Knowledge (XXG)

Band gap

Source 📝

479:
lowest energy state in the conduction band and the highest energy state of the valence band of a material have the same value, then the material has a direct bandgap. If they are not the same, then the material has an indirect band gap and the electronic transition must undergo momentum transfer to satisfy conservation. Such indirect "forbidden" transitions still occur, however at very low probabilities and weaker energy. For materials with a direct band gap, valence electrons can be directly excited into the conduction band by a photon whose energy is larger than the bandgap. In contrast, for materials with an indirect band gap, a photon and
45: 533: 183: 541:
electrons across the band gap, and the rest is wasted. The semiconductors commonly used in commercial solar cells have band gaps near the peak of this curve, as it occurs in silicon-based cells. The Shockley–Queisser limit has been exceeded experimentally by combining materials with different band gap energies to make, for example,
198:. This variation in band structure is responsible for the wide range of electrical characteristics observed in various materials. Depending on the dimension, the band structure and spectroscopy can vary. The different types of dimensions are as listed: one dimension, two dimensions, and three dimensions. 821:
binding energy, it is possible for a photon to have just barely enough energy to create an exciton (bound electron–hole pair), but not enough energy to separate the electron and hole (which are electrically attracted to each other). In this situation, there is a distinction between "optical band gap"
553:
absorbs. Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell. One way to circumvent this problem is based on the so-called
540:
gives the maximum possible efficiency of a single-junction solar cell under un-concentrated sunlight, as a function of the semiconductor band gap. If the band gap is too high, most daylight photons cannot be absorbed; if it is too low, then most photons have much more energy than necessary to excite
829:
In almost all inorganic semiconductors, such as silicon, gallium arsenide, etc., there is very little interaction between electrons and holes (very small exciton binding energy), and therefore the optical and electronic bandgap are essentially identical, and the distinction between them is ignored.
463:
Two-dimensional structures of solids behave because of the overlap of atomic orbitals. The simplest two-dimensional crystal contains identical atoms arranged on a square lattice. Energy splitting occurs at the Brillouin zone edge for one-dimensional situations because of a weak periodic potential,
478:
Based on their band structure, materials are characterised with a direct band gap or indirect band gap. In the free-electron model, k is the momentum of a free electron and assumes unique values within the Brillouin zone that outlines the periodicity of the crystal lattice. If the momentum of the
443:
It was mentioned earlier that the dimensions have different band structure and spectroscopy. For non-metallic solids, which are one dimensional, have optical properties that are dependent on the electronic transitions between valence and conduction bands. In addition, the spectroscopic transition
291:
The distinction between semiconductors and insulators is a matter of convention. One approach is to think of semiconductors as a type of insulator with a narrow band gap. Insulators with a larger band gap, usually greater than 4 eV, are not considered semiconductors and generally do not exhibit
149:
in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net
209:
of energy, and forbidden from other regions because there are no allowable electronic states for them to occupy. The term "band gap" refers to the energy difference between the top of the valence band and the bottom of the conduction band. Electrons are able to jump from one band to another.
417:
Furthermore, lattice vibrations increase with temperature, which increases the effect of electron scattering. Additionally, the number of charge carriers within a semiconductor will increase, as more carriers have the energy required to cross the band-gap threshold and so conductivity of
464:
which produces a gap between bands. The behavior of the one-dimensional situations does not occur for two-dimensional cases because there are extra freedoms of motion. Furthermore, a bandgap can be produced with strong periodic potential for two-dimensional and three-dimensional cases.
517:
usually emit photons with energy close to and slightly larger than the band gap of the semiconductor material from which they are made. Therefore, as the band gap energy increases, the LED or laser color changes from infrared to red, through the rainbow to violet, then to UV.
