Knowledge

Linear system of divisors

Source đź“ť

5157: 35: 4913: 4447: 5553: 4617: 3433:. The conclusion is that to check nefness of a divisor class, it suffices to compute the intersection number with curves contained in the base locus of the class. So, roughly speaking, the 'smaller' the base locus, the 'more likely' it is that the class is nef. 3081: 2902:
refers to the subvariety of points 'common' to all divisors in the linear system. Geometrically, this corresponds to the common intersection of the varieties. Linear systems may or may not have a base locus – for example, the pencil of affine lines
2839:. The technical demands became quite stringent; later developments clarified a number of issues. The computation of the relevant dimensions — the Riemann–Roch problem as it can be called — can be better phrased in terms of 5187:
Each morphism from an algebraic variety to a projective space determines a base-point-free linear system on the variety; because of this, a base-point-free linear system and a map to a projective space are often used interchangeably.
4194: 4204:
Each linear system on an algebraic variety determines a morphism from the complement of the base locus to a projective space of dimension of the system, as follows. (In a sense, the converse is also true; see the section below)
4784: 4318: 5012: 3899: 2929:
has no common intersection, but given two (nondegenerate) conics in the complex projective plane, they intersect in four points (counting with multiplicity) and thus the pencil they define has these points as base locus.
5377: 737: 1559: 2065: 3750: 1289: 1180: 5439: 2807:. Note a characteristic system need not to be complete; in fact, the question of completeness is something studied extensively by the Italian school without a satisfactory conclusion; nowadays, the 3621:
The notion of the base locus still makes sense for a non-complete linear system as well: the base locus of it is still the intersection of the supports of all the effective divisors in the system.
1706: 3681: 4502: 4309: 2721: 5135: 1003: 2552: 4704: 931: 3579: 1829: 1413: 2989: 235: 140: 4255: 3104: 2674: 2285: 5646: 5221: 4009: 538: 3193: 4742: 2805: 3612: 3517: 2475: 1088: 5434: 5073: 4775: 4038: 3431: 2612: 2504: 1327: 1117: 5245: 4486: 3774: 2823:
is a property of a pencil of cubics, which states that the base locus satisfies an "8 implies 9" property: any cubic containing 8 of the points necessarily contains the 9th.
2583: 2132: 955: 885: 4937: 3131: 2434: 1970: 592: 3948: 3369: 1733: 5044: 1226: 2385: 2349: 2317: 2224: 2108: 283: 827:(this is well defined since two non-zero rational functions have the same divisor if and only if they are non-zero multiples of each other). A complete linear system 4640: 775: 5579: 1921: 1886: 381: 5713:
Hartshorne, R. 'Algebraic Geometry', proposition II.7.2, page 151, proposition II.7.7, page 157, page 158, exercise IV.1.7, page 298, proposition IV.5.3, page 342
4064: 3464: 3340: 3230: 3165: 2961: 2927: 2250: 1855: 855: 805: 662: 568: 407: 1456: 5405: 5285: 5265: 3537: 3484: 3389: 3310: 3290: 3270: 3250: 2981: 2741: 2192: 2172: 2152: 1990: 1787: 1765: 1630: 1610: 1587: 1433: 1347: 1034: 825: 632: 612: 501: 450: 427: 349: 329: 309: 192: 4072: 1708:. This definition follows from proposition II.7.7 of Hartshorne since every effective divisor in the linear system comes from the zeros of some section of 4908:{\displaystyle \operatorname {Sym} ((V\otimes _{k}{\mathcal {O}}_{X})\otimes _{{\mathcal {O}}_{X}}L^{-1})\to \bigoplus _{n=0}^{\infty }{\mathcal {I}}^{n}} 4442:{\displaystyle \operatorname {Sym} ((V\otimes _{k}{\mathcal {O}}_{X})\otimes _{{\mathcal {O}}_{X}}L^{-1})\to \bigoplus _{n=0}^{\infty }{\mathcal {O}}_{X}} 4949: 3782: 5290: 667: 352: 5788: 5775:. Grundlehren der Mathematischen Wissenschaften. Vol. II, with a contribution by Joseph Daniel Harris. Heidelberg: Springer. p. 3. 1464: 2836: 1995: 5548:{\displaystyle {\mathcal {O}}_{X}(1)={\mathcal {O}}_{X}\otimes _{{\mathcal {O}}_{\mathbb {P} ^{r}}}{\mathcal {O}}_{\mathbb {P} ^{r}}(1)} 3686: 2882:. There was a controversy, one of the final issues in the conflict between 'old' and 'new' points of view in algebraic geometry, over 1231: 1122: 5894: 5876: 5851: 4612:{\displaystyle i:X\hookrightarrow \mathbb {P} (V_{X}^{*}\otimes L)\simeq \mathbb {P} (V_{X}^{*})=\mathbb {P} (V^{*})\times X} 1635: 5144:
is chosen, the above discussion becomes more down-to-earth (and that is the style used in Hartshorne, Algebraic Geometry).
3641: 5911: 4264: 2682: 2820: 465: 86: 1768: 2808: 5839: 5081: 960: 2509: 5667: 4656: 5657: 1858: 894: 3076:{\displaystyle \operatorname {Bl} (|D|):=\bigcap _{D_{\text{eff}}\in |D|}\operatorname {Supp} D_{\text{eff}}\ } 2844: 453: 3542: 28: 1793: 1352: 2752: 473: 197: 102: 4219: 3089: 2620: 2255: 5686: 5584: 5194: 3953: 506: 3178: 4716: 3199: 2784: 3584: 3489: 2447: 1060: 5410: 5049: 4751: 4014: 3394: 2588: 2480: 1294: 1093: 5226: 4452: 3755: 3391:, and so intersects it properly. Basic facts from intersection theory then tell us that we must have 3168: 2557: 2113: 936: 866: 147: 93: 4918: 3109: 2390: 1926: 573: 3907: 2840: 2832: 1744: 1590: 3345: 887:
is then a projective subspace of a complete linear system, so it corresponds to a vector subspace
3625: 2860: 2852: 1711: 469: 55: 47: 5020: 4040:. Then, the base locus of this system of divisors is the scheme given by the vanishing locus of 1189: 4257:
a finite-dimensional vector subspace. For the sake of clarity, we first consider the case when
2358: 2322: 2290: 2197: 2081: 247: 5890: 5882: 5872: 5847: 5835: 5784: 5768: 5746: 4643: 3615: 2899: 2883: 2867: 2770:
in the family is a linear system formed by the curves in the family that are infinitely near
289: 4625: 742: 81:. It assumed a more general form, through gradual generalisation, so that one could speak of 5860: 5817: 5776: 5764: 5736: 5662: 5558: 4493: 3636: 3106:
denotes the support of a divisor, and the intersection is taken over all effective divisors
1891: 1013: 78: 66:; the dimension of the linear system corresponds to the number of parameters of the family. 63: 43: 5798: 1864: 5868: 5794: 2886:'s characteristic linear system of an algebraic family of curves on an algebraic surface. 2856: 1183: 1037: 503:
is defined as the set of all effective divisors linearly equivalent to some given divisor
457: 357: 74: 4189:{\displaystyle {\text{Bl}}({\mathfrak {X}})={\text{Proj}}\left({\frac {k}{(f,g)}}\right)} 4043: 3439: 3315: 3205: 3140: 2936: 2906: 2229: 1834: 830: 780: 637: 543: 386: 1438: 1228:, it is linearly equivalent to any other divisor defined by the vanishing locus of some 5390: 5270: 5250: 3522: 3469: 3374: 3295: 3275: 3255: 3235: 2966: 2726: 2352: 2177: 2157: 2137: 1975: 1772: 1750: 1743:
One application of linear systems is used in the classification of algebraic curves. A
1615: 1595: 1572: 1418: 1332: 1019: 810: 617: 597: 486: 435: 412: 334: 314: 294: 177: 5156: 5905: 4489: 2778: 5724: 3172: 2848: 461: 97: 34: 5821: 1009: 2762:
The characteristic linear system of a family of curves on an algebraic surface
5780: 5007:{\displaystyle i:{\widetilde {X}}\hookrightarrow \mathbb {P} (V^{*})\times X.} 3894:{\displaystyle {\mathfrak {X}}={\text{Proj}}\left({\frac {k}{(sf+tg)}}\right)} 5750: 1612:
is given by the complete linear system associated with the canonical divisor
5372:{\displaystyle f^{-1}({\mathfrak {d}})=\{f^{-1}(D)|D\in {\mathfrak {d}}\}} 3436:
In the modern formulation of algebraic geometry, a complete linear system
2777:
In modern terms, it is a subsystem of the linear system associated to the
1044:
of two divisors means that the corresponding line bundles are isomorphic.
