Knowledge

Quantum chaos

Source đź“ť

4991: 3264:). In particular, scars are both a striking visual example of classical-quantum correspondence away from the usual classical limit, and a useful example of a quantum suppression of chaos. For example, this is evident in the perturbation-induced quantum scarring: More specifically, in quantum dots perturbed by local potential bumps (impurities), some of the eigenstates are strongly scarred along periodic orbits of unperturbed classical counterpart. 4983: 6340: 3287:) dependence of the Hamiltonian, as reflected in e.g. the statistics of avoided crossings, and the associated mixing as reflected in the (parametric) local density of states (LDOS). There is vast literature on wavepacket dynamics, including the study of fluctuations, recurrences, quantum irreversibility issues etc. Special place is reserved to the study of the dynamics of quantized maps: the 2456:(energy levels), one can use standard quantum mechanical perturbation theory to compute eigenvalues (energy levels) and use the Fourier transform to look for the periodic modulations of the spectrum which are the signature of periodic orbits. Interpreting the spectrum then amounts to finding the orbits which correspond to peaks in the Fourier transform. 900: 1624:) of diamagnetic hydrogen showing peaks corresponding to periodic orbits of the classical system. Spectrum is at a scaled energy of −0.6. Peaks labeled R and V are repetitions of the closed orbit perpendicular and parallel to the field, respectively. Peaks labeled O correspond to the near circular periodic orbit that goes around the nucleus. 1629: 1613: 1027: 999: 2613: 1142: 1130: 1393: 2384:
and the convergence properties of periodic-orbit theory are unknown. This difficulty is also present when applying periodic-orbit theory to regular systems. 3) Long-period orbits are difficult to compute because most trajectories are unstable and sensitive to roundoff errors and details of the numerical integration.
1641:
of action quantization, which applies only to integrable or near-integrable systems and computes individual eigenvalues from each trajectory, periodic-orbit theory is applicable to both integrable and non-integrable systems and asserts that each periodic orbit produces a sinusoidal fluctuation in the
2624:
Closed-orbit theory was developed by J.B. Delos, M.L. Du, J. Gao, and J. Shaw. It is similar to periodic-orbit theory, except that closed-orbit theory is applicable only to atomic and molecular spectra and yields the oscillator strength density (observable photo-absorption spectrum) from a specified
2468:
Realize that for caustics the description diverges and use the insight by Maslov (approximately Fourier transforming to momentum space (stationary phase approximation with h a small parameter) to avoid such points and afterwards transforming back to position space can cure such a divergence, however
2383:
Using the trace formula to compute a spectrum requires summing over all of the periodic orbits of a system. This presents several difficulties for chaotic systems: 1) The number of periodic orbits proliferates exponentially as a function of action. 2) There are an infinite number of periodic orbits,
1594:
Many Hamiltonian systems which are classically integrable (non-chaotic) have been found to have quantum solutions that yield nearest neighbor distributions which follow the Poisson distributions. Similarly, many systems which exhibit classical chaos have been found with quantum solutions yielding a
1488:
In addition, systems which display chaotic classical motion are expected to be characterized by the statistics of random matrix eigenvalue ensembles. For systems invariant under time reversal, the energy-level statistics of a number of chaotic systems have been shown to be in good agreement with the
2455:
The figures above use an inverted approach to testing periodic-orbit theory. The trace formula asserts that each periodic orbit contributes a sinusoidal term to the spectrum. Rather than dealing with the computational difficulties surrounding long-period orbits to try to find the density of states
1417:
A number of statistical measures are available for quantifying spectral features in a simple way. It is of great interest whether or not there are universal statistical behaviors of classically chaotic systems. The statistical tests mentioned here are universal, at least to systems with few degrees
1327:
Other approaches have been developed in recent years. One is to express the Hamiltonian in different coordinate systems in different regions of space, minimizing the non-separable part of the Hamiltonian in each region. Wavefunctions are obtained in these regions, and eigenvalues are obtained by
1323:
Finding constants of motion so that this separation can be performed can be a difficult (sometimes impossible) analytical task. Solving the classical problem can give valuable insight into solving the quantum problem. If there are regular classical solutions of the same Hamiltonian, then there are
3255:
The traditional topics in quantum chaos concerns spectral statistics (universal and non-universal features), and the study of eigenfunctions of various chaotic Hamiltonian. For example, before the existence of scars was reported, eigenstates of a classically chaotic system were conjectured to fill
1383:
A given Hamiltonian shares the same constants of motion for both classical and quantum dynamics. Quantum systems can also have additional quantum numbers corresponding to discrete symmetries (such as parity conservation from reflection symmetry). However, if we merely find quantum solutions of a
950:
of the system tends to zero. If this is true, then there must be quantum mechanisms underlying classical chaos (although this may not be a fruitful way of examining classical chaos). If quantum mechanics does not demonstrate an exponential sensitivity to initial conditions, how can exponential
1331:
Another approach is numerical matrix diagonalization. If the Hamiltonian matrix is computed in any complete basis, eigenvalues and eigenvectors are obtained by diagonalizing the matrix. However, all complete basis sets are infinite, and we need to truncate the basis and still obtain accurate
1413:
theory was developed in an attempt to characterize spectra of complex nuclei. The remarkable result is that the statistical properties of many systems with unknown Hamiltonians can be predicted using random matrices of the proper symmetry class. Furthermore, random matrix theory also correctly
2603:
Note: Taking the trace tells you that only closed orbits contribute, the stationary phase approximation gives you restrictive conditions each time you make it. In step 4 it restricts you to orbits where initial and final momentum are the same i.e. periodic orbits. Often it is nice to choose a
1379:
is the dimension of the matrix, so it is important to choose the smallest basis possible from which the relevant wavefunctions can be constructed. It is also convenient to choose a basis in which the matrix is sparse and/or the matrix elements are given by simple algebraic expressions because
1400:
energy level spectra in an electric field as quantum defect is increased from 0.04 (a) to 0.32 (h). The system becomes more chaotic as dynamical symmetries are broken by increasing the quantum defect; consequently, the distribution evolves from nearly a Poisson distribution (a) to that of
1422:
and Tabor have put forward strong arguments for a Poisson distribution in the case of regular motion and Heusler et al. present a semiclassical explanation of the so-called Bohigas–Giannoni–Schmit conjecture which asserts universality of spectral fluctuations in chaotic dynamics). The
1384:
Hamiltonian which is not approachable by perturbation theory, we may learn a great deal about quantum solutions, but we have learned little about quantum chaos. Nevertheless, learning how to solve such quantum problems is an important part of answering the question of quantum chaos.