229:
is a material with an intermediate-sized, non-zero band gap that behaves as an insulator at T=0K, but allows thermal excitation of electrons into its conduction band at temperatures that are below its melting point. In contrast, a material with a large band gap is an
48:
Graph of carbon atoms being brought together to form a diamond crystal, demonstrating formation of the electronic band structure and band gap. The right graph shows the energy levels as a function of the spacing between atoms. When far apart
299:
The band-gap energy of semiconductors tends to decrease with increasing temperature. When temperature increases, the amplitude of atomic vibrations increase, leading to larger interatomic spacing. The interaction between the lattice
404: 850:, band gaps or stop bands are ranges of photon frequencies where, if tunneling effects are neglected, no photons can be transmitted through a material. A material exhibiting this behaviour is known as a 822:
and "electronic band gap" (or "transport gap"). The optical bandgap is the threshold for photons to be absorbed, while the transport gap is the threshold for creating an electron–hole pair that is
77:
is such a large number, adjacent orbitals are extremely close together in energy so the orbitals can be considered a continuous energy band. At the actual diamond crystal cell size (denoted by
1483:
Feneberg, Martin; Leute, Robert A. R.; Neuschl, Benjamin; Thonke, Klaus; Bickermann, Matthias (16 August 2010). "High-excitation and high-resolution photoluminescence spectra of bulk AlN".
418:
semiconductors also increases with increasing temperature. The external pressure also influences the electronic structure of semiconductors and, therefore, their optical band gaps.
249:
is strongly dependent on the band gap. The only available charge carriers for conduction are the electrons that have enough thermal energy to be excited across the band gap and the
210:
However, in order for a valence band electron to be promoted to the conduction band, it requires a specific minimum amount of energy for the transition. This required energy is an
1523: 304:
and the free electrons and holes will also affect the band gap to a smaller extent. The relationship between band gap energy and temperature can be described by
425:
crystal, the band gap is size dependent and can be altered to produce a range of energies between the valence band and conduction band. It is also known as
1278: 150:
charge carrier mobility. However, if some electrons transfer from the valence band (mostly full) to the conduction band (mostly empty), then current
256:
Band-gap engineering is the process of controlling or altering the band gap of a material by controlling the composition of certain semiconductor
137:. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron (and the 1335: 1125:"A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors" 155: 2016: 2001: 1760:
Xie, R.; Long, G. G.; Weigand, S. J.; Moss, S. C.; Carvalho, T.; Roorda, S.; Hejna, M.; Torquato, S.; Steinhardt, P. J. (29 July 2013).
318: 487:. Therefore, direct bandgap materials tend to have stronger light emission and absorption properties and tend to be better suited for 211: 1567: 1467: 1415: 1307: 1260: 1210: 277: 859: 563: 1957: 499:; however, indirect bandgap materials are frequently used in PVs and LEDs when the materials have other favorable properties. 1360: 238:, the valence and conduction bands may overlap, so there is no longer a bandgap with forbidden regions of electronic states. 214:
characteristic of the solid material. Electrons can gain enough energy to jump to the conduction band by absorbing either a
862:, a new class of optical disordered materials has been suggested, which support band gaps perfectly equivalent to those of 554:
photon management concept, in which case the solar spectrum is modified to match the absorption profile of the solar cell.
1376:
Dean, K J (August 1984). "Waves and Fields in Optoelectronics: Prentice-Hall Series in Solid State Physical Electronics".
484: 1431:
Zanatta, A.R. (December 2022). "The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells".
1762:"Hyperuniformity in amorphous silicon based on the measurement of the infinite-wavelength limit of the structure factor" 1015: 955: 473: 433: 1886:
Eichenfield, Matt; Chan, Jasper; Camacho, Ryan M.; Vahala, Kerry J.; Painter, Oskar (2009). "Optomechanical crystals".
537: 174:
either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.
85:
limits the number of electrons in a single orbital to two, and the bands are filled beginning with the lowest energy.