732:{\displaystyle (\Gamma (X,{\mathcal {L}})\smallsetminus \{0\})/k^{\ast },} 17: 4744:
in the direct sum replaced by an ideal sheaf defining the base locus and
3904:
This has an associated linear system of divisors since each polynomial,
468:). The definition in that case is usually said with greater care (using 5741: 5436:
has a natural linear system determining a map to projective space from
2871: 2319:
from proposition 5.3. Another close set of examples are curves with a
1554:{\displaystyle D=E+\left({\frac {x^{2}+y^{2}+z^{2}+w^{2}}{xy}}\right)} 2060:{\displaystyle \mathbb {P} ^{1}=\mathbb {P} (H^{0}(C,\omega _{C}))} 1569:
One of the important complete linear systems on an algebraic curve
3745:{\displaystyle f,g\in \Gamma (\mathbb {P} ^{n},{\mathcal {O}}(d))} 3202:
of a Cartier divisor class (i.e. complete linear system). Suppose
33: 4488:
for the trivial vector bundle and passing the surjection to the
1284:{\displaystyle t\in \Gamma (\mathbb {P} ^{3},{\mathcal {O}}(2))} 1175:{\displaystyle s\in \Gamma (\mathbb {P} ^{3},{\mathcal {O}}(2))} 5223:
of algebraic varieties there is a pullback of a linear system
5151: 2870:
to that of linear systems cut out by surfaces in three-space;
5516: 5491: 5472: 5446: 4924: 4894: 4838: 4816: 4723: 4428: 4372: 4350: 4284: 3725: 3590: 3495: 2527: 2453: 1264: 1155: 1066: 912: 688: 579: 162:
A map determined by a linear system is sometimes called the
118: 62:
is an algebraic generalization of the geometric notion of a
5846:. Wiley Classics Library. Wiley Interscience. p. 137. 4713:
is not empty, the above discussion still goes through with
2963:
is a complete linear system of divisors on some variety
2811:
can be used to answer the question of the completeness.
409:
denotes the divisor of zeroes and poles of the function
5168: 5148:
Linear system determined by a map to a projective space
2866:
The Italian school liked to reduce the geometry on an
1701:{\displaystyle |K|=\mathbb {P} (H^{0}(C,\omega _{C}))} 1008:
Linear systems can also be introduced by means of the
27:"Kodaira map" redirects here. Not to be confused with 5587: 5561: 5442: 5413: 5393: 5293: 5273: 5253: 5229: 5197: 5084: 5052: 5023: 4952: 4921: 4787: 4754: 4719: 4659: 4628: 4505: 4455: 4321: 4267: 4222: 4075: 4046: 4017: 3956: 3910: 3785: 3758: 3689: 3676:{\displaystyle p:{\mathfrak {X}}\to \mathbb {P} ^{1}} 3644: 3587: 3545: 3525: 3492: 3472: 3442: 3397: 3377: 3348: 3318: 3298: 3278: 3258: 3238: 3208: 3181: 3143: 3112: 3092: 2992: 2969: 2939: 2909: 2787: 2729: 2685: 2623: 2591: 2560: 2512: 2483: 2450: 2440:
Linear systems of hypersurfaces in a projective space
2393: 2361: 2325: 2293: 2258: 2232: 2200: 2180: 2160: 2140: 2116: 2084: 1998: 1978: 1929: 1894: 1867: 1837: 1796: 1775: 1753: 1714: 1638: 1618: 1598: 1575: 1467: 1441: 1421: 1355: 1335: 1297: 1234: 1192: 1125: 1096: 1063: 1022: 963: 939: 897: 869: 833: 813: 783: 745: 670: 640: 620: 600: 576: 546: 509: 489: 438: 415: 389: 360: 337: 317: 297: 250: 200: 180: 105: 5725:"Another proof of the existence of special divisors" 4304:{\displaystyle V\otimes _{k}{\mathcal {O}}_{X}\to L} 4261:
is base-point-free; in other words, the natural map
2716:{\displaystyle \mathbb {P} ^{k}\to \mathbb {P} ^{N}} 145:
Linear systems of dimension 1, 2, or 3 are called a
456:, the notion of 'divisor' is inherently ambiguous ( 5640: 5573: 5547: 5428: 5399: 5371: 5279: 5259: 5239: 5215: 5129: 5067: 5038: 5006: 4931: 4907: 4769: 4736: 4698: 4634: 4611: 4480: 4441: 4303: 4249: 4188: 4058: 4032: 4003: 3942: 3893: 3768: 3744: 3675: 3606: 3573: 3531: 3511: 3478: 3458: 3425: 3383: 3363: 3334: 3304: 3284: 3264: 3244: 3224: 3198:One application of the notion of base locus is to 3187: 3159: 3125: 3098: 3075: 2975: 2955: 2921: 2799: 2758:Characteristic linear system of a family of curves 2735: 2715: 2668: 2606: 2577: 2546: 2498: 2469: 2428: 2379: 2343: 2311: 2279: 2244: 2218: 2186: 2166: 2146: 2126: 2102: 2059: 1984: 1964: 1915: 1880: 1849: 1823: 1781: 1759: 1727: 1700: 1624: 1604: 1581: 1553: 1450: 1427: 1407: 1341: 1321: 1283: 1220: 1174: 1111: 1082: 1028: 997: 949: 925: 879: 849: 819: 799: 769: 731: 656: 626: 606: 586: 562: 532: 495: 444: 421: 401: 375: 343: 323: 303: 277: 229: 186: 134: 5812:Fulton, William (1998). "§ 4.4. Linear Systems". 2831:In general linear systems became a basic tool of 2654: 2633: 1040:, to be precise) correspond to line bundles, and 2855:generated by codimension-one subvarieties), and 42:algebraicizes the classic geometric notion of a 3581:is the set of common zeroes of all sections of 2878:to try to pull together the methods, involving 4777:of it along the (scheme-theoretic) base locus 3167:(as a set, at least: there may be more subtle 2723:we can construct a linear system of dimension 2287:. In fact, hyperelliptic curves have a unique 957:is its dimension as a projective space. Hence 5130:{\displaystyle f:X-B\to \mathbb {P} (V^{*}).} 4781:. Precisely, as above, there is a surjection 3614:. A simple consequence is that the bundle is 998:{\displaystyle \dim {\mathfrak {d}}=\dim W-1} 634:is a nonsingular projective variety, the set 8: 5366: 5323: 2547:{\displaystyle V=\Gamma ({\mathcal {O}}(d))} 1458:. Then, there is the equivalence of divisors 1329:(Proposition 7.2). For example, the divisor 705: 699: 4699:{\displaystyle f:X\to \mathbb {P} (V^{*}).} 4650:by a projection, there results in the map: 2194:. For example, hyperelliptic curves have a 4646:under a twist by a line bundle. Following 2843:. The effect of working on varieties with 926:{\displaystyle \Gamma (X,{\mathcal {L}}).