1599:, thus supporting the ideas above. One notable exception is diamagnetic lithium which, though exhibiting classical chaos, demonstrates Wigner (chaotic) statistics for the even-parity energy levels and nearly Poisson (regular) statistics for the odd-parity energy level distribution. 1833: 1319:
is a parameter which cannot be considered small. Physicists have historically approached problems of this nature by trying to find the coordinate system in which the non-separable Hamiltonian is smallest and then treating the non-separable Hamiltonian as a perturbation.
1426:
Qualitative observations of level repulsions can be quantified and related to the classical dynamics using the NND, which is believed to be an important signature of classical dynamics in quantum systems. It is thought that regular classical dynamics is manifested by a
2804: 2472:
Transform the Greens function to energy space to get the energy dependent Greens function (again approximate Fourier transform using the stationary phase approximation). New divergences might pop up that need to be cured using the same method as step
3260:). However, a quantum eigenstate of a classically chaotic system can be scarred: the probability density of the eigenstate is enhanced in the neighborhood of a periodic orbit, above the classical, statistically expected density along the orbit ( 1632:
Relative recurrence amplitudes of even and odd recurrences of the near circular orbit. Diamonds and plus signs are for odd and even quarter periods, respectively. Solid line is A/cosh(nX/8). Dashed line is A/sinh(nX/8) where A = 14.75 and X =
1489:
predictions of the Gaussian orthogonal ensemble (GOE) of random matrices, and it has been suggested that this phenomenon is generic for all chaotic systems with this symmetry. If the normalized spacing between two energy levels is
3180: 2628:
Only orbits that begin and end at the nucleus are important in closed-orbit theory. Physically, these are associated with the outgoing waves that are generated when a tightly bound electron is excited to a high-lying state. For
2897:). It contains information about the stability of the orbit, its initial and final directions, and the matrix element of the dipole operator between the initial state and a zero-energy Coulomb wave. For scaling systems such as 2568: 1018:), but not well understood. The foundations of modern quantum mechanics were laid in that period, essentially leaving aside the issue of the quantum-classical correspondence in systems whose classical limit exhibit chaos. 119: 2985:
Closed-orbit theory has found broad agreement with a number of chaotic systems, including diamagnetic hydrogen, hydrogen in parallel electric and magnetic fields, diamagnetic lithium, lithium in an electric field, the
1414:
predicts statistical properties of the eigenvalues of many chaotic systems with known Hamiltonians. This makes it useful as a tool for characterizing spectra which require large numerical efforts to compute.
1098:, dynamical localization in time evolution (e.g. ionization rates of atoms), and enhanced stationary wave intensities in regions of space where classical dynamics exhibits only unstable trajectories (as in 4550: 1651: 1589: 1149:
energy level spectra of lithium in an electric field near n=15. Note that energy levels cannot cross due to the ionic core (and resulting quantum defect) breaking symmetries of dynamical motion.
2084:, represents the square root of the density of neighboring orbits. Neighboring trajectories of an unstable periodic orbit diverge exponentially in time from the periodic orbit. The quantity 3348:
is time dependent, in particular in the adiabatic and in the linear response regimes. There is also significant effort focused on formulating ideas of quantum chaos for strongly-interacting
1210: 1110:
of a quantum system, or in its response to various types of external forces. In some contexts, such as acoustics or microwaves, wave patterns are directly observable and exhibit irregular
1645:
The principal result of this development is an expression for the density of states which is the trace of the semiclassical Green's function and is given by the Gutzwiller trace formula:
1332:
results. These techniques boil down to choosing a truncated basis from which accurate wavefunctions can be constructed. The computational time required to diagonalize a matrix scales as
1091:. However, classical-quantum correspondence in chaos theory is not always possible. Thus, some versions of the classical butterfly effect do not have counterparts in quantum mechanics. 2662: 2620:
in an electric field. The peaks labeled 1–5 are repetitions of the electron orbit parallel to the field going from the nucleus to the classical turning point in the uphill direction.
2082: 2370: 1970:
of the primitive period. Hence, every repetition of a periodic orbit is another periodic orbit. These repetitions are separately classified by the intermediate sum over the indices
1121:). Simple and exact solutions are precluded by the fact that the system's constituents either influence each other in a complex way, or depend on temporally varying external forces. 2168: 2220: 3226: 2292: 2980: 2875: 2838: 1483: 1057: 5569: 2018: 3346: 2250: 2112: 3364:
and Tabor made a still open "generic" mathematical conjecture which, stated roughly, is: In the "generic" case for the quantum dynamics of a geodesic flow on a compact
2923: 2654: 1317: 3054: 1948: 1270: 6137: 3011: 1918: 1891: 1357: 1297: 1240: 4703: 2597: 3466:
Courtney, Michael; Jiao, Hong; Spellmeyer, Neal; Kleppner, Daniel; Gao, J.; Delos, J. B. (February 1995). "Closed Orbit Bifurcations in Continuum Stark Spectra".