562:
Below are band gap values for some selected materials. For a comprehensive list of band gaps in semiconductors, see
2006: 1033: 891: 426: 261: 1680:"Unraveling exciton dynamics in amorphous silicon dioxide: Interpretation of the optical features from 8 to 11 eV" 1594:"Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination" 945: 437: 269: 206: 195: 187: 114: 82: 31: 1058: 1996: 1976: 950: 858:
has broadened the range of photonic band gap materials, beyond photonic crystals. By applying the technique in
1275: 970: 901: 265: 246: 242: 159: 483:
must both be involved in a transition from the valence band top to the conduction band bottom, involving a
81:), two bands are formed, called the valence and conduction bands, separated by a 5.5 eV band gap. The 44: 831: 572: 273: 163: 141:
in the valence band) are free to move within the crystal lattice and serve as charge carriers to conduct
2011: 960: 130: 94: 272:. It is also possible to construct layered materials with alternating compositions by techniques like 1905: 1842: 1773: 1734: 1691: 1652: 1492: 1173: 1136: 1010: 975: 508: 492: 235: 231: 171: 37:
This article is about the electronic bandgap found in semiconductors. For the photonic band gap, see
1000: 90: 421:
In a regular semiconductor crystal, the band gap is fixed owing to continuous energy states. In a
1937: 1895: 1832: 1707: 1929: 1921: 1868: 1801: 1625: 1563: 1463: 1411: 1356: 1331: 1303: 1256: 1216: 1206: 926: 693: 601: 542: 293: 1679: 30:
This article is about solid state physics. For voltage control circuitry in electronics, see
1913: 1858: 1850: 1791: 1781: 1742: 1699: 1660: 1615: 1605: 1500: 1440: 1385: 1181: 1164:
Varshni, Y.P. (January 1967). "Temperature dependence of the energy gap in semiconductors".
1144: 1043: 911: 878: 851: 754: 711: 142: 110: 38: 532: 162:
of a solid. Substances having large band gaps (also called "wide" band gaps) are generally
1282: 916: 906: 855: 835: 792: 772: 729: 675: 182: 126: 1909: 1846: 1777: 1738: 1695: 1656: 1496: 1177: 1140: 1863: 1820: 1796: 1761: 1620: 1593: 1518: 444:
probability is between the initial and final orbital and it depends on the integral. φ
1990: 1711: 1559: 1389: 1185: 1149: 1124: 1063: 1005: 990: 985: 965: 896: 584: 550: 488: 309: 305: 250: 226: 167: 138: 134: 1964: 1941: 1038: 1020: 867: 122: 118: 1643:
Bauer, J. (1977). "Optical properties, band gap, and surface roughness of Si3N4".
549:
The optical band gap (see below) determines what portion of the solar spectrum a
1972: 940: 514: 496: 422: 281: 1703: 1610: 1504: 826:
bound together. The optical bandgap is at lower energy than the transport gap.
1555: 1444: 995: 980: 527: 285: 1925: 1786: 1746: 1664: 1220: 1053: 1048: 921: 847: 657: 146: 117:
of solids, the band gap refers to the energy difference (often expressed in
1933: 1872: 1805: 1629: 1819:
Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo (16 September 2015).
1200: 202: 1917: 65:, their electron orbitals begin to spatially overlap and hybridize into 1854: 863: 818: 639: 619: 460:
is the integral, Δ is the electric vector, and u is the dipole moment.
296:
also plays a role in determining a material's informal classification.
17: 874: 624: 588: 480: 301: 219: 215: 1837: 1821:"Bloch-like waves in random-walk potentials based on supersymmetry" 1900: 531: 399:{\displaystyle E_{g}(T)=E_{g}(0)-{\frac {\alpha T^{2}}{T+\beta }}} 257: 181: 166:, those with small band gaps (also called "narrow" band gaps) are 43: 1725:
Baumeister, P.W. (1961). "Optical Absorption of Cuprous Oxide".
158:). Therefore, the band gap is a major factor determining the 61:
with the same energies. However, when the atoms come closer
1678:
Vella, E.; Messina, F.; Cannas, M.; Boscaino, R. (2011).
69:
molecular orbitals each with a different energy, where
1458:
Tropf, W.J.; Harris, T.J.; Thomas, M.E. (2000). "11".
27:
Energy range in a solid where no electron states exist
321: 292:
semiconductive behaviour under practical conditions.