} 5740: 5632: 5628: 5627: 5614: 5595: 5586: 5560: 5528: 5524: 5523: 5521: 5515: 5514: 5503: 5499: 5498: 5496: 5490: 5489: 5487: 5477: 5471: 5470: 5451: 5445: 5444: 5441: 5420: 5416: 5415: 5412: 5392: 5360: 5359: 5348: 5330: 5311: 5310: 5298: 5292: 5272: 5252: 5231: 5230: 5228: 5196: 5115: 5104: 5103: 5083: 5054: 5053: 5051: 5022: 4986: 4975: 4974: 4960: 4959: 4951: 4923: 4922: 4920: 4899: 4893: 4892: 4885: 4874: 4855: 4843: 4837: 4836: 4834: 4821: 4815: 4814: 4807: 4786: 4756: 4755: 4753: 4728: 4722: 4721: 4718: 4684: 4673: 4672: 4658: 4627: 4594: 4583: 4582: 4570: 4565: 4554: 4553: 4535: 4530: 4519: 4518: 4504: 4460: 4454: 4433: 4427: 4426: 4419: 4408: 4389: 4377: 4371: 4370: 4368: 4355: 4349: 4348: 4341: 4320: 4289: 4283: 4282: 4275: 4266: 4221: 4212:be a line bundle on an algebraic variety 4153: 4134: 4106: 4097: 4085: 4084: 4076: 4074: 4045: 4024: 4020: 4019: 4016: 3995: 3991: 3990: 3977: 3964: 3955: 3931: 3915: 3909: 3852: 3833: 3805: 3796: 3787: 3786: 3784: 3760: 3759: 3757: 3724: 3723: 3714: 3710: 3709: 3688: 3667: 3663: 3662: 3652: 3651: 3643: 3589: 3588: 3586: 3563: 3555: 3544: 3524: 3494: 3493: 3491: 3471: 3451: 3443: 3441: 3406: 3398: 3396: 3376: 3350: 3349: 3347: 3327: 3319: 3317: 3297: 3277: 3257: 3237: 3217: 3209: 3207: 3180: 3152: 3144: 3142: 3117: 3111: 3091: 3064: 3047: 3039: 3030: 3025: 3010: 3002: 2991: 2968: 2948: 2940: 2938: 2908: 2786: 2728: 2707: 2703: 2702: 2692: 2688: 2687: 2684: 2653: 2632: 2630: 2622: 2598: 2594: 2593: 2590: 2562: 2561: 2559: 2526: 2525: 2511: 2490: 2486: 2485: 2482: 2452: 2451: 2449: 2406: 2392: 2371: 2366: 2360: 2335: 2330: 2324: 2303: 2298: 2292: 2271: 2267: 2266: 2257: 2231: 2210: 2205: 2199: 2179: 2159: 2139: 2118: 2117: 2115: 2094: 2089: 2083: 2045: 2026: 2015: 2014: 2005: 2001: 2000: 1997: 1977: 1947: 1934: 1928: 1893: 1872: 1866: 1836: 1815: 1811: 1810: 1795: 1774: 1752: 1719: 1713: 1686: 1667: 1656: 1655: 1647: 1639: 1637: 1617: 1597: 1574: 1530: 1517: 1504: 1491: 1484: 1466: 1440: 1420: 1399: 1386: 1373: 1360: 1354: 1334: 1306: 1296: 1263: 1262: 1253: 1249: 1248: 1233: 1197: 1191: 1154: 1153: 1144: 1140: 1139: 1124: 1103: 1099: 1098: 1095: 1065: 1064: 1062: 1021: 971: 970: 962: 941: 940: 938: 911: 910: 896: 871: 870: 868: 842: 834: 832: 812: 792: 784: 782: 744: 720: 711: 687: 686: 669: 649: 641: 639: 619: 599: 578: 577: 575: 555: 547: 545: 516: 508: 488: 437: 414: 388: 359: 336: 316: 296: 249: 213: 199: 179: 123: 117: 116: 104: 5723:Kleiman, Steven L.; Laksov, Dan (1974). 3618:if and only if the base locus is empty. 3574:{\displaystyle \operatorname {Bl} (|D|)} 2554:, then we can take its projectivization 5679: 1824:{\displaystyle f:C\to \mathbb {P} ^{1}} 1408:{\displaystyle x^{2}+y^{2}+z^{2}+w^{2}} 331:, or in other words a non-zero element 5871:, 1977; corrected 6th printing, 1993. 4642:on the right is the invariance of the 3539:. From this viewpoint, the base locus 3312:is not contained in the base locus of 1415:is linearly equivalent to the divisor 230:{\displaystyle D,E\in {\text{Div}}(X)} 135:{\displaystyle (X,{\mathcal {O}}_{X})} 4250:{\displaystyle V\subset \Gamma (X,L)} 3099:{\displaystyle \operatorname {Supp} } 2880:linear systems with fixed base points 2827:Linear systems in birational geometry 2669:{\displaystyle N={\binom {n+d}{n}}-1} 2280:{\displaystyle C\to \mathbb {P} ^{1}} 1435:associated to the vanishing locus of 1349:associated to the vanishing locus of 7: 5709: 5707: 5705: 5703: 5701: 5699: 5641:{\displaystyle \in \mathbb {P} ^{r}} 5216:{\displaystyle f:Y\hookrightarrow X} 4315:= the base field). Or equivalently, 4004:{\displaystyle \in \mathbb {P} ^{1}} 3371:in the class which does not contain 2898:of a linear system of divisors on a 2837:Italian school of algebraic geometry 807:to the set of non-zero multiples of 533:{\displaystyle D\in {\text{Div}}(X)} 5361: 5312: 5232: 4200:A map determined by a linear system 4086: 3788: 3761: 3653: 3466:of (Cartier) divisors on a variety 3188:{\displaystyle \operatorname {Bl} } 2847:is to show up a difference between 2119: 1016:language. In those terms, divisors 972: 942: 933:The dimension of the linear system 872: 69:These arose first in the form of a 5887:Positivity in Algebraic Geometry I 4886: 4737:{\displaystyle {\mathcal {O}}_{X}} 4420: 4229: 3702: 3133:in the linear system. This is the 2800:{\displaystyle C\hookrightarrow Y} 2637: 2519: 1857:all curves are hyperelliptic: the 1241: 1132: 898: 674: 25: 3607:{\displaystyle {\mathcal {O}}(D)} 3512:{\displaystyle {\mathcal {O}}(D)} 3342:, then there exists some divisor 2470:{\displaystyle {\mathcal {O}}(d)} 1083:{\displaystyle {\mathcal {O}}(2)} 857:is therefore a projective space. 594:be the line bundle associated to 5844:Principles of Algebraic Geometry 5429:{\displaystyle \mathbb {P} ^{r}} 5155: 5068:{\displaystyle {\widetilde {X}}} 4770:{\displaystyle {\widetilde {X}}} 4033:{\displaystyle \mathbb {P} ^{n}} 3426:{\displaystyle |D|\cdot C\geq 0} 2607:{\displaystyle \mathbb {P} ^{N}} 2499:{\displaystyle \mathbb {P} ^{n}} 1322:{\displaystyle \left(t/s\right)} 1112:{\displaystyle \mathbb {P} ^{3}} 5240:{\displaystyle {\mathfrak {d}}} 4481:{\displaystyle V_{X}=V\times X} 3769:{\displaystyle {\mathfrak {X}}} 2578:{\displaystyle \mathbb {P} (V)} 2127:{\displaystyle {\mathfrak {d}}} 950:{\displaystyle {\mathfrak {d}}} 880:{\displaystyle {\mathfrak {d}}} 5620: 5588: 5542: 5536: 5463: 5457: 5349: 5345: 5339: 5317: 5307: 5207: 5121: 5108: 5100: 4992: 4979: 4971: 4932:{\displaystyle {\mathcal {I}}} 4867: 4864: 4827: 4797: 4794: 4690: 4677: 4669: 4600: 4587: 4576: 4558: 4547: 4523: 4515: 4449:is surjective. Hence, writing 4401: 4398: 4361: 4331: 4328: 4295: 4244: 4232: 4176: 4164: 4159: 4127: 4124: 4112: 4091: 4081: 3983: 3957: 3881: 3863: 3858: 3826: 3823: 3811: 3739: 3736: 3730: 3705: 3683:given by two generic sections 3658: 3601: 3595: 3568: 3564: 3556: 3552: 3506: 3500: 3452: 3444: 3407: 3399: 3355: 3328: 3320: 3218: 3210: 3171:considerations as to what the 3153: 3145: 3126:{\displaystyle D_{\text{eff}}} 3048: 3040: 3015: 3011: 3003: 2999: 2949: 2941: 2791: 2698: 2572: 2566: 2541: 2538: 2532: 2522: 2464: 2458: 2429:{\displaystyle d\geq (1/2)g+1} 2414: 2400: 2262: 2054: 2051: 2032: 2019: 1965:{\displaystyle h^{0}(K_{C})=2} 1953: 1940: 1806: 1695: 1692: 1673: 1660: 1648: 1640: 1278: 1275: 1269: 1244: 1215: 1209: 1169: 1166: 1160: 1135: 1077: 1071: 917: 901: 843: 835: 793: 785: 764: 758: 708: 693: 677: 671: 650: 642: 587:{\displaystyle {\mathcal {L}}} 556: 548: 527: 521: 396: 390: 370: 364: 269: 263: 224: 218: 129: 106: 1: 3943:{\displaystyle s_{0}f+t_{0}g} 3232:is such a class on a variety 2933:More precisely, suppose that 2506:. If we take global sections 1186:. For the associated divisor 664:is in natural bijection with 5773:Geometry of algebraic curves 5383:O(1) on a projective variety 5075:, there results in the map: 3364:{\displaystyle {\tilde {D}}} 2983:. Consider the intersection 1291:using the rational function 466:divisor (algebraic geometry) 5822:10.1007/978-1-4612-1700-8_5 5581:to its corresponding point 3486:is viewed as a line bundle 2355:. In fact, any curve has a 1728:{\displaystyle \omega _{C}} 739:by associating the element 5928: 5039:{\displaystyle X-B\simeq } 3623: 2874:wrote his celebrated book 2750: 2679:Then, using any embedding 1972:, hence there is a degree 1221:{\displaystyle D_{s}=Z(s)} 26: 5889:, Springer-Verlag, 2004. 