2450: 2420: 5280: 930:
can be described in terms of quantum theory. The primary question that quantum chaos seeks to answer is: "What is the relationship between quantum mechanics and
5770: 3285: 2943: 2895: 2312: 1988: 1968: 1860: 1507: 1377: 385: 2633:
and molecules, every orbit which is closed at the nucleus is also a periodic orbit whose period is equal to either the closure time or twice the closure time.
5110: 4696: 3059: 1153:
For conservative systems, the goal of quantum mechanics in non-perturbative regimes is to find the eigenvalues and eigenvectors of a Hamiltonian of the form
3522:
Courtney, Michael; Spellmeyer, Neal; Jiao, Hong; Kleppner, Daniel (May 1995). "Classical, semiclassical, and quantum dynamics in the lithium Stark system".
1106:
by analyzing the statistical distribution of spectral lines and by connecting spectral periodicities with classical orbits. Other phenomena show up in the
886: 2479: 6308: 1638: 1117:
Quantum chaos typically deals with systems whose properties need to be calculated using either numerical techniques or approximation schemes (see e.g.
3449: 3368:, the quantum energy eigenvalues behave like a sequence of independent random variables provided that the underlying classical dynamics is completely 1137:
energy level spectra of hydrogen in an electric field near n=15. Note that energy levels can cross due to underlying symmetries of dynamical motion.
6320: 5619: 593: 137: 49: 959: 3677:
Heusler, Stefan; MĂĽller, Sebastian; Altland, Alexander; Braun, Petr; Haake, Fritz (January 2007). "Periodic-Orbit Theory of Level Correlations".
2452:) states for small anisotropies by using only a small set of easily computed periodic orbits, but the agreement was poor for large anisotropies. 4990: 6004: 5562: 4750: 2945:
is called a recurrence spectrum, because it gives peaks which correspond to the scaled action of closed orbits and whose heights correspond to
366: 5938: 1423:
nearest-neighbor distribution (NND) of energy levels is relatively simple to interpret and it has been widely used to describe quantum chaos.
549: 4637: 4615: 4596: 4531: 4509: 4276: 3415: 5861: 472: 4943: 2616:
Experimental recurrence spectrum (circles) is compared with the results of the closed orbit theory of John Delos and Jing Gao for lithium
4890: 5223: 5265: 4953: 5592: 5555: 5458: 2570:(tracing over positions) and calculate it again in stationary phase approximation to get an approximation for the density of states 132: 1828:{\displaystyle g_{c}(E)=\sum _{k}T_{k}\sum _{n=1}^{\infty }{\frac {1}{2\sinh {(\chi _{nk}/2)}}}\,e^{i(nS_{k}-\alpha _{nk}\pi /2)}.} 951:
sensitivity to initial conditions arise in classical chaos, which must be the correspondence principle limit of quantum mechanics?
5702: 5140: 3056:
the density of states obtained from the Gutzwiller formula is related to the inverse of the potential of the classical system by
221: 5984: 5979: 328: 308: 6275: 5687: 4471: 2314:
is the number of times that neighboring orbits intersect the periodic orbit in one period. This presents a difficulty because
966: 879: 176: 5959: 1515: 298: 6287: 568: 5836: 4958: 4948: 6374: 6265: 6042: 5964: 5732: 5602: 608: 346: 246: 5999: 5213: 361: 5933: 5928: 5899: 5597: 5305: 5078: 3013:
ion in crossed and parallel electric and magnetic fields, barium in an electric field, and helium in an electric field.
544: 539: 510: 142: 5974: 323: 313: 6067: 1002:
Experimental recurrence spectra of lithium in an electric field showing birth of quantum recurrences corresponding to
578: 5884: 5218: 4519: 1637:
Periodic-orbit theory gives a recipe for computing spectra from the periodic orbits of a system. In contrast to the
495: 5285: 2376:. This causes that orbit's contribution to the energy density to diverge. This also occurs in the context of photo- 1030:
Comparison of experimental and theoretical recurrence spectra of lithium in an electric field at a scaled energy of
6369: 6343: 6105: 5913: 4743: 1159: 872: 524: 5816: 5752: 3573:
Yan, Bin; Sinitsyn, Nikolai A. (2020). "Recovery of Damaged Information and the Out-of-Time-Ordered Correlators".
2799:{\displaystyle f(w)=\sum _{k}\sum _{n=1}^{\infty }D_{\it {nk}}^{i}\sin(2\pi nw{\tilde {S_{k}}}-\phi _{\it {nk}}).} 1409:
Statistical measures of quantum chaos were born out of a desire to quantify spectral features of complex systems.
1324:(at least) approximate constants of motion, and by solving the classical problem, we gain clues how to find them. 986:
such as periodic-orbit theory connecting the classical trajectories of the dynamical system with quantum features.
443: 6127: 5994: 5918: 5879: 5795: 5645: 5333: 3430: 3361: 1419: 529: 490: 418: 341: 201: 6194: 6174: 6164: 6154: 6110: 5670: 5037: 4982: 3791:"Semiclassics for matrix Hamiltonians: The Gutzwiller trace formula with applications to graphene-type systems" 1076: 935: 613: 3233: 2027: 2465:
Start with the semiclassical approximation of the time-dependent Green's function (the Van Vleck propagator).
2317: 6303: 5889: 5851: 5800: 5198: 4963: 4870: 3442: 2121: 1063:
Questions related to the correspondence principle arise in many different branches of physics, ranging from
965:
Correlating statistical descriptions of eigenvalues (energy levels) with the classical behavior of the same
782: 500: 458: 408: 356: 122: 4060:
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa (2016-11-28).
3446: 2173: 6214: 5989: 5969: 5894: 5790: 5747: 5238: 4850: 3248:
for which standard semiclassical limits do not apply. Recent works allowed for studying analytically such
787: 505: 413: 333: 303: 266: 3352:
quantum systems far from semi-classical regimes as well as a large effort in quantum chaotic scattering.