398: 253:that are left off when such an excitation occurs. 1965:"Energy Gap (and what makes glass transparent?)" 1406:Goetzberger, A.; Knobloch, J.; Voss, B. (1998). 1293: 1291: 1202:The electronic structure and chemistry of solids 1095:The Electronic Structure and Chemistry of Solids 1766:Proceedings of the National Academy of Sciences 1110:Solid State Devices and Technology, 3rd Edition 276:. These methods are exploited in the design of 1401: 1399: 73:is the number of atoms in the crystal. Since 53:all the atoms have discrete valence orbitals 8: 1545: 1543: 1541: 1539: 1537: 1535: 1587: 1585: 1583: 1581: 1579: 1550:Streetman, Ben G.; Sanjay Banerjee (2000). 1298:Yu, P.Y.; Cardona, M. (1996). "Chapter 6". 1285:. Evidenttech.com. Retrieved on 2013-04-03. 568: 1899: 1862: 1836: 1795: 1785: 1619: 1609: 1246: 1244: 1242: 1240: 1238: 1236: 1234: 1232: 1230: 1148: 376: 366: 348: 326: 320: 109:, is an energy range in a solid where no 1074: 194:Every solid has its own characteristic 1251:Pankove, J.I. (1971). "Chapters 1-3". 838:, the distinction may be significant. 503:Light-emitting diodes and laser diodes 1321: 1319: 308:'s empirical expression (named after 7: 1351:Sze, S.M. (1981). "Chapters 12–14". 1205:. Oxford : Oxford University Press. 1088: 1086: 1084: 1082: 1080: 1078: 830:However, in some systems, including 413:(0), α and ÎČ are material constants. 156:carrier generation and recombination 1524:Introduction to Solid State Physics 1253:Optical processes in semiconductors 842:Band gaps for other quasi-particles 278:heterojunction bipolar transistors 201:In semiconductors and insulators, 25: 1958:Direct Band Gap Energy Calculator 813:Optical versus electronic bandgap 1353:Physics of semiconductor devices 1326:Fox, M. (2008). "Chapters 1–3". 860:supersymmetric quantum mechanics 145:. It is closely related to the 1408:Crystalline silicon solar cells 564:List of semiconductor materials 1552:Solid State electronic Devices 1300:Fundamentals of semiconductors 1123:ÜnlĂŒ, Hilmi (September 1992). 836:single-walled carbon nanotubes 360: 354: 338: 332: 1: 1592:Zanatta, A.R. (August 2019). 1328:Optical properties of solids 1186:10.1016/0031-8914(67)90062-6 1150:10.1016/0038-1101(92)90170-H 1016:Strongly correlated material 956:Direct and indirect bandgaps 474:Direct and indirect bandgaps 468:Direct and indirect band gap 205:are confined to a number of 1034:Wide-bandgap semiconductors 873:Similar physics applies to 2033: 2017:Nuclear magnetic resonance 2002:Electronic band structures 1704:10.1103/PhysRevB.83.174201 1611:10.1038/s41598-019-47670-y 1505:10.1103/PhysRevB.82.075208 1390:10.1088/0031-9112/35/8/023 934:List of electronics topics 892:Aluminium gallium arsenide 817:In materials with a large 525: 506: 471: 427:quantum confinement effect 36: 29: 1445:10.1016/j.rio.2022.100320 1410:. John Wiley & Sons. 1355:. John Wiley & Sons. 946:Bandgap voltage reference 452:is the final orbital, ʃ φ 448:is the initial orbital, φ 438:electronic band structure 121:) between the top of the 115:electronic band structure 83:Pauli exclusion principle 32:Bandgap voltage reference 1977:University of Nottingham 1108:Babu, V. Suresh (2010). 