5781:10.1007/978-1-4757-5323-3 5668:bundle of principal parts 5140:Finally, when a basis of 2444:Consider the line bundle 2380:{\displaystyle g_{1}^{d}} 2344:{\displaystyle g_{1}^{3}} 2312:{\displaystyle g_{2}^{1}} 2219:{\displaystyle g_{2}^{1}} 2103:{\displaystyle g_{d}^{r}} 1861:then gives the degree of 1057:Consider the line bundle 278:{\displaystyle E=D+(f)\ } 60:linear system of divisors 40:linear system of divisors 4943:and that gives rise to 4748:replaced by the blow-up 3272:an irreducible curve on 2859:coming from sections of 2821:Cayley–Bacharach theorem 2585:. This is isomorphic to 2226:which is induced by the 1565:Linear systems on curves 474:holomorphic line bundles 174:Given a general variety 5687:Grothendieck, Alexandre 5191:For a closed immersion 4709:When the base locus of 4635:{\displaystyle \simeq } 2753:Linear system of conics 2747:Linear system of conics 770:{\displaystyle E=D+(f)} 31:from cohomology theory. 5767:; Cornalba, Maurizio; 5642: 5575: 5574:{\displaystyle x\in X} 5549: 5430: 5401: 5373: 5281: 5261: 5241: 5217: 5131: 5069: 5040: 5008: 4939:is the ideal sheaf of 4933: 4909: 4890: 4771: 4738: 4700: 4636: 4613: 4482: 4443: 4424: 4305: 4251: 4197: 4190: 4060: 4034: 4005: 3944: 3902: 3895: 3770: 3746: 3677: 3608: 3575: 3533: 3513: 3480: 3460: 3427: 3385: 3365: 3336: 3306: 3286: 3266: 3246: 3226: 3189: 3161: 3127: 3100: 3077: 2977: 2957: 2923: 2809:Kodaira–Spencer theory 2801: 2737: 2717: 2670: 2608: 2579: 2548: 2500: 2471: 2430: 2381: 2345: 2313: 2281: 2246: 2220: 2188: 2168: 2148: 2128: 2104: 2061: 1986: 1966: 1917: 1916:{\displaystyle 2g-2=2} 1882: 1851: 1825: 1783: 1761: 1729: 1702: 1626: 1606: 1583: 1562: 1555: 1452: 1429: 1409: 1343: 1323: 1285: 1222: 1176: 1113: 1084: 1030: 999: 951: 927: 881: 851: 821: 801: 771: 733: 658: 628: 608: 588: 564: 534: 497: 481:complete linear system 446: 423: 403: 377: 345: 325: 305: 279: 231: 188: 136: 51: 5643: 5576: 5555:. This sends a point 5550: 5431: 5402: 5387:A projective variety 5374: 5282: 5262: 5242: 5218: 5132: 5070: 5041: 5009: 4934: 4910: 4870: 4772: 4739: 4701: 4637: 4614: 4483: 4444: 4404: 4311:is surjective (here, 4306: 4252: 4191: 4068: 4061: 4035: 4006: 3945: 3896: 3778: 3771: 3747: 3678: 3609: 3576: 3534: 3514: 3481: 3461: 3428: 3386: 3366: 3337: 3307: 3287: 3267: 3247: 3227: 3190: 3162: 3128: 3101: 3078: 2978: 2958: 2924: 2802: 2738: 2718: 2671: 2609: 2580: 2549: 2501: 2472: 2431: 2382: 2346: 2314: 2282: 2247: 2221: 2189: 2169: 2149: 2129: 2105: 2062: 1987: 1967: 1918: 1883: 1881:{\displaystyle K_{C}} 1852: 1826: 1784: 1762: 1730: 1703: 1627: 1607: 1584: 1556: 1460: 1453: 1430: 1410: 1344: 1324: 1286: 1223: 1177: 1114: 1085: 1031: 1000: 952: 928: 882: 852: 822: 802: 772: 734: 659: 629: 609: 589: 565: 535: 498: 447: 424: 404: 378: 346: 326: 306: 280: 232: 189: 137: 37: 5912:Geometry of divisors 5658:Brill–Noether theory 5585: 5559: 5440: 5411: 5391: 5291: 5271: 5251: 5227: 5195: 5082: 5050: 5021: 4950: 4919: 4785: 4752: 4717: 4657: 4626: 4503: 4453: 4319: 4265: 4220: 4073: 4044: 4015: 3954: 3908: 3783: 3756: 3687: 3642: 3585: 3543: 3523: 3490: 3470: 3440: 3395: 3375: 3346: 3316: 3296: 3276: 3256: 3236: 3206: 3179: 3141: 3110: 3090: 2990: 2967: 2937: 2907: 2835:as practised by the 2785: 2727: 2683: 2621: 2589: 2558: 2510: 2481: 2448: 2391: 2359: 2323: 2291: 2256: 2230: 2198: 2178: 2158: 2138: 2114: 2082: 1996: 1976: 1927: 1892: 1865: 1859:Riemann–Roch theorem 1835: 1794: 1773: 1751: 1739:Hyperelliptic curves 1712: 1636: 1616: 1596: 1573: 1465: 1439: 1419: 1353: 1333: 1295: 1232: 1190: 1123: 1094: 1061: 1020: 961: 937: 895: 867: 831: 811: 781: 743: 668: 638: 618: 598: 574: 544: 507: 487: 436: 413: 387: 376:{\displaystyle k(X)} 358: 335: 315: 295: 248: 198: 178: 103: 5814:Intersection Theory 5689:; DieudonnĂ©, Jean. 4575: 4540: 4059:{\displaystyle f,g} 3776:given by the scheme 3459:{\displaystyle |D|} 3335:{\displaystyle |D|} 3225:{\displaystyle |D|} 3160:{\displaystyle |D|} 2956:{\displaystyle |D|} 2922:{\displaystyle x=a} 2841:homological algebra 2833:birational geometry 2376: 2340: 2308: 2245:{\displaystyle 2:1} 2215: 2154:which is of degree 2110:is a linear system 2099: 1850:{\displaystyle g=2} 1745:hyperelliptic curve 850:{\displaystyle |D|} 800:{\displaystyle |D|} 657:{\displaystyle |D|} 614:. In the case that 563:{\displaystyle |D|} 402:{\displaystyle (f)} 239:linearly equivalent 29:Kodaira–Spencer map 5865:Algebraic Geometry 5769:Griffiths, Phillip 5742:10.1007/BF02392112 5638: 5571: 5545: 5426: 5397: 5369: 5277: 5257: 5237: 5213: 5167:. You can help by 5127: 5065: 5046:an open subset of 5036: 5004: 4929: 4905: 4767: 4734: 4696: 4632: 4609: 4561: 4526: 4478: 4439: 4301: 4247: 4186: 4056: 4030: 4001: 3940: 3891: 3766: 3742: 3673: 3626:Theorem of Bertini 3616:globally generated 3604: 3571: 3529: 3509: 3476: 3456: 3423: 3381: 3361: 3332: 3302: 3282: 3262: 3242: 3222: 3185: 3157: 3123: 3096: 3073: 3053: 2973: 2953: 2919: 2876:Algebraic Surfaces 2861:invertible sheaves 2853:free abelian group 2797: 2733: 2713: 2666: 2604: 2575: 2544: 2496: 2467: 2426: 2377: 2362: 2341: 2326: 2309: 2294: 2277: 2242: 2216: 2201: 2184: 2164: 2144: 2124: 2100: 2085: 2057: 1982: 1962: 1913: 1878: 1847: 1821: 1779: 1757: 1725: 1698: 1622: 1602: 1579: 1551: 1451:{\displaystyle xy} 1448: 1425: 1405: 1339: 1319: 1281: 1218: 1172: 1109: 1080: 1053:Linear equivalence 1042:linear equivalence 1026: 995: 947: 923: 877: 847: 817: 797: 767: 729: 654: 624: 604: 584: 560: 530: 493: 470:invertible sheaves 442: 419: 399: 373: 341: 321: 301: 288:for some non-zero 275: 227: 184: 132: 83:linear equivalence 56:algebraic geometry 52: 48:Apollonian circles 5790:978-1-4419-2825-2 5765:Arbarello, Enrico 5400:{\displaystyle X} 5280:{\displaystyle Y} 5260:{\displaystyle X} 5185: 5184: 5062: 4968: 4764: 4644:projective bundle 4180: 4100: 4079: 3885: 3799: 3532:{\displaystyle X} 3479:{\displaystyle X} 3384:{\displaystyle C} 3358: 3305:{\displaystyle C} 3285:{\displaystyle X} 3265:{\displaystyle C} 3245:{\displaystyle X} 3120: 3072: 3067: 3033: 3021: 2976:{\displaystyle X} 2868:algebraic surface 2736:{\displaystyle