3185: 958:
Development of methods for solving quantum problems where the perturbation cannot be considered small in
6364: 6239: 5737: 5717: 5388: 5295: 5093: 4920: 4855: 4830: 4736: 4711: 3386: 1010:
During the first half of the twentieth century, chaotic behavior in mechanics was recognized (as in the
983: 256: 241: 5640: 5150: 4723: 4591:. Springer series in synergetics (2nd rev. and enlarged ed.). Berlin Heidelberg Paris : Springer. 4384:
Barba, J.C.; et al. (2008). "The Berry–Tabor conjecture for spin chains of Haldane–Shastry type".
2255: 168: 4653: 2948: 2843: 2811: 1838:
Recently there was a generalization of this formula for arbitrary matrix Hamiltonians that involves a
6270: 6199: 6144: 5874: 5682: 5398: 5228: 5050: 4895: 4559: 4480: 4403: 4326: 4215: 4158: 4083: 4018: 3969: 3920: 3869: 3812: 3747: 3696: 3643: 3592: 3531: 3475: 1428: 817: 573: 485: 211: 4717: 3244:
One open question remains understanding quantum chaos in systems that have finite-dimensional local
1437: 1033: 6255: 6224: 6169: 6149: 6057: 6014: 5869: 5780: 5707: 5697: 5609: 5358: 5315: 5300: 5145: 5098: 5083: 5068: 4968: 4900: 4875: 4860: 4845: 4608:
Quantum chaos Y2K: proceedings of Nobel Symposium 116, Bäckaskog Castle, Sweden, June 13 - 17, 2000
2377: 1920:
is its classical action. Each primitive orbit retraces itself, leading to a new orbit with action
1015: 908: 672: 480: 398: 226: 206: 158: 4548:(1951). "On the statistical distribution of the widths and spacings of nuclear resonance levels". 1993: 954:
In seeking to address the basic question of quantum chaos, several approaches have been employed:
6184: 6082: 5775: 5722: 5614: 5536: 5403: 5233: 5120: 5115: 5007: 4885: 4787: 4575: 4541: 4446: 4419: 4393: 4293: 4247: 4205: 4174: 4148: 4073: 4042: 4008: 3958:"Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits" 3910: 3859: 3828: 3802: 3738:
Courtney, Michael; Kleppner, Daniel (January 1996). "Core-induced chaos in diamagnetic lithium".
3686: 3616: 3582: 3410:. Springer series in synergetics (2nd rev. and enl. ed.). Berlin ; New York: Springer. 3301: 3257: 2373: 1011: 1003: 977: 393: 318: 251: 163: 6315: 2225: 2087: 2908: 2639: 1302: 6325: 6234: 6204: 6132: 6095: 6090: 6072: 6037: 6027: 5831: 5727: 5692: 5675: 5578: 5423: 5408: 5373: 5363: 5260: 4880: 4802: 4670: 4657: 4633: 4611: 4592: 4527: 4505: 4344: 4272: 4239: 4231: 4117: 4099: 4034: 3938: 3771: 3763: 3720: 3712: 3659: 3608: 3555: 3547: 3499: 3491: 3411: 3369: 2902: 1621: 1617: 1094:
Important observations often associated with classically chaotic quantum systems are spectral
1072: 927: 904: 827: 802: 742: 737: 637: 603: 583: 181: 40: 4682: 4677: 6052: 6047: 5904: 5785: 5516: 5428: 5378: 5275: 5203: 5155: 5032: 5017: 5012: 4807: 4691: 4567: 4488: 4411: 4334: 4223: 4166: 4107: 4091: 4026: 3977: 3928: 3877: 3820: 3755: 3704: 3651: 3600: 3539: 3483: 3249: 3024: 1923: 1245: 947: 832: 822: 812: 712: 692: 677: 647: 515: 403: 4135:
Keski-Rahkonen, J.; Luukko, P. J. J.; Kaplan, L.; Heller, E. J.; Räsänen, E. (2017-09-20).
2989: 1896: 1869: 1335: 1275: 1218: 6282: 6209: 6189: 6159: 6122: 6117: 6022: 5846: 5448: 5343: 5270: 5103: 4915: 4905: 3996: 3453: 3365: 3229: 2573: 1095: 1064: 943: 939: 931: 857: 727: 707: 453: 293: 5438: 5383: 2429: 2397: 27:
Branch of physics seeking to explain chaotic dynamical systems in terms of quantum theory
4563: 4484: 4407: 4330: 4219: 4162: 4087: 4022: 3973: 3924: 3873: 3816: 3751: 3700: 3647: 3596: 3535: 3479: 6260: 6229: 6219: 5841: 5821: 5650: 5531: 5498: 5493: 5488: 5290: 5180: 5175: 5073: 5022: 4938: 4812: 4292:
Doron, Cohen (2004). "Driven chaotic mesoscopic systems, dissipation and decoherence".
4112: 4061: 3957: 3438: 3381: 3292: 3270: 3261: 3175:{\displaystyle {\frac {d^{1/2}}{dx^{1/2}}}V^{-1}(x)=2{\sqrt {\pi }}{\frac {dN(x)}{dx}}} 2928: 2880: 2297: 1973: 1953: 1863: 1845: 1596: 1492: 1362: 1107: 1068: 973: 792: 752: 732: 702: 682: 632: 598: 448: 438: 231: 4687: 4469:
Martin C. Gutzwiller (1971). "Periodic Orbits and Classical Quantization Conditions".
4438: 4136: 3790: 3298:
Works are also focused in the study of driven chaotic systems, where the Hamiltonian
2636:
According to closed-orbit theory, the average oscillator strength density at constant
2604:
coordinate system parallel to the direction of movement, as it is done in many books.