951:Condensed matter physics 432:Band gaps can be either 247:intrinsic semiconductors 178:In semiconductor physics 113:exist. In graphs of the 1787:10.1073/pnas.1220106110 1747:10.1103/PhysRev.121.359 1665:10.1002/pssa.2210390205 1645:Physica Status Solidi A 1460:Electro-Optics Handbook 1129:Solid-State Electronics 971:Field-effect transistor 902:Indium gallium arsenide 538:Shockley–Queisser limit 160:electrical conductivity 1330:. Oxford Univ. Press. 1276:“Evident Technologies” 832:organic semiconductors 546: 400: 274:molecular-beam epitaxy 191: 125:and the bottom of the 86: 1825:Nature Communications 1011:Semiconductor devices 961:Electrical conduction 535: 493:light-emitting diodes 401: 196:energy-band structure 185: 95:solid-state chemistry 51:(right side of graph) 47: 1059:Moss–Burstein effect 976:Light-emitting diode 509:Light-emitting diode 319: 1918:10.1038/nature08524 1910:2009Natur.462...78E 1847:2015NatCo...6.8269Y 1778:2013PNAS..11013250X 1772:(33): 13250–13254. 1739:1961PhRv..121..359B 1696:2011PhRvB..83q4201V 1657:1977PSSAR..39..411B 1497:2010PhRvB..82g5208F 1199:Cox, P. A. (1987). 1178:1967Phy....34..149V 1141:1992SSEle..35.1343U 1097:. pp. 102–114. 1001:Solid state physics 436:, depending on the 91:solid-state physics 1963:Moriarty, Philip. 1855:10.1038/ncomms9269 1598:Scientific Reports 1281:2009-02-06 at the 1093:Cox, P.A. (1987). 547: 543:tandem solar cells 522:Photovoltaic cells 434:direct or indirect 396: 192: 87: 2007:Quantum mechanics 1684:Physical Review B 1485:Physical Review B 1337:978-0-19-850613-3 927:Metallic hydrogen 854:. The concept of 810: 809: 694:Gallium phosphide 602:Aluminium nitride 558:List of band gaps 551:photovoltaic cell 440:of the material. 394: 294:Electron mobility 111:electronic states 16:(Redirected from 2024: 1980: 1946: 1945: 1903: 1883: 1877: 1876: 1866: 1840: 1816: 1810: 1809: 1799: 1789: 1757: 1751: 1750: 1722: 1716: 1715: 1675: 1669: 1668: 1640: 1634: 1633: 1623: 1613: 1589: 1574: 1573: 1554:(5th ed.). 1547: 1530: 1529: 1515: 1509: 1508: 1480: 1474: 1473: 1455: 1449: 1448: 1428: 1422: 1421: 1403: 1394: 1393: 1378:Physics Bulletin 1373: 1367: 1366: 1348: 1342: 1341: 1323: 1314: 1313: 1295: 1286: 1273: 1267: 1266: 1248: 1225: 1224: 1196: 1190: 1189: 1161: 1155: 1154: 1152: 1135:(9): 1343–1352. 1120: 1114: 1113: 1105: 1099: 1098: 1090: 1044:Spectral density 912:Gallium arsenide 879:phononic crystal 852:photonic crystal 755:Lead(II) sulfide 712:Gallium arsenide 569: 405: 403: 402: 397: 395: 393: 382: 381: 380: 367: 353: 352: 331: 330: 143:electric current 101:, also called a 39:Photonic crystal 21: 2032: 2031: 2027: 2026: 2025: 2023: 2022: 2021: 1997:Electron states 1987: 1986: 1984: 1962: 1954: 1949: 1894:(7269): 78–82. 1885: 1884: 1880: 1818: 1817: 1813: 1759: 1758: 1754: 1727:Physical Review 1724: 1723: 1719: 1677: 1676: 1672: 1642: 1641: 1637: 1591: 1590: 1577: 1570: 1562:. p. 524. 