k} 2652: 2351:which are called 2187:{\displaystyle r} 2167:{\displaystyle d} 2147:{\displaystyle C} 1985:{\displaystyle 2} 1782:{\displaystyle 2} 1760:{\displaystyle C} 1625:{\displaystyle K} 1605:{\displaystyle g} 1582:{\displaystyle C} 1545: 1428:{\displaystyle E} 1342:{\displaystyle D} 1029:{\displaystyle D} 820:{\displaystyle f} 627:{\displaystyle X} 607:{\displaystyle D} 519: 496:{\displaystyle X} 445:{\displaystyle X} 422:{\displaystyle f} 344:{\displaystyle f} 324:{\displaystyle X} 304:{\displaystyle f} 290:rational function 274: 216: 187:{\displaystyle X} 16:(Redirected from 5919: 5857: 5826: 5825: 5809: 5803: 5802: 5761: 5755: 5754: 5744: 5729:Acta Mathematica 5720: 5714: 5711: 5694: 5684: 5663:Lefschetz pencil 5647: 5645: 5644: 5639: 5637: 5636: 5631: 5619: 5618: 5600: 5599: 5580: 5578: 5577: 5572: 5554: 5552: 5551: 5546: 5535: 5534: 5533: 5532: 5527: 5520: 5519: 5512: 5511: 5510: 5509: 5508: 5507: 5502: 5495: 5494: 5482: 5481: 5476: 5475: 5456: 5455: 5450: 5449: 5435: 5433: 5432: 5427: 5425: 5424: 5419: 5406: 5404: 5403: 5398: 5378: 5376: 5375: 5370: 5365: 5364: 5352: 5338: 5337: 5316: 5315: 5306: 5305: 5286: 5284: 5283: 5278: 5266: 5264: 5263: 5258: 5246: 5244: 5243: 5238: 5236: 5235: 5222: 5220: 5219: 5214: 5180: 5177: 5159: 5152: 5136: 5134: 5133: 5128: 5120: 5119: 5107: 5074: 5072: 5071: 5066: 5064: 5063: 5055: 5045: 5043: 5042: 5037: 5013: 5011: 5010: 5005: 4991: 4990: 4978: 4970: 4969: 4961: 4938: 4936: 4935: 4930: 4928: 4927: 4914: 4912: 4911: 4906: 4904: 4903: 4898: 4897: 4889: 4884: 4863: 4862: 4850: 4849: 4848: 4847: 4842: 4841: 4826: 4825: 4820: 4819: 4812: 4811: 4776: 4774: 4773: 4768: 4766: 4765: 4757: 4743: 4741: 4740: 4735: 4733: 4732: 4727: 4726: 4705: 4703: 4702: 4697: 4689: 4688: 4676: 4641: 4639: 4638: 4633: 4618: 4616: 4615: 4610: 4599: 4598: 4586: 4574: 4569: 4557: 4539: 4534: 4522: 4494:closed immersion 4487: 4485: 4484: 4479: 4465: 4464: 4448: 4446: 4445: 4440: 4438: 4437: 4432: 4431: 4423: 4418: 4397: 4396: 4384: 4383: 4382: 4381: 4376: 4375: 4360: 4359: 4354: 4353: 4346: 4345: 4310: 4308: 4307: 4302: 4294: 4293: 4288: 4287: 4280: 4279: 4256: 4254: 4253: 4248: 4195: 4193: 4192: 4187: 4185: 4181: 4179: 4162: 4158: 4157: 4139: 4138: 4107: 4101: 4098: 4090: 4089: 4080: 4077: 4065: 4063: 4062: 4057: 4039: 4037: 4036: 4031: 4029: 4028: 4023: 4011:is a divisor in 4010: 4008: 4007: 4002: 4000: 3999: 3994: 3982: 3981: 3969: 3968: 3949: 3947: 3946: 3941: 3936: 3935: 3920: 3919: 3900: 3898: 3897: 3892: 3890: 3886: 3884: 3861: 3857: 3856: 3838: 3837: 3806: 3800: 3797: 3792: 3791: 3775: 3773: 3772: 3767: 3765: 3764: 3751: 3749: 3748: 3743: 3729: 3728: 3719: 3718: 3713: 3682: 3680: 3679: 3674: 3672: 3671: 3666: 3657: 3656: 3637:Lefschetz pencil 3613: 3611: 3610: 3605: 3594: 3593: 3580: 3578: 3577: 3572: 3567: 3559: 3538: 3536: 3535: 3530: 3518: 3516: 3515: 3510: 3499: 3498: 3485: 3483: 3482: 3477: 3465: 3463: 3462: 3457: 3455: 3447: 3432: 3430: 3429: 3424: 3410: 3402: 3390: 3388: 3387: 3382: 3370: 3368: 3367: 3362: 3360: 3359: 3351: 3341: 3339: 3338: 3333: 3331: 3323: 3311: 3309: 3308: 3303: 3291: 3289: 3288: 3283: 3271: 3269: 3268: 3263: 3251: 3249: 3248: 3243: 3231: 3229: 3228: 3223: 3221: 3213: 3194: 3192: 3191: 3186: 3169:scheme-theoretic 3166: 3164: 3163: 3158: 3156: 3148: 3132: 3130: 3129: 3124: 3122: 3121: 3118: 3105: 3103: 3102: 3097: 3082: 3080: 3079: 3074: 3070: 3069: 3068: 3065: 3052: 3051: 3043: 3035: 3034: 3031: 3014: 3006: 2982: 2980: 2979: 2974: 2962: 2960: 2959: 2954: 2952: 2944: 2928: 2926: 2925: 2920: 2857:Cartier divisors 2806: 2804: 2803: 2798: 2742: 2740: 2739: 2734: 2722: 2720: 2719: 2714: 2712: 2711: 2706: 2697: 2696: 2691: 2675: 2673: 2672: 2667: 2659: 2658: 2657: 2648: 2636: 2613: 2611: 2610: 2605: 2603: 2602: 2597: 2584: 2582: 2581: 2576: 2565: 2553: 2551: 2550: 2545: 2531: 2530: 2505: 2503: 2502: 2497: 2495: 2494: 2489: 2476: 2474: 2473: 2468: 2457: 2456: 2435: 2433: 2432: 2427: 2410: 2386: 2384: 2383: 2378: 2375: 2370: 2350: 2348: 2347: 2342: 2339: 2334: 2318: 2316: 2315: 2310: 2307: 2302: 2286: 2284: 2283: 2278: 2276: 2275: 2270: 2251: 2249: 2248: 2243: 2225: 2223: 2222: 2217: 2214: 2209: 2193: 2191: 2190: 2185: 2173: 2171: 2170: 2165: 2153: 2151: 2150: 2145: 2133: 2131: 2130: 2125: 2123: 2122: 2109: 2107: 2106: 2101: 2098: 2093: 2066: 2064: 2063: 2058: 2050: 2049: 2031: 2030: 2018: 2010: 2009: 2004: 1991: 1989: 1988: 1983: 1971: 1969: 1968: 1963: 1952: 1951: 1939: 1938: 1922: 1920: 1919: 1914: 1887: 1885: 1884: 1879: 1877: 1876: 1856: 1854: 1853: 1848: 1830: 1828: 1827: 1822: 1820: 1819: 1814: 1788: 1786: 1785: 1780: 1766: 1764: 1763: 1758: 1734: 1732: 1731: 1726: 1724: 1723: 1707: 1705: 1704: 1699: 1691: 1690: 1672: 1671: 1659: 1651: 1643: 1631: 1629: 1628: 1623: 1611: 1609: 1608: 1603: 1588: 1586: 1585: 1580: 1560: 1558: 1557: 1552: 1550: 1546: 1544: 1536: 1535: 1534: 1522: 1521: 1509: 1508: 1496: 1495: 1485: 1457: 1455: 1454: 1449: 1434: 1432: 1431: 1426: 1414: 1412: 1411: 1406: 1404: 1403: 1391: 1390: 1378: 1377: 1365: 1364: 1348: 1346: 1345: 1340: 1328: 1326: 1325: 1320: 1318: 1314: 1310: 1290: 1288: 1287: 1282: 1268: 1267: 1258: 1257: 1252: 1227: 1225: 1224: 1219: 1202: 1201: 1184:quadric surfaces 1181: 1179: 1178: 1173: 1159: 1158: 1149: 1148: 1143: 1118: 1116: 1115: 1110: 1108: 1107: 1102: 1089: 1087: 1086: 1081: 1070: 1069: 1038:Cartier divisors 1035: 1033: 1032: 1027: 1014:invertible sheaf 1004: 1002: 1001: 996: 976: 975: 956: 954: 953: 948: 946: 945: 932: 930: 929: 924: 916: 915: 886: 884: 883: 878: 876: 875: 856: 854: 853: 848: 846: 838: 826: 824: 823: 818: 806: 804: 803: 798: 796: 788: 776: 774: 773: 768: 738: 736: 735: 730: 725: 724: 715: 692: 691: 663: 661: 660: 655: 653: 645: 633: 631: 630: 625: 613: 611: 610: 605: 593: 591: 590: 585: 583: 582: 569: 567: 566: 561: 559: 551: 540:. It is denoted 539: 537: 536: 531: 520: 517: 502: 500: 499: 494: 458:Cartier divisors 451: 449: 448: 443: 428: 426: 425: 420: 408: 406: 405: 400: 382: 380: 379: 374: 350: 348: 347: 342: 330: 328: 327: 322: 310: 308: 307: 302: 284: 282: 281: 276: 272: 236: 234: 233: 228: 217: 214: 193: 191: 190: 185: 159:, respectively. 