2426:) semiclassically. He found agreement with quantum computations for low lying (up to 17: 6358: 6179: 5923: 5826: 5742: 5712: 5665: 5526: 5483: 5473: 5468: 5368: 5348: 5208: 5130: 4835: 4579: 4178: 4046: 3832: 3620: 3256:
the available phase space evenly, up to random fluctuations and energy conservation (
3245: 2898: 2630: 1410: 1402: 852: 847: 777: 747: 717: 534: 261: 236: 4667: 4423: 4251: 6062: 5660: 5655: 5478: 5443: 5353: 5310: 5165: 5160: 4759: 4673: 4625: 4415: 4362: 4030: 3604: 3288: 2617: 2563:{\displaystyle d(E)=-{\frac {1}{\pi }}\Im (\operatorname {Tr} (G(x,x^{\prime },E))} 2021: 1397: 1146: 1134: 1118: 1103: 923: 842: 837: 772: 757: 722: 216: 5125: 4630:
The transition to chaos: conservative classical systems and quantum manifestations
3708: 3634:
Berry, M. V.; Tabor, M. (1977-09-15). "Level clustering in the regular spectrum".
3228:
is the density of states and V(x) is the classical potential of the particle, the
1388:
Correlating statistical descriptions of quantum mechanics with classical behaviour
4632:. Institute for nonlinear science (2.  ed.). New York Heidelberg: Springer. 4366: 3636:
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
2877:
is the recurrence amplitude of a closed orbit for a given initial state (labeled
6100: 5463: 5453: 5338: 5088: 4910: 4817: 3981: 3487: 2388: 2118:
in phase space, and neighboring trajectories wind around it. For stable orbits,
1839: 807: 762: 697: 652: 4227: 4170: 3824: 1102:). In the semiclassical approach of quantum chaos, phenomena are identified in 5521: 5418: 4865: 4571: 4545: 4339: 4314: 3933: 3898: 3882: 3847: 3232:
of the inverse of the potential is related to the density of states as in the
1842:-like term stemming from spin or other internal degrees of freedom. The index 1099: 797: 767: 687: 662: 657: 642: 4610:. Stockholm, Sweden: Physica Scripta, the Royal Swedish Academy of Sciences. 4348: 4235: 4103: 3942: 3767: 3716: 3663: 3551: 3543: 3495: 2840:
is a phase that depends on the Maslov index and other details of the orbits.
114:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 5954: 5635: 5433: 5393: 5135: 4797: 4782: 4266: 3759: 1111: 1084: 1080: 288: 4243: 4193: 4121: 4038: 3724: 3655: 3612: 3503: 903:
Quantum chaos is the field of physics attempting to bridge the theories of
899: 3995:
Keski-Rahkonen, J.; Ruhanen, A.; Heller, E. J.; Räsänen, E. (2019-11-21).
3775: 3559: 2625:
initial state whereas periodic-orbit theory yields the density of states.
5170: 4298: 667: 3447:
http://www.physics.bristol.ac.uk/people/berry_mv/the_papers/Berry358.pdf
4840: 4792: 919: 4492: 4095: 3848:"Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory" 2114:
characterizes the instability of the orbit. A stable orbit moves on a
1628: 1612: 5413: 4192:
Keski-Rahkonen, J; Luukko, P J J; Åberg, S; Räsänen, E (2019-01-21).
3691: 2423: 2391: 1088: 5547: 4504:. Interdisciplinary applied mathematics. New York: Springer-Verlag. 2656:
is given by a smooth background plus an oscillatory sum of the form
1026: 998: 942:
of quantum mechanics, specifically in the limit as the ratio of the
4210: 4153: 4078: 4013: 3915: 3864: 3807: 3587: 3021:
For the case of one-dimensional system with the boundary condition
2612: 1866:: the shortest period orbits of a given set of initial conditions. 1141: 1129: 4398: 4194:"Effects of scarring on quantum chaos in disordered quantum wells" 2611: 2115: 1627: 1611: 1509:, the normalized distribution of spacings is well approximated by 1392: 1391: 1140: 1128: 1025: 997: 898: 972:
Study of probability distribution of individual eigenstates (see
5551: 4732: 4728: 4551:
Mathematical Proceedings of the Cambridge Philosophical Society
1380:
computing matrix elements can also be a computational burden.
2460:
Rough sketch on how to arrive at the Gutzwiller trace formula
2961: 2958: 2856: 2853: 2824: 2821: 2784: 2781: 2721: 2718: 2543: 911:. The figure shows the main ideas running in each direction. 4268:
Quantum Chaos in Disordered Two-Dimensional Nanostructures
4137:"Controllable quantum scars in semiconductor quantum dots" 3897:
Chan, Amos; De Luca, Andrea; Chalker, J. T. (2018-11-08).
3846:
Kos, Pavel; Ljubotina, Marko; Prosen, TomaĹľ (2018-06-08).
3899:"Solution of a Minimal Model for Many-Body Quantum Chaos" 1584:{\displaystyle P(s)={\frac {\pi }{2}}se^{-\pi s^{2}/4}.} 3789:
Vogl, M.; Pankratov, O.; Shallcross, S. (2017-07-27).
3304: 3273: 3188: 3062: 3027: 2992: 2951: 2931: 2911: 2905:
of an oscillator strength spectrum computed at fixed
2883: 2846: 2814: 2665: 2642: 2576: 2482: 2432: 2400: 2387:
Gutzwiller applied the trace formula to approach the
2320: 2300: 2258: 2228: 2176: 2124: 2090: 2030: 1996: 1976: 1956: 1926: 1899: 1872: 1848: 1654: 1518: 1495: 1440: 1365: 1338: 1305: 1278: 1248: 1221: 1162: 1036: 52: 6296: 6248: 6081: 6013: 5947: 5860: 5809: 5763: 5628: 5585: 5507: 5324: 5251: 5189: 5059: 5046: 4998: 4929: 4773: 4766: 4606:Berggren, Karl-Fredrik; °Aberg, Sven, eds. (2001). 1272:is non-separable in the coordinate system in which 989:
Direct application of the correspondence principle.