1549: 1548: 1533: 1519:Kittel, Charles 1517: 1516: 1512: 1482: 1481: 1477: 1470: 1462:. McGraw-Hill. 1457: 1456: 1452: 1430: 1429: 1425: 1418: 1405: 1404: 1397: 1375: 1374: 1370: 1363: 1350: 1349: 1345: 1338: 1325: 1324: 1317: 1310: 1297: 1296: 1289: 1283:Wayback Machine 1274: 1270: 1263: 1250: 1249: 1228: 1213: 1198: 1197: 1193: 1163: 1162: 1158: 1122: 1121: 1117: 1107: 1106: 1102: 1092: 1091: 1076: 1072: 1030: 1025: 936: 931: 917:Gallium nitride 907:Indium arsenide 887: 856:hyperuniformity 844: 815: 800: 793:Copper(I) oxide 780: 773:Silicon dioxide 741: 737: 730:Silicon nitride 676:Gallium nitride 560: 530: 524: 511: 505: 485:momentum change 476: 470: 459: 455: 451: 447: 411: 383: 372: 368: 344: 322: 317: 316: 180: 127:conduction band 42: 35: 28: 23: 22: 15: 12: 11: 5: 2030: 2028: 2020: 2019: 2014: 2009: 2004: 1999: 1989: 1988: 1982: 1981: 1960: 1953: 1952:External links 1950: 1948: 1947: 1878: 1811: 1752: 1717: 1690:(17): 174201. 1670: 1651:(2): 411–418. 1635: 1604:: 11225–12pp. 1575: 1568: 1531: 1510: 1475: 1468: 1450: 1439:: 100320–7pp. 1423: 1416: 1395: 1368: 1361: 1343: 1336: 1315: 1308: 1287: 1268: 1261: 1226: 1211: 1191: 1172:(1): 149–154. 1156: 1115: 1100: 1073: 1071: 1068: 1067: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1029: 1026: 1024: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 943: 937: 935: 932: 930: 929: 924: 919: 914: 909: 904: 899: 894: 888: 886: 883: 843: 840: 814: 811: 808: 807: 805: 802: 798: 795: 790: 787: 786: 784: 781: 778: 775: 770: 766: 765: 763: 760: 757: 752: 748: 747: 745: 742: 739: 735: 732: 727: 723: 722: 720: 717: 714: 709: 705: 704: 702: 699: 696: 691: 687: 686: 684: 681: 678: 673: 669: 668: 666: 663: 660: 655: 651: 650: 648: 645: 642: 637: 633: 632: 630: 627: 622: 617: 613: 612: 610: 607: 604: 599: 595: 594: 591: 581: 578: 575: 559: 556: 526:Main article: 523: 520: 507:Main article: 504: 501: 472:Main article: 469: 466: 457: 453: 449: 445: 415: 414: 409: 392: 389: 386: 379: 375: 371: 365: 362: 359: 356: 351: 347: 343: 340: 337: 334: 329: 325: 251:electron holes 188:band structure 186:Semiconductor 179: 176: 135:semiconductors 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2029: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1994: 1992: 1985: 1978: 1974: 1970: 1969:Sixty Symbols 1966: 1961: 1959: 1956: 1955: 1951: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1911: 1907: 1902: 1897: 1893: 1889: 1882: 1879: 1874: 1870: 1865: 1860: 1856: 1852: 1848: 1844: 1839: 1834: 1830: 1826: 1822: 1815: 1812: 1807: 1803: 1798: 1793: 1788: 1783: 1779: 1775: 1771: 1767: 1763: 1756: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1674: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1639: 1636: 1631: 1627: 1622: 1617: 1612: 1607: 1603: 1599: 1595: 1588: 1586: 1584: 1582: 1580: 1576: 1571: 1569:0-13-025538-6 1565: 1561: 1560:Prentice Hall 1557: 1553: 1546: 1544: 1542: 1540: 1538: 1536: 1532: 1527: 1526:, 7th Edition 1525: 1520: 1514: 1511: 1506: 1502: 1498: 1494: 1491:(7): 075208. 