141: 139: 138: 133: 128: 127: 122: 121: 79:projective plane 75:algebraic curves 64:family of curves 44:family of curves 21: 5927: 5926: 5922: 5921: 5920: 5918: 5917: 5916: 5902: 5901: 5900: 5869:Springer-Verlag 5854: 5834: 5830: 5829: 5811: 5810: 5806: 5791: 5763: 5762: 5758: 5722: 5721: 5717: 5712: 5697: 5685: 5681: 5676: 5654: 5626: 5610: 5591: 5583: 5582: 5557: 5556: 5522: 5513: 5497: 5488: 5483: 5469: 5443: 5438: 5437: 5414: 5409: 5408: 5389: 5388: 5385: 5326: 5294: 5289: 5288: 5269: 5268: 5249: 5248: 5225: 5224: 5193: 5192: 5181: 5175: 5172: 5165:needs expansion 5150: 5111: 5080: 5079: 5048: 5047: 5019: 5018: 4982: 4948: 4947: 4917: 4916: 4891: 4851: 4835: 4830: 4813: 4803: 4783: 4782: 4750: 4749: 4720: 4715: 4714: 4680: 4655: 4654: 4624: 4623: 4590: 4501: 4500: 4456: 4451: 4450: 4425: 4385: 4369: 4364: 4347: 4337: 4317: 4316: 4281: 4271: 4263: 4262: 4218: 4217: 4202: 4163: 4149: 4130: 4108: 4102: 4071: 4070: 4042: 4041: 4018: 4013: 4012: 3989: 3973: 3960: 3952: 3951: 3927: 3911: 3906: 3905: 3862: 3848: 3829: 3807: 3801: 3781: 3780: 3754: 3753: 3708: 3685: 3684: 3661: 3640: 3639: 3633: 3628: 3583: 3582: 3541: 3540: 3521: 3520: 3488: 3487: 3468: 3467: 3438: 3437: 3393: 3392: 3373: 3372: 3344: 3343: 3314: 3313: 3294: 3293: 3274: 3273: 3254: 3253: 3234: 3233: 3204: 3203: 3177: 3176: 3173:structure sheaf 3139: 3138: 3113: 3108: 3107: 3088: 3087: 3060: 3026: 2988: 2987: 2965: 2964: 2935: 2934: 2905: 2904: 2892: 2845:singular points 2829: 2817: 2783: 2782: 2760: 2755: 2749: 2725: 2724: 2701: 2686: 2681: 2680: 2638: 2631: 2619: 2618: 2592: 2587: 2586: 2556: 2555: 2508: 2507: 2484: 2479: 2478: 2446: 2445: 2442: 2389: 2388: 2357: 2356: 2353:trigonal curves 2321: 2320: 2289: 2288: 2265: 2254: 2253: 2228: 2227: 2196: 2195: 2176: 2175: 2156: 2155: 2136: 2135: 2112: 2111: 2080: 2079: 2076: 2074: 2041: 2022: 1999: 1994: 1993: 1974: 1973: 1943: 1930: 1925: 1924: 1890: 1889: 1868: 1863: 1862: 1833: 1832: 1831:. For the case 1809: 1792: 1791: 1771: 1770: 1749: 1748: 1741: 1715: 1710: 1709: 1682: 1663: 1634: 1633: 1614: 1613: 1594: 1593: 1571: 1570: 1567: 1537: 1526: 1513: 1500: 1487: 1486: 1480: 1463: 1462: 1437: 1436: 1417: 1416: 1395: 1382: 1369: 1356: 1351: 1350: 1331: 1330: 1302: 1298: 1293: 1292: 1247: 1230: 1229: 1193: 1188: 1187: 1138: 1121: 1120: 1119:whose sections 1097: 1092: 1091: 1059: 1058: 1055: 1050: 1018: 1017: 959: 958: 935: 934: 893: 892: 865: 864: 829: 828: 809: 808: 779: 778: 741: 740: 716: 666: 665: 636: 635: 616: 615: 596: 595: 572: 571: 542: 541: 505: 504: 485: 484: 454:singular points 434: 433: 411: 410: 385: 384: 356: 355: 333: 332: 313: 312: 293: 292: 246: 245: 196: 195: 194:, two divisors 176: 175: 172: 115: 101: 100: 32: 23: 22: 15: 12: 11: 5: 5925: 5923: 5915: 5914: 5904: 5903: 5899: 5898: 5883:Lazarsfeld, R. 5880: 5861:Hartshorne, R. 5858: 5852: 5831: 5828: 5827: 5804: 5789: 5756: 5715: 5695: 5678: 5677: 5675: 5672: 5671: 5670: 5665: 5660: 5653: 5650: 5635: 5630: 5625: 5622: 5617: 5613: 5609: 5606: 5603: 5598: 5594: 5590: 5570: 5567: 5564: 5544: 5541: 5538: 5531: 5526: 5518: 5506: 5501: 5493: 5486: 5480: 5474: 5468: 5465: 5462: 5459: 5454: 5448: 5423: 5418: 5396: 5384: 5381: 5368: 5363: 5358: 5355: 5351: 5347: 5344: 5341: 5336: 5333: 5329: 5325: 5322: 5319: 5314: 5309: 5304: 5301: 5297: 5276: 5256: 5234: 5212: 5209: 5206: 5203: 5200: 5183: 5182: 5162: 5160: 5149: 5146: 5138: 5137: 5126: 5123: 5118: 5114: 5110: 5106: 5102: 5099: 5096: 5093: 5090: 5087: 5061: 5058: 5035: 5032: 5029: 5026: 5015: 5014: 5003: 5000: 4997: 4994: 4989: 4985: 4981: 4977: 4973: 4967: 4964: 4958: 4955: 4926: 4902: 4896: 4888: 4883: 4880: 4877: 4873: 4869: 4866: 4861: 4858: 4854: 4846: 4840: 4833: 4829: 4824: 4818: 4810: 4806: 4802: 4799: 4796: 4793: 4790: 4763: 4760: 4731: 4725: 4707: 4706: 4695: 4692: 4687: 4683: 4679: 4675: 4671: 4668: 4665: 4662: 4631: 4620: 4619: 4608: 4605: 4602: 4597: 4593: 4589: 4585: 4581: 4578: 4573: 4568: 4564: 4560: 4556: 4552: 4549: 4546: 4543: 4538: 4533: 4529: 4525: 4521: 4517: 4514: 4511: 4508: 4477: 4474: 4471: 4468: 4463: 4459: 4436: 4430: 4422: 4417: 4414: 4411: 4407: 4403: 4400: 4395: 4392: 4388: 4380: 4374: 4367: 4363: 4358: 4352: 4344: 4340: 4336: 4333: 4330: 4327: 4324: 4300: 4297: 4292: 4286: 4278: 4274: 4270: 4246: 4243: 4240: 4237: 4234: 4231: 4228: 4225: 4201: 4198: 4184: 4178: 4175: 4172: 4169: 4166: 4161: 4156: 4152: 4148: 4145: 4142: 4137: 4133: 4129: 4126: 4123: 4120: 4117: 4114: 4111: 4105: 4096: 4093: 4088: 4083: 4055: 4052: 4049: 4027: 4022: 3998: 3993: 3988: 3985: 3980: 3976: 3972: 3967: 3963: 3959: 3939: 3934: 3930: 3926: 3923: 3918: 3914: 3889: 3883: 3880: 3877: 3874: 3871: 3868: 3865: 3860: 3855: 3851: 3847: 3844: 3841: 3836: 3832: 3828: 3825: 3822: 3819: 3816: 3813: 3810: 3804: 3795: 3790: 3763: 3741: 3738: 3735: 3732: 3727: 3722: 3717: 3712: 3707: 3704: 3701: 3698: 3695: 3692: 3670: 3665: 3660: 3655: 3650: 3647: 3632: 3629: 3603: 3600: 3597: 3592: 3570: 3566: 3562: 3558: 3554: 3551: 3548: 3528: 3508: 3505: 3502: 3497: 3475: 3454: 3450: 3446: 3422: 3419: 3416: 3413: 3409: 3405: 3401: 3380: 3357: 3354: 3330: 3326: 3322: 3301: 3281: 3261: 3241: 3220: 3216: 3212: 3184: 3155: 3151: 3147: 3116: 3095: 3084: 3083: 3063: 3059: 3056: 3050: 3046: 3042: 3038: 3029: 3024: 3020: 3017: 3013: 3009: 3005: 3001: 2998: 2995: 2972: 2951: 2947: 2943: 2918: 2915: 2912: 2891: 2888: 2884:Henri PoincarĂ© 2828: 2825: 2816: 2815:Other examples 2813: 2796: 2793: 2790: 2759: 2756: 2751:Main article: 2748: 2745: 2732: 2710: 2705: 2700: 2695: 2690: 2677: 2676: 2665: 2662: 2656: 2651: 2647: 2644: 2641: 2635: 2629: 2626: 2601: 2596: 2574: 2571: 2568: 2564: 2543: 2540: 2537: 2534: 2529: 2524: 2521: 2518: 2515: 2493: 2488: 2466: 2463: 2460: 2455: 2441: 2438: 2425: 2422: 2419: 2416: 2413: 2409: 2405: 2402: 2399: 2396: 2374: 2369: 2365: 2338: 2333: 2329: 2306: 2301: 2297: 2274: 2269: 2264: 2261: 2241: 2238: 2235: 2213: 2208: 2204: 2183: 2174:and dimension 2163: 2143: 2121: 2097: 2092: 2088: 2075: 2072: 2069: 2056: 2053: 2048: 2044: 2040: 2037: 2034: 2029: 2025: 2021: 2017: 2013: 2008: 2003: 1981: 1961: 1958: 1955: 1950: 1946: 1942: 1937: 1933: 1912: 1909: 1906: 1903: 1900: 1897: 1875: 1871: 1846: 1843: 1840: 1818: 1813: 1808: 1805: 1802: 1799: 1778: 1756: 1740: 1737: 1722: 1718: 1697: 1694: 1689: 1685: 1681: 1678: 1675: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1621: 1601: 1578: 1566: 1563: 1549: 1543: 1540: 1533: 1529: 1525: 1520: 1516: 1512: 1507: 1503: 1499: 1494: 1490: 1483: 1479: 1476: 1473: 1470: 1447: 1444: 1424: 1402: 1398: 1394: 1389: 1385: 1381: 1376: 1372: 1368: 1363: 1359: 1338: 1317: 1313: 1309: 1305: 1301: 1280: 1277: 1274: 1271: 1266: 1261: 1256: 1251: 1246: 1243: 1240: 1237: 1217: 1214: 1211: 1208: 1205: 1200: 1196: 1171: 1168: 1165: 1162: 1157: 1152: 1147: 1142: 1137: 1134: 1131: 1128: 1106: 1101: 1079: 1076: 1073: 1068: 1054: 1051: 1049: 1046: 1025: 994: 991: 988: 985: 982: 979: 974: 969: 966: 944: 922: 919: 914: 909: 906: 903: 900: 874: 845: 841: 837: 816: 795: 791: 787: 766: 763: 760: 757: 754: 751: 748: 728: 723: 719: 714: 710: 707: 704: 701: 698: 695: 690: 685: 682: 679: 676: 673: 652: 648: 644: 623: 603: 581: 558: 554: 550: 529: 526: 523: 515: 512: 492: 476:); see below. 441: 418: 398: 395: 392: 372: 369: 366: 363: 353:function field 340: 320: 300: 286: 285: 271: 268: 265: 262: 259: 256: 253: 226: 223: 220: 212: 209: 206: 203: 183: 171: 168: 131: 126: 120: 114: 111: 108: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5924: 5913: 5910: 5909: 5907: 5896: 5895:3-540-22533-1 5892: 5888: 5884: 5881: 5878: 5877:0-387-90244-9 5874: 5870: 5866: 5862: 5859: 5855: 5853:0-471-05059-8 5849: 5845: 5841: 5837: 5833: 5832: 5823: 5819: 5815: 5808: 5805: 5800: 5796: 5792: 5786: 5782: 5778: 5774: 5770: 5766: 5760: 5757: 5752: 5748: 5743: 5738: 5734: 5730: 5726: 5719: 5716: 5710: 5708: 5706: 5704: 5702: 5700: 5696: 5692: 5688: 5683: 5680: 5673: 5669: 5666: 5664: 5661: 5659: 5656: 5655: 5651: 5649: 5633: 5623: 5615: 5611: 5607: 5604: 5601: 5596: 5592: 5568: 5565: 5562: 5539: 5529: 5504: 5484: 5478: 5466: 5460: 5452: 5421: 5394: 5382: 5380: 5356: 5353: 5342: 5334: 5331: 5327: 5320: 5302: 5299: 5295: 5287:, defined as 5274: 5254: 5210: 5204: 5201: 5198: 5189: 5179: 5170: 5166: 5163:This section 5161: 5158: 5154: 5153: 5147: 5145: 5143: 5124: 5116: 5112: 5097: 5094: 5091: 5088: 5085: 5078: 5077: 5076: 5059: 5056: 5033: 5030: 5027: 5024: 5001: 4998: 4995: 4987: 4983: 4965: 4962: 4956: 4953: 4946: 4945: 4944: 4942: 4900: 4881: 4878: 4875: 4871: 4859: 4856: 4852: 4844: 4831: 4822: 4808: 4804: 4800: 4791: 4788: 4780: 4761: 4758: 4747: 4729: 4712: 4693: 4685: 4681: 4666: 4663: 4660: 4653: 4652: 4651: 4649: 4645: 4629: 4606: 4603: 4595: 4591: 4579: 4571: 4566: 4562: 4550: 4544: 4541: 4536: 4531: 4527: 4512: 4509: 4506: 4499: 4498: 4497: 4495: 4492:, there is a 4491: 4490:relative Proj 4475: 4472: 4469: 4466: 4461: 4457: 4434: 4415: 4412: 4409: 4405: 4393: 4390: 4386: 4378: 4365: 4356: 4342: 4338: 4334: 4325: 4322: 4314: 4298: 4290: 4276: 4272: 4268: 4260: 4241: 4238: 4235: 4226: 4223: 4215: 4211: 4206: 4199: 4196: 4182: 4173: 4170: 4167: 4154: 4150: 4146: 4143: 4140: 4135: 4131: 4121: 4118: 4115: 4109: 4103: 4094: 4067: 4053: 4050: 4047: 4025: 3996: 3986: 3978: 3974: 3970: 3965: 3961: 3937: 3932: 3928: 3924: 3921: 3916: 3912: 3901: 3887: 3878: 3875: 3872: 3869: 3866: 3853: 3849: 3845: 3842: 3839: 3834: 3830: 3820: 3817: 3814: 3808: 3802: 3793: 3777: 3733: 3720: 3715: 3699: 3696: 3693: 3690: 3668: 3648: 3645: 3638: 3635:Consider the 3630: 3627: 3622: 3619: 3617: 3598: 3560: 3549: 3546: 3526: 3503: 3473: 3448: 3434: 3420: 3417: 3414: 3411: 3403: 3378: 3352: 3324: 3299: 3279: 3259: 3239: 3214: 3201: 3196: 3182: 3174: 3170: 3149: 3136: 3114: 3093: 3061: 3057: 3054: 3044: 3036: 3027: 3022: 3018: 3007: 2996: 2993: 2986: 2985: 2984: 2970: 2945: 2931: 2916: 2913: 2910: 2901: 2897: 2889: 2887: 2885: 2881: 2877: 2873: 2869: 2864: 2862: 2858: 2854: 2850: 2849:Weil divisors 2846: 2842: 2838: 2834: 2826: 2824: 2822: 2814: 2812: 2810: 2794: 2788: 2780: 2779:normal bundle 2775: 2773: 2769: 2765: 2757: 2754: 2746: 2744: 2730: 2708: 2693: 2663: 2660: 2649: 2645: 2642: 2639: 2627: 2624: 2617: 2616: 2615: 2599: 2569: 2535: 2516: 2513: 2491: 2461: 2439: 2437: 2423: 2420: 2417: 2411: 2407: 2403: 2397: 2394: 2372: 2367: 2363: 2354: 2336: 2331: 2327: 2304: 2299: 2295: 2272: 2259: 2239: 2236: 2233: 2211: 2206: 2202: 2181: 2161: 2141: 2095: 2090: 2086: 2070: 2068: 2046: 2042: 2038: 2035: 2027: 2023: 2011: 2006: 1979: 1959: 1956: 1948: 1944: 1935: 1931: 1910: 1907: 1904: 1901: 1898: 1895: 1873: 1869: 1860: 1844: 1841: 1838: 1816: 1803: 1800: 1797: 1790: 1776: 1754: 1746: 1738: 1736: 1720: 1716: 1687: 1683: 1679: 1676: 1668: 1664: 1652: 1644: 1619: 1599: 1592: 1576: 1564: 1561: 1547: 1541: 1538: 1531: 1527: 1523: 1518: 1514: 1510: 1505: 1501: 1497: 1492: 1488: 1481: 1477: 1474: 1471: 1468: 1459: 1445: 1442: 1422: 1400: 1396: 1392: 1387: 1383: 1379: 1374: 1370: 1366: 1361: 1357: 1336: 1315: 1311: 1307: 1303: 1299: 1272: 1259: 1254: 1238: 1235: 1212: 1206: 1203: 1198: 1194: 1185: 1163: 1150: 1145: 1129: 1126: 1104: 1074: 1052: 1047: 1045: 1043: 1039: 1023: 1015: 1011: 1006: 992: 989: 986: 983: 980: 977: 967: 964: 920: 907: 904: 890: 863: 862:linear system 858: 839: 814: 789: 761: 755: 752: 749: 746: 726: 721: 717: 712: 702: 696: 683: 680: 646: 621: 601: 552: 524: 513: 510: 490: 482: 477: 475: 471: 467: 463: 462:Weil divisors 459: 455: 439: 432:Note that if 430: 416: 393: 367: 361: 354: 338: 318: 298: 291: 266: 260: 257: 254: 251: 244: 243: 242: 240: 221: 210: 207: 204: 201: 181: 169: 167: 165: 160: 158: 154: 150: 149: 143: 124: 112: 109: 99: 95: 92:on a general 91: 88: 84: 80: 76: 72: 71:linear system 67: 65: 61: 57: 49: 45: 41: 36: 30: 19: 5886: 5864: 5843: 5836:P. Griffiths 5816:. Springer. 5813: 5807: 5772: 5759: 5732: 5728: 5718: 5690: 5682: 5407:embedded in 5386: 5379:(page 158). 5190: 5186: 5173: 5169:adding to it 5164: 5141: 5139: 5016: 4940: 4778: 4745: 4710: 4708: 4647: 4621: 4312: 4258: 4213: 4209: 4207: 4203: 4069: 3950:for a fixed 3903: 3779: 3634: 3620: 3435: 3197: 3195:should be). 3134: 3085: 2932: 2895: 2893: 2879: 2875: 2865: 2830: 2818: 2776: 2771: 2767: 2766:for a curve 2763: 2761: 2678: 2443: 2077: 1742: 1568: 1461: 1056: 1041: 1007: 888: 861: 859: 480: 478: 431: 287: 238: 173: 163: 161: 156: 152: 146: 144: 98:ringed space 89: 82: 70: 68: 59: 53: 46:, as in the 39: 5735:: 163–176. 5176:August 2019 2134:on a curve 1747:is a curve 1010:line bundle 170:Definitions 164:Kodaira map 5674:References 3624:See also: 3135:base locus 2896:base locus 2890:Base locus 1632:, denoted 96:or even a 18:Base locus 5840:J. Harris 5751:0001-5962 5624:∈ 5605:⋯ 5566:∈ 5485:⊗ 5357:∈ 5332:− 5300:− 5208:↪ 5117:∗ 5101:→ 5095:− 5060:~ 5034:≃ 5028:− 4996:× 4988:∗ 4972:↪ 4966:~ 4887:∞ 4872:⨁ 4868:→ 4857:− 4832:⊗ 4805:⊗ 4792:⁡ 4762:~ 4686:∗ 4670:→ 4630:≃ 4604:× 4596:∗ 4572:∗ 4551:≃ 4542:⊗ 4537:∗ 4516:↪ 4473:× 4421:∞ 4406:⨁ 4402:→ 4391:− 4366:⊗ 4339:⊗ 4326:⁡ 4296:→ 4273:⊗ 4230:Γ 4227:⊂ 4144:… 3987:∈ 3843:… 3703:Γ 3700:∈ 3659:→ 3550:⁡ 3418:≥ 3412:⋅ 3356:~ 3058:⁡ 3037:∈ 3023:⋂ 2997:⁡ 2792:↪ 2699:→ 2661:− 2520:Γ 2398:≥ 2263:→ 2043:ω 1902:− 1807:→ 1717:ω 1684:ω 1242:Γ 1239:∈ 1133:Γ 1130:∈ 990:− 984:⁡ 968:⁡ 899:Γ 722:∗ 697:∖ 675:Γ 514:∈ 211:∈ 5906:Category 5842:(1994). 5771:(2011). 5652:See also 2851:(in the 1789:morphism 1048:Examples 87:divisors 5799:2807457 5693:, 21.3. 3631:Example 3200:nefness 2900:variety 2872:Zariski 1992:map to 1767:with a 1182:define 383:. Here 351:of the 155:, or a 77:in the 5893:  5875:  5850:  5797:  5787:  5749:  5691:EGA IV 5017:Since 4915:where 4622:where 3252:, and 3086:where 3071:  2614:where 1769:degre 570:. Let 464:: see 273:  148:pencil 94:scheme 3752:, so 3292:. If 2477:over 2252:-map 1591:genus 5891:ISBN 5873:ISBN 5848:ISBN 5785:ISBN 5747:ISSN 4216:and 4208:Let 4099:Proj 4066:, so 3798:Proj 3094:Supp 3055:Supp 2894:The 2819:The 2387:for 1923:and 452:has 237:are 151:, a 58:, a 5818:doi 5777:doi 5737:doi 5733:132 5267:to 5247:on 5171:. 4789:Sym 4323:Sym 3519:on 3175:of 3137:of 3119:eff 3066:eff 3032:eff 2781:to 1888:is 1589:of 1090:on 1012:or 981:dim 965:dim 891:of 777:of 518:Div 483:on 472:or 311:on 241:if 215:Div 157:web 153:net 85:of 73:of 54:In 5908:: 5885:, 5867:, 5863:, 5838:; 5795:MR 5793:. 5783:. 5745:. 5731:. 5727:. 5698:^ 5648:. 4496:: 4078:Bl 3547:Bl 3183:Bl 3019::= 2994:Bl 2863:. 2774:. 2743:. 2436:. 2078:A 2067:. 1735:. 1005:. 860:A 479:A 460:, 429:. 166:. 142:. 38:A 5897:. 5879:. 5856:. 5824:. 5820:: 5801:. 5779:: 5753:. 5739:: 5634:r 5629:P 5621:] 5616:r 5612:x 5608:: 5602:: 5597:0 5593:x 5589:[ 5569:X 5563:x 5543:) 5540:1 5537:( 5530:r 5525:P 5517:O 5505:r 5500:P 5492:O 5479:X 5473:O 5467:= 5464:) 5461:1 5458:( 5453:X 5447:O 5422:r 5417:P 5395:X 5367:} 5362:d 5354:D 5350:| 5346:) 5343:D 5340:( 5335:1 5328:f 5324:{ 5321:= 5318:) 5313:d 5308:( 5303:1 5296:f 5275:Y 5255:X 5233:d 5211:X 5205:Y 5202:: 5199:f 5178:) 5174:( 5142:V 5125:. 5122:) 5113:V 5109:( 5105:P 5098:B 5092:X 5089:: 5086:f 5057:X 5031:B 5025:X 5002:. 4999:X 4993:) 4984:V 4980:( 4976:P 4963:X 4957:: 4954:i 4941:B 4925:I 4901:n 4895:I 4882:0 4879:= 4876:n 4865:) 4860:1 4853:L 4845:X 4839:O 4828:) 4823:X 4817:O 4809:k 4801:V 4798:( 4795:( 4779:B 4759:X 4746:X 4730:X 4724:O 4711:V 4694:. 4691:) 4682:V 4678:( 4674:P 4667:X 4664:: 4661:f 4648:i 4607:X 4601:) 4592:V 4588:( 4584:P 4580:= 4577:) 4567:X 4563:V 4559:( 4555:P 4548:) 4545:L 4532:X 4528:V 4524:( 4520:P 4513:X 4510:: 4507:i 4476:X 4470:V 4467:= 4462:X 4458:V 4435:X 4429:O 4416:0 4413:= 4410:n 4399:) 4394:1 4387:L 4379:X 4373:O 4362:) 4357:X 4351:O 4343:k 4335:V 4332:( 4329:( 4313:k 4299:L 4291:X 4285:O 4277:k 4269:V 4259:V 4245:) 4242:L 4239:, 4236:X 4233:( 4224:V 4214:X 4210:L 4183:) 4177:) 4174:g 4171:, 4168:f 4165:( 4160:] 4155:n 4151:x 4147:, 4141:, 4136:0 4132:x 4128:[ 4125:] 4122:t 4119:, 4116:s 4113:[ 4110:k 4104:( 4095:= 4092:) 4087:X 4082:( 4054:g 4051:, 4048:f 4026:n 4021:P 3997:1 3992:P 3984:] 3979:0 3975:t 3971:: 3966:0 3962:s 3958:[ 3938:g 3933:0 3929:t 3925:+ 3922:f 3917:0 3913:s 3888:) 3882:) 3879:g 3876:t 3873:+ 3870:f 3867:s 3864:( 3859:] 3854:n 3850:x 3846:, 3840:, 3835:0 3831:x 3827:[ 3824:] 3821:t 3818:, 3815:s 3812:[ 3809:k 3803:( 3794:= 3789:X 3762:X 3740:) 3737:) 3734:d 3731:( 3726:O 3721:, 3716:n 3711:P 3706:( 3697:g 3694:, 3691:f 3669:1 3664:P 3654:X 3649:: 3646:p 3602:) 3599:D 3596:( 3591:O 3569:) 3565:| 3561:D 3557:| 3553:( 3527:X 3507:) 3504:D 3501:( 3496:O 3474:X 3453:| 3449:D 3445:| 3421:0 3415:C 3408:| 3404:D 3400:| 3379:C 3353:D 3329:| 3325:D 3321:| 3300:C 3280:X 3260:C 3240:X 3219:| 3215:D 3211:| 3154:| 3150:D 3146:| 3115:D 3062:D 3049:| 3045:D 3041:| 3028:D 3016:) 3012:| 3008:D 3004:| 3000:( 2971:X 2950:| 2946:D 2942:| 2917:a 2914:= 2911:x 2795:Y 2789:C 2772:C 2768:C 2764:Y 2731:k 2709:N 2704:P 2694:k 2689:P 2664:1 2655:) 2650:n 2646:d 2643:+ 2640:n 2634:( 2628:= 2625:N 2600:N 2595:P 2573:) 2570:V 2567:( 2563:P 2542:) 2539:) 2536:d 2533:( 2528:O 2523:( 2517:= 2514:V 2492:n 2487:P 2465:) 2462:d 2459:( 2454:O 2424:1 2421:+ 2418:g 2415:) 2412:2 2408:/ 2404:1 2401:( 2395:d 2373:d 2368:1 2364:g 2337:3 2332:1 2328:g 2305:1 2300:2 2296:g 2273:1 2268:P 2260:C 2240:1 2237:: 2234:2 2212:1 2207:2 2203:g 2182:r 2162:d 2142:C 2120:d 2096:r 2091:d 2087:g 2073:d 2071:g 2055:) 2052:) 2047:C 2039:, 2036:C 2033:( 2028:0 2024:H 2020:( 2016:P 2012:= 2007:1 2002:P 1980:2 1960:2 1957:= 1954:) 1949:C 1945:K 1941:( 1936:0 1932:h 1911:2 1908:= 1905:2 1899:g 1896:2 1874:C 1870:K 1845:2 1842:= 1839:g 1817:1 1812:P 1804:C 1801:: 1798:f 1777:2 1755:C 1721:C 1696:) 1693:) 1688:C 1680:, 1677:C 1674:( 1669:0 1665:H 1661:( 1657:P 1653:= 1649:| 1645:K 1641:| 1620:K 1600:g 1577:C 1548:) 1542:y 1539:x 1532:2 1528:w 1524:+ 1519:2 1515:z 1511:+ 1506:2 1502:y 1498:+ 1493:2 1489:x 1482:( 1478:+ 1475:E 1472:= 1469:D 1446:y 1443:x 1423:E 1401:2 1397:w 1393:+ 1388:2 1384:z 1380:+ 1375:2 1371:y 1367:+ 1362:2 1358:x 1337:D 1316:) 1312:s 1308:/ 1304:t 1300:( 1279:) 1276:) 1273:2 1270:( 1265:O 1260:, 1255:3 1250:P 1245:( 1236:t 1216:) 1213:s 1210:( 1207:Z 1204:= 1199:s 1195:D 1170:) 1167:) 1164:2 1161:( 1156:O 1151:, 1146:3 1141:P 1136:( 1127:s 1105:3 1100:P 1078:) 1075:2 1072:( 1067:O 1036:( 1024:D 993:1 987:W 978:= 973:d 943:d 921:. 918:) 913:L 908:, 905:X 902:( 889:W 873:d 844:| 840:D 836:| 815:f 794:| 790:D 786:| 765:) 762:f 759:( 756:+ 753:D 750:= 747:E 727:, 718:k 713:/ 709:) 706:} 703:0 700:{ 694:) 689:L 684:, 681:X 678:( 672:( 651:| 647:D 643:| 622:X 602:D 580:L 557:| 553:D 549:| 528:) 525:X 522:( 511:D 491:X 440:X 417:f 397:) 394:f 391:( 371:) 368:X 365:( 362:k 339:f 319:X 299:f 270:) 267:f 264:( 261:+ 258:D 255:= 252:E 225:) 222:X 219:( 208:E 205:, 202:D 182:X 130:) 125:X 119:O 113:, 110:X 107:( 90:D 50:. 20:)

Index

Base locus
Kodaira–Spencer map

family of curves
Apollonian circles
algebraic geometry
family of curves
algebraic curves
projective plane
divisors
scheme
ringed space
pencil
rational function
function field
singular points
Cartier divisors
Weil divisors
divisor (algebraic geometry)
invertible sheaves
holomorphic line bundles
line bundle
invertible sheaf
Cartier divisors
quadric surfaces
genus
hyperelliptic curve
degre 2 {\displaystyle 2} morphism
Riemann–Roch theorem
trigonal curves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