:peroxyacids 567:The use of 563:Limitations 321:carbocation 283:𝛔* orbital 246:. Finally, 176:peroxyacids 5731:Categories 5452:Ozonolysis 4979:Annulation 4329:Ozonolysis 2448:Topics in 2263:Zoapatle ( 1295:0471264180 917:0471264180 826:References 770:Zoapatanol 728:along the 711:eliminates 522:reactivity 415:peroxyacid 279:𝛔 orbital 216:peroxyacid 4966:reactions 4481:reactions 3976:reactions 3892:reactions 3774:reactions 2916:reactions 2364:Molecules 2231:0002-7863 2174:1097-0290 2038:1554-8929 1945:0168-1656 1888:0002-7863 1845:0006-2960 1802:0009-2665 1750:1521-3765 1706:1364-548X 1074:Chem. Rev 703:substrate 685:. In the 647:prochiral 579:of other 577:oxidation 573:peroxides 462:oxygen-18 456:In 1953, 427:dioxirane 296:in silico 287:lone pair 180:peroxides 64:Reaction 2859:Vinylogy 2529:Annulene 2476:Reagents 2396:24213656 2249:30044629 2192:31124128 2133:30687578 2046:26771671 2002:17482904 1953:16712999 1896:22239272 1853:11551214 1810:21542563 1758:12561111 1714:12240094 1647:11281784 1520:26267787 1485:98508888 1094:15352787 1048:17367197 988:11027987 814:See also 791:Steroids 741:homologs 683:cofactor 655:aluminum 651:platinum 601:selenium 597:epoxides 593:oxidized 557:catalyst 509:include 507:oxidants 501:Reagents 435:peroxide 396:menthone 291:hydroxyl 238:while a 2519:A value 2387:6270215 2240:6314816 2183:6836875 2124:6345240 797:steroid 777:lactone 675:enzymes 626:oxidant 585:Alkenes 533:alcohol 392:camphor 366:H or BF 312:Allylic 250:of the 184:oxidant 182:as the 172:lactone 166:from a 2394:  2384:  2247:  2237:  2229:  2190:  2180:  2172:  2131:  2121:  2044:  2036:  2000:  1990:  1951:  1943:  1894:  1886:  1851:  1843:  1808:  1800:  1756:  1748:  1712:  1704:  1645:  1553:  1518:  1483:  1292:  1221:  1170:  1092:  1046:  986:  942:  914:  872:  681:(FAD) 589:amines 232:ketone 214:, the 168:ketone 158:is an 74:Ketone 1580:(PDF) 1481:S2CID 1013:(PDF) 726:liver 707:ester 695:NADPH 691:redox 551:> 547:> 543:> 537:mCPBA 256:ester 170:or a 164:ester 91:mCPBA 2392:PMID 2267:)". 2245:PMID 2227:ISSN 2188:PMID 2170:ISSN 2129:PMID 2042:PMID 2034:ISSN 1998:PMID 1988:ISBN 1949:PMID 1941:ISSN 1892:PMID 1884:ISSN 1849:PMID 1841:ISSN 1806:PMID 1798:ISSN 1754:PMID 1746:ISSN 1710:PMID 1702:ISSN 1643:PMID 1551:ISBN 1516:PMID 1315:1999 1290:ISBN 1219:ISBN 1168:ISBN 1090:PMID 1044:PMID 984:PMID 940:ISBN 912:ISBN 870:ISBN 653:and 587:and 571:and 539:and 512:meta 190:and 154:The 2382:PMC 2372:doi 2337:doi 2307:doi 2277:doi 2273:101 2235:PMC 2219:doi 2215:140 2178:PMC 2160:doi 2156:116 2119:PMC 2109:doi 2076:doi 2026:doi 1980:doi 1976:260 1931:hdl 1923:doi 1919:124 1876:doi 1872:134 1833:doi 1790:doi 1786:111 1738:doi 1694:doi 1671:doi 1667:343 1635:doi 1607:doi 1508:doi 1473:doi 1445:doi 1418:doi 1391:doi 1357:doi 1319:doi 1282:doi 1252:doi 1164:293 1137:doi 1082:doi 1078:104 1036:doi 976:doi 904:doi 370:+ H 178:or 135:RSC 89:or 83:RCO 5733:: 2390:. 2380:. 2368:18 2366:. 2362:. 2333:22 2331:. 2319:^ 2303:22 2301:. 2289:^ 2271:. 2243:. 2233:. 2225:. 2213:. 2209:. 2186:. 2176:. 2168:. 2154:. 2150:. 2127:. 2117:. 2103:. 2099:. 2070:. 2066:. 2054:^ 2040:. 2032:. 2022:11 2020:. 1996:. 1986:. 1974:. 1970:. 1947:. 1939:. 1929:. 1917:. 1913:. 1890:. 1882:. 1870:. 1847:. 1839:. 1829:40 1827:. 1804:. 1796:. 1784:. 1780:. 1766:^ 1752:. 1744:. 1732:. 1708:. 1700:. 1665:. 1641:. 1631:66 1629:. 1603:18 1601:. 1582:. 1565:^ 1528:^ 1514:. 1504:54 1502:. 1479:. 1467:. 1441:72 1439:. 1414:72 1412:. 1387:72 1385:. 1369:^ 1353:75 1351:. 1331:^ 1313:. 1288:. 1276:. 1264:^ 1248:32 1246:. 1242:. 1198:. 1182:^ 1166:. 1133:80 1131:. 1117:^ 1088:. 1076:. 1056:^ 1042:. 1032:72 1030:. 996:^ 982:. 972:39 970:. 954:^ 926:^ 910:. 900:43 898:. 884:^ 868:. 866:28 834:^ 761:. 583:. 526:pK 497:. 445:. 394:, 362:CO 258:. 2441:e 2434:t 2427:v 2398:. 2374:: 2360:" 2343:. 2339:: 2313:. 2309:: 2283:. 2279:: 2251:. 2221:: 2194:. 2162:: 2135:. 2111:: 2105:8 2084:. 2078:: 2072:9 2048:. 2028:: 2004:. 1982:: 1955:. 1933:: 1925:: 1898:. 1878:: 1855:. 1835:: 1812:. 1792:: 1760:. 1740:: 1734:8 1716:. 1696:: 1677:. 1673:: 1649:. 1637:: 1613:. 1609:: 1586:. 1559:. 1522:. 1510:: 1487:. 1475:: 1469:2 1451:. 1447:: 1424:. 1420:: 1397:. 1393:: 1363:. 1359:: 1325:. 1321:: 1298:. 1284:: 1278:9 1258:. 1254:: 1227:. 1202:. 1176:. 1143:. 1139:: 1096:. 1084:: 1050:. 1038:: 990:. 978:: 948:. 920:. 906:: 878:. 528:a 376:2 374:O 372:2 368:3 364:3 360:3 99:↓ 87:H 85:3 80:+ 20:)

Index

Baeyer-Villiger oxidation
Adolf von Baeyer
Victor Villiger
Organic redox reaction
RCO3H
mCPBA
baeyer-villiger-oxidation
RSC
RXNO:0000031
organic reaction
ester
ketone
lactone
peroxyacids
peroxides
oxidant
Adolf von Baeyer
Victor Villiger
Baeyer-Villiger oxidation
reaction mechanism
peroxyacid
carbonyl group
Criegee intermediate
concerted mechanism
ketone
peroxide group
carboxylic acid
rate determining step
deprotonation
oxocarbenium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.