1490: 1486: 1479: 1476: 1471: 1469:9780070687165 1465: 1461: 1454: 1451: 1446: 1442: 1438: 1434: 1427: 1424: 1419: 1417:0-471-97144-8 1413: 1409: 1402: 1400: 1396: 1391: 1387: 1383: 1379: 1372: 1369: 1364: 1358: 1354: 1347: 1344: 1339: 1333: 1329: 1322: 1320: 1316: 1311: 1309:3-540-61461-3 1305: 1301: 1294: 1292: 1288: 1284: 1280: 1277: 1272: 1269: 1264: 1262:0-486-60275-3 1258: 1254: 1247: 1245: 1243: 1241: 1239: 1237: 1235: 1233: 1231: 1227: 1222: 1218: 1214: 1212:0-19-855204-1 1208: 1204: 1203: 1195: 1192: 1187: 1183: 1179: 1175: 1171: 1167: 1160: 1157: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1119: 1116: 1111: 1104: 1101: 1096: 1089: 1087: 1085: 1083: 1081: 1079: 1075: 1069: 1065: 1064:Urbach energy 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1031: 1027: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1006:Semiconductor 1004: 1002: 999: 997: 994: 992: 991:Photovoltaics 989: 987: 986:Photoresistor 984: 982: 979: 977: 974: 972: 969: 967: 966:Electron hole 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 938: 933: 928: 925: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 897:Boron nitride 895: 893: 890: 889: 884: 882: 880: 876: 871: 869: 868:quasicrystals 865: 861: 857: 853: 849: 841: 839: 837: 833: 827: 825: 820: 812: 806: 803: 796: 794: 791: 789: 788: 785: 782: 776: 774: 771: 768: 767: 764: 761: 758: 756: 753: 750: 749: 746: 743: 733: 731: 728: 725: 724: 721: 718: 715: 713: 710: 707: 706: 703: 700: 697: 695: 692: 689: 688: 685: 682: 679: 677: 674: 671: 670: 667: 664: 661: 659: 656: 653: 652: 649: 646: 643: 641: 638: 635: 634: 631: 628: 626: 623: 621: 618: 615: 614: 611: 608: 605: 603: 600: 597: 596: 592: 590: 586: 582: 579: 576: 574: 571: 570: 567: 565: 557: 555: 552: 544: 539: 534: 529: 521: 519: 516: 510: 502: 500: 498: 494: 490: 489:photovoltaics 486: 482: 475: 467: 465: 461: 441: 439: 435: 430: 428: 424: 419: 412: 390: 387: 384: 377: 373: 369: 363: 357: 349: 345: 341: 335: 327: 323: 315: 314: 313: 311: 310:Y. P. Varshni 307: 303: 297: 295: 289: 287: 283: 279: 275: 271: 267: 263: 259: 254: 252: 248: 244: 239: 237: 233: 228: 227:semiconductor 223: 221: 217: 213: 208: 204: 199: 197: 189: 184: 177: 175: 173: 169: 168:semiconductor 165: 161: 157: 153: 148: 147:HOMO/LUMO gap 144: 140: 139:electron hole 136: 132: 128: 124: 120: 119:electronvolts 116: 112: 108: 104: 100: 96: 92: 84: 80: 76: 72: 68: 64: 60: 56: 52: 46: 40: 33: 19: 2012:Spectroscopy 1983: 1968: 1891: 1887: 1881: 1828: 1824: 1814: 1769: 1765: 1755: 1730: 1726: 1720: 1687: 1683: 1673: 1648: 1644: 1638: 1601: 1597: 1551: 1522: 1513: 1488: 1484: 1478: 1459: 1453: 1436: 1432: 1426: 1407: 1381: 1377: 1371: 1352: 1346: 1327: 1302:. Springer. 1299: 1271: 1252: 1201: 1194: 1169: 1165: 1159: 1132: 1128: 1118: 1109: 1103: 1094: 1039:Band bending 1021:Valence band 872: 845: 828: 823: 816: 561: 548: 515:laser diodes 512: 497:laser diodes 495:(LEDs), and 477: 462: 442: 431: 420: 416: 407: 298: 290: 282:laser diodes 255: 243:conductivity 240: 224: 218:(heat) or a 200: 193: 151: 123:valence band 106: 102: 98: 88: 78: 74: 70: 66: 62: 58: 54: 50: 1973:Brady Haran 1831:(1): 8269. 1433:Results Opt 941:Electronics 423:quantum dot 286:solar cells 63:(left side) 1991:Categories 1838:1501.02591 1733:(2): 359. 1556:New Jersey 1384:(8): 339. 1362:0471056618 1070:References 996:Solar cell 981:Photodiode 593:Reference 583:Band gap ( 528:Solar cell 260:, such as 236:conductors 172:conductors 164:insulators 154:flow (see 131:insulators 107:energy gap 1926:0028-0836 1901:0906.1236 1712:121793038 1255:. Dover. 1112:. Peason. 