4708:Volume 91, Number 4, July–August, 2003 pp. 296–300 3340: 3279: 3220: 3174: 3048: 3005: 2974: 2937: 2917: 2889: 2869: 2832: 2798: 2648: 2591: 2562: 2444: 2414: 2364: 2306: 2286: 2244: 2214: 2162: 2106: 2076: 2012: 1982: 1962: 1942: 1912: 1893:is the period of the primitive periodic orbit and 1885: 1854: 1827: 1583: 1501: 1477: 1371: 1351: 1311: 1291: 1264: 1234: 1204: 1051: 113: 2252:is the winding number of the periodic orbit. 5563: 4744: 4062:"Strong quantum scarring by local impurities" 3517: 3515: 3513: 1205:{\displaystyle H=H_{s}+\varepsilon H_{ns},\,} 1125:Quantum mechanics in non-perturbative regimes 880: 8: 4697:Notices of the American Mathematical Society 108: 82: 4704:Brian Hayes, "The Spectrum of Riemannium"; 1950:and a period which is an integral multiple 5570: 5556: 5548: 5056: 4770: 4751: 4737: 4729: 887: 873: 31: 4718:Eigenfunctions in chaotic quantum systems 4526:. Cambridge: Cambridge university press. 4397: 4338: 4297: 4209: 4152: 4111: 4077: 4012: 3932: 3914: 3881: 3863: 3806: 3690: 3586: 3303: 3295:are considered to be prototype problems. 3272: 3189: 3187: 3143: 3136: 3112: 3095: 3091: 3073: 3069: 3063: 3061: 3026: 2997: 2991: 2966: 2957: 2956: 2950: 2930: 2910: 2882: 2861: 2852: 2851: 2845: 2820: 2819: 2813: 2780: 2779: 2760: 2754: 2753: 2726: 2717: 2716: 2706: 2695: 2685: 2664: 2641: 2575: 2542: 2501: 2481: 2431: 2404: 2399: 2344: 2335: 2327: 2319: 2299: 2263: 2257: 2233: 2227: 2200: 2191: 2183: 2175: 2148: 2139: 2131: 2123: 2095: 2089: 2062: 2053: 2045: 2034: 2029: 2001: 1995: 1975: 1955: 1934: 1925: 1904: 1898: 1877: 1871: 1847: 1809: 1797: 1784: 1770: 1765: 1750: 1741: 1733: 1718: 1712: 1701: 1691: 1681: 1659: 1653: 1568: 1562: 1551: 1534: 1517: 1494: 1460: 1439: 1364: 1343: 1337: 1304: 1283: 1277: 1253: 1247: 1226: 1220: 1201: 1189: 1173: 1161: 1035: 100: 89: 88: 74: 59: 51: 4502:Chaos in classical and quantum mechanics 3267:Further studies concern the parametric ( 2077:{\displaystyle 1/\sinh {(\chi _{nk}/2)}} 1242:is separable in some coordinate system, 3398: 2365:{\displaystyle \sin {(\chi _{nk}/2)}=0} 938:states that classical mechanics is the 56: 39: 2163:{\displaystyle \sinh {(\chi _{nk}/2)}} 3017:One-dimensional systems and potential 2215:{\displaystyle \sin {(\chi _{nk}/2)}} 7: 4198:Journal of Physics: Condensed Matter 962:and where quantum numbers are large. 4891:Measure-preserving dynamical system 4683:Category:Quantum Chaos Scholarpedia 3221:{\displaystyle {\frac {dN(x)}{dx}}} 2422:potential with an anisotropic mass 1396:Nearest neighbour distribution for 3435:Quantum: a guide for the perplexed 3433:, "Quantum Chaology", pp 104-5 of 2707: 2511: 1713: 419:Sum-over-histories (path integral) 105: 79: 35:Part of a series of articles about 25: 5459:Oleksandr Mykolayovych Sharkovsky 2287:{\displaystyle \chi _{nk}=2\pi m} 1616:Even parity recurrence spectrum ( 6339: 6338: 4989: 4981: 2975:{\displaystyle D_{\it {nk}}^{i}} 2870:{\displaystyle D_{\it {nk}}^{i}} 2833:{\displaystyle \phi _{\it {nk}}} 2394:problem (a single particle in a 1639:Einstein–Brillouin–Keller method 4472:Journal of Mathematical Physics 4265:Keski-Rahkonen, Joonas (2020). 1133:Computed regular (non-chaotic) 6288:Relativistic quantum mechanics 5224:Rabinovich–Fabrikant equations 4524:Quantum chaos: An introduction 4031:10.1103/PhysRevLett.123.214101 3956:Heller, Eric J. (1984-10-15). 3605:10.1103/PhysRevLett.125.040605 3335: 3332: 3326: 3308: 3204: 3198: 3158: 3152: 3127: 3121: 3037: 3031: 2790: 2766: 2738: 2675: 2669: 2586: 2580: 2557: 2554: 2529: 2523: 2514: 2492: 2486: 2352: 2328: 2208: 2184: 2156: 2132: 2070: 2046: 1817: 1774: 1758: 1734: 1671: 1665: 1528: 1522: 1478:{\displaystyle P(s)=e^{-s}.\ } 1450: 1444: 1328:matching boundary conditions. 1052:{\displaystyle \epsilon =-3.0} 569:Relativistic quantum mechanics 101: 94: 75: 1: 6266:Quantum statistical mechanics 6043:Quantum differential calculus 5965:Delayed-choice quantum eraser 5733:Symmetry in quantum mechanics 4678:doi:10.4249/scholarpedia.3146 3709:10.1103/PhysRevLett.98.044103 609:Quantum statistical mechanics 4710:. Discusses relation to the 4315:"Quantum chaotic scattering" 2013:{\displaystyle \alpha _{nk}} 1862:distinguishes the primitive 6068:Quantum stochastic calculus 6058:Quantum measurement problem 5980:Mach–Zehnder interferometer 4959:PoincarĂ© recurrence theorem 4589:Quantum signatures of chaos 3982:10.1103/PhysRevLett.53.1515 3488:10.1103/PhysRevLett.74.1538 3408:Quantum signatures of chaos 3341:{\displaystyle H(x,p;R(t))} 579:Quantum information science 6391: 4954:Poincaré–Bendixson theorem 4500:Gutzwiller, M. C. (1990). 