1054:Tauc plot 1049:Pseudogap 922:Germanium 885:Materials 848:photonics 658:Germanium 513:LEDs and 391:β 370:α 364:− 232:insulator 222:(light). 212:intrinsic 203:electrons 1975:for the 1934:19838165 1873:26373616 1806:23898166 1630:31375719 1528:. Wiley. 1279:Archived 1221:14213060 1028:See also 864:crystals 577:Material 406:, where 280:(HBTs), 99:band gap 1942:4404647 1906:Bibcode 1864:4595658 1843:Bibcode 1797:3746861 1774:Bibcode 1735:Bibcode 1692:Bibcode 1653:Bibcode 1621:6677798 1493:Bibcode 1174:Bibcode 1166:Physica 1137:Bibcode 875:phonons 819:exciton 640:Silicon 620:Diamond 587:) @ 302 491:(PVs), 306:Varshni 302:phonons 103:bandgap 18:Bandgap 1940:  1932:  1924:  1888:Nature 1871:  1861:  1804:  1794:  1710:  1628:  1618:  1566:  1466:  1414:  1359:  1334:  1306:  1259:  1219:  1209:  769:IV–VI 751:IV–VI 708:III–V 690:III–V 672:III–V 598:III–V 580:Symbol 481:phonon 270:InAlAs 268:, and 266:InGaAs 262:GaAlAs 258:alloys 220:photon 216:phonon 170:, and 1938:S2CID 1896:arXiv 1833:arXiv 1708:S2CID 877:in a 762:0.37 726:IV–V 719:1.43 716:GaAs 701:2.26 665:0.67 647:1.14 573:Group 234:. In 207:bands 1930:PMID 1922:ISSN 1869:PMID 1802:PMID 1626:PMID 1564:ISBN 1464:ISBN 1412:ISBN 1357:ISBN 1332:ISBN 1304:ISBN 1257:ISBN 1217:OCLC 1207:ISBN 834:and 804:2.1 759:PbS 698:GaP 683:3.4 680:GaN 629:5.5 609:6.0 606:AlN 536:The 284:and 241:The 133:and 97:, a 93:and 57:and 1914:doi 1892:462 1859:PMC 1851:doi 1792:PMC 1782:doi 1770:110 1743:doi 1731:121 1700:doi 1661:doi 1616:PMC 1606:doi 1501:doi 1441:doi 1386:doi 1182:doi 1145:doi 866:or 846:In 824:not 777:SiO 662:Ge 654:IV 644:Si 636:IV 616:IV 456:Ă»Î”Ï† 312:), 245:of 152:can 129:in 105:or 89:In 1993:: 1971:. 1967:. 1936:. 1928:. 1920:. 1912:. 1904:. 1890:. 1867:. 1857:. 1849:. 1841:. 1827:. 1823:. 1800:. 1790:. 1780:. 1768:. 1764:. 1741:. 1729:. 1706:. 1698:. 1688:83 1686:. 1682:. 1659:. 1649:39 1647:. 1624:. 1614:. 1600:. 1596:. 1578:^ 1558:: 1534:^ 1521:. 1499:. 1489:82 1487:. 1435:. 1398:^ 1382:35 1380:. 1318:^ 1290:^ 1229:^ 1215:. 1180:. 1170:34 1168:. 1143:. 1133:35 1131:. 1127:. 1077:^ 881:. 870:. 801:O 797:Cu 783:9 744:5 734:Si 585:eV 566:. 429:. 288:. 264:, 225:A 1979:. 1944:. 1916:: 1908:: 1898:: 1875:. 1853:: 1845:: 1835:: 1829:6 1808:. 1784:: 1776:: 1749:. 1745:: 1737:: 1714:. 1702:: 1694:: 1667:. 1663:: 1655:: 1632:. 1608:: 1602:9 1572:. 1507:. 1503:: 1495:: 1472:. 1447:. 1443:: 1437:9 1420:. 1392:. 1388:: 1365:. 1340:. 1312:. 1265:. 1223:. 1188:. 1184:: 1176:: 1153:. 1147:: 1139:: 799:2 779:2 740:4 738:N 736:3 625:C 589:K 545:. 458:i 454:f 450:f 446:i 410:g 408:E 388:+ 385:T 378:2 374:T 361:) 358:0 355:( 350:g 346:E 342:= 339:) 336:T 333:( 328:g 324:E 190:. 79:a 75:N 71:N 67:N 59:s 55:p 41:. 34:. 20:)

Index

Bandgap
Bandgap voltage reference
Photonic crystal

Pauli exclusion principle
solid-state physics
solid-state chemistry
electronic states
electronic band structure
electronvolts
valence band
conduction band
insulators
semiconductors
electron hole
electric current
HOMO/LUMO gap
carrier generation and recombination
electrical conductivity
insulators
semiconductor
conductors

band structure
energy-band structure
electrons
bands
intrinsic
phonon
photon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