4416:10.1209/0295-5075/83/27005 4368:The Berry–Tabor conjecture 4171:10.1103/PhysRevB.96.094204 3825:10.1103/PhysRevB.96.035442 2245:{\displaystyle \chi _{nk}} 2107:{\displaystyle \chi _{nk}} 6334: 6128:Quantum complexity theory 6106:Quantum cellular automata 5796:Path integral formulation 5306:Swinging Atwood's machine 4979: 4949:Krylov–Bogolyubov theorem 4826: 4572:10.1017/S0305004100027237 4340:10.4249/scholarpedia.9806 3997:"Quantum Lissajous Scars" 3934:10.1103/PhysRevX.8.041019 3883:10.1103/PhysRevX.8.021062 3250:quantum many-body systems 2918:{\displaystyle \epsilon } 2649:{\displaystyle \epsilon } 1597:Wigner-Dyson distribution 1312:{\displaystyle \epsilon } 6195:Quantum machine learning 6175:Quantum key distribution 6165:Quantum image processing 6155:Quantum error correction 6005:Wheeler's delayed choice 5214:Lotka–Volterra equations 5038:Synchronization of chaos 4841:axiom A dynamical system 4688:What is... Quantum Chaos 4439:"What Is Quantum Chaos?" 4437:Rudnick, Z. (Jan 2008). 4313:Gaspard, Pierre (2014). 4228:10.1088/1361-648x/aaf9fb 3544:10.1103/PhysRevA.51.3604 2024:. The amplitude factor, 936:correspondence principle 614:Quantum machine learning 367:Wheeler's delayed-choice 6111:Quantum finite automata 5199:Double scroll attractor 4964:Stable manifold theorem 4871:False nearest neighbors 4001:Physical Review Letters 3962:Physical Review Letters 3760:10.1103/PhysRevA.53.178 3679:Physical Review Letters 3575:Physical Review Letters 3468:Physical Review Letters 3443:Weidenfeld and Nicolson 324:Leggett–Garg inequality 6215:Quantum neural network 5239:Van der Pol oscillator 5219:Mackey–Glass equations 4851:Box-counting dimension 4520:Stöckmann, Hans-JĂĽrgen 4271:. Tampere University. 3656:10.1098/rspa.1977.0140 3356:Berry–Tabor conjecture 3342: 3281: 3222: 3176: 3050: 3049:{\displaystyle y(0)=0} 3007: 2976: 2939: 2919: 2901:in strong fields, the 2891: 2871: 2834: 2800: 2711: 2650: 2621: 2593: 2564: 2469:gives a phase factor). 2446: 2416: 2366: 2308: 2288: 2246: 2216: 2164: 2108: 2078: 2014: 1984: 1964: 1944: 1943:{\displaystyle nS_{k}} 1914: 1887: 1856: 1829: 1717: 1634: 1625: 1585: 1503: 1479: 1406: 1373: 1353: 1313: 1293: 1266: 1265:{\displaystyle H_{ns}} 1236: 1206: 1150: 1138: 1060: 1053: 1007: 912: 115: 18:Berry–Tabor conjecture 6240:Quantum teleportation 5753:Wave–particle duality 5389:Svetlana Jitomirskaya 5296:Multiscroll attractor 5141:Interval exchange map 5094:Dyadic transformation 5079:Complex quadratic map 4921:Topological conjugacy 4856:Correlation dimension 4831:Anosov diffeomorphism 4712:Riemann zeta function 4587:Haake, Fritz (2001). 3406:Haake, Fritz (2001). 3387:Statistical mechanics 3343: 3282: 3223: 3177: 3051: 3008: 3006:{\displaystyle H^{-}} 2977: 2940: 2920: 2892: 2872: 2835: 2801: 2691: 2651: 2615: 2594: 2565: 2447: 2417: 2367: 2309: 2289: 2247: 2217: 2165: 2109: 2079: 2015: 1985: 1965: 1945: 1915: 1913:{\displaystyle S_{k}} 1888: 1886:{\displaystyle T_{k}} 1857: 1830: 1697: 1631: 1615: 1608:Periodic orbit theory 1603:Semiclassical methods 1586: 1504: 1480: 1395: 1374: 1354: 1352:{\displaystyle N^{3}} 1314: 1294: 1292:{\displaystyle H_{s}} 1267: 1237: 1235:{\displaystyle H_{s}} 1207: 1144: 1132: 1054: 1029: 1001: 984:Semiclassical methods 902: 309:Elitzur–Vaidman 299:Davisson–Germer 116: 6375:Quantum chaos theory 6271:Quantum field theory 6200:Quantum metamaterial 6145:Quantum cryptography 5875:Consistent histories 5399:Edward Norton Lorenz 3302: 3271: 3186: 3060: 3025: 2990: 2949: 2929: 2909: 2881: 2844: 2812: 2663: 2640: 2592:{\displaystyle d(E)} 2574: 2480: 2430: 2398: 2318: 2298: 2256: 2226: 2174: 2122: 2088: 2028: 1994: 1974: 1954: 1924: 1897: 1870: 1846: 1652: 1516: 1493: 1438: 1429:Poisson distribution 1363: 1336: 1303: 1276: 1246: 1219: 1160: 1034: 1006:of classical orbits. 574:Quantum field theory 486:Consistent histories 123:Schrödinger equation 50: 6256:Quantum fluctuation 6225:Quantum programming 6185:Quantum logic gates 6170:Quantum information 6150:Quantum electronics 5610:Classical mechanics 5359:Mitchell Feigenbaum 5301:Population dynamics 5286:HĂ©non–Heiles system 5146:Irrational rotation 5099:Dynamical billiards 5084:Coupled map lattice 4944:Liouville's theorem 4876:Hausdorff dimension 4861:Conservative system 4846:Bifurcation diagram 4662:Scientific American 4564:1951PCPS...47..790W 4485:1971JMP....12..343G 4408:2008EL.....8327005B 4331:2014SchpJ...9.9806G 4220:2019JPCM...31j5301K 4163:2017PhRvB..96i4204K 4088:2016NatSR...637656L 4023:2019PhRvL.123u4101K 3974:1984PhRvL..53.1515H 3925:2018PhRvX...8d1019C 3874:2018PhRvX...8b1062K 3817:2017PhRvB..96c5442V 3752:1996PhRvA..53..178C 3701:2007PhRvL..98d4103H 3648:1977RSPSA.356..375B 3597:2020PhRvL.125d0605Y 3536:1995PhRvA..51.3604C 3480:1995PhRvL..74.1538C 3234:Wu–Sprung potential 2971: 2866: 2731: 2608:Closed orbit theory 2445:{\displaystyle n=6} 2415:{\displaystyle 1/r} 2378:absorption spectrum 1642:density of states. 1077:solid-state physics 1016:celestial mechanics 960:perturbation theory 909:classical mechanics 362:Stern–Gerlach 159:Classical mechanics 6309:in popular culture 6091:Quantum algorithms 5939:Von Neumann–Wigner 5919:Objective collapse 5615:Old quantum theory 5537:Santa Fe Institute 5404:Aleksandr Lyapunov 5234:Three-body problem 5121:Gingerbreadman map 5008:Bifurcation theory 4886:Lyapunov stability 4706:American Scientist 4542:Eugene Paul Wigner 4447:Notices of the AMS 4066:Scientific Reports 3452:2013-03-08 at the 3338: 3277: 3258:Quantum ergodicity 3218: 3172: 3046: 3003: 2972: 2952: 2935: 2915: 2887: 2867: 2847: 2830: 2796: 2712: 2690: 2646: 2622: 2589: 2560: 2442: 2412: 2362: 2304: 2284: 2242: 2212: 2160: 2104: 2074: 2010: 1980: 1960: 1940: 1910: 1883: 1852: 1825: 1686: 1635: 1626: 1581: 1499: 1475: 1431:of energy levels: 1407: 1369: 1349: 1309: 1299:is separated, and 1289: 1262: 1232: 1202: 1151: 1139: 1061: 1049: 1012:three-body problem 1008: 978:quantum ergodicity 913: 550:Von Neumann–Wigner 530:Objective-collapse 329:Mach–Zehnder 319:Leggett inequality 314:Franck–Hertz 164:Old quantum theory 111: 6370:Quantum mechanics 6352: 6351: 6326:Quantum mysticism 6304:Schrödinger's cat 6235:Quantum simulator 6205:Quantum metrology 6133:Quantum computing 6096:Quantum amplifier 6073:Quantum spacetime 6038:Quantum cosmology 6028:Quantum chemistry 5728:Scattering theory 5676:Zero-point energy 5671:Degenerate levels 5579:Quantum mechanics 5545: 5544: 5409:BenoĂ®t Mandelbrot 5374:Martin Gutzwiller 5364:Peter Grassberger 5247: 5246: 5229:Rössler attractor 4977: 4976: 4881:Invariant measure 4803:Lyapunov exponent 4671:Martin Gutzwiller 4658:Martin Gutzwiller 4639:978-0-387-98788-0 4617:978-981-02-4711-9 4598:978-3-540-67723-9 4533:978-0-521-59284-0 4511:978-0-387-97173-5 4493:10.1063/1.1665596 4463:Further resources 4278:978-952-03-1699-0 4141:Physical Review B 4096:10.1038/srep37656 3968:(16): 1515–1518. 3903:Physical Review X 3852:Physical Review X 3795:Physical Review B 3740:Physical Review A 3642:(1686): 375–394. 3524:Physical Review A 3417:978-3-540-67723-9 3280:{\displaystyle R} 3240:Recent directions 3216: 3170: 3141: 3106: 2938:{\displaystyle w} 2925:as a function of 2903:Fourier transform 2890:{\displaystyle i} 2769: 2681: 2509: 2307:{\displaystyle m} 1983:{\displaystyle n} 1963:{\displaystyle n} 1855:{\displaystyle k} 1763: 1677: 1622:density of states 1618:Fourier transform 1542: 1502:{\displaystyle s} 1474: 1372:{\displaystyle N} 1145:Computed chaotic 928:dynamical systems 905:quantum mechanics 897: 896: 604:Scattering theory 584:Quantum computing 357:Schrödinger's cat 289:Bell's inequality 97: 72: 41:Quantum mechanics 16:(Redirected from 6382: 6342: 6341: 6053:Quantum geometry 6048:Quantum dynamics 5905:Superdeterminism 5837:Rarita–Schwinger 5786:Matrix mechanics 5641:Bra–ket notation 5572: 5565: 5558: 5549: 5517:Butterfly effect 5429:Itamar Procaccia 5379:Brosl Hasslacher 5276:Elastic pendulum 5204:Duffing equation 5151:Kaplan–Yorke map 5069:Arnold's cat map 5057: 5033:Stability theory 5018:Dynamical system 5013:Control of chaos 4993: 4985: 4969:Takens's theorem 4901:PoincarĂ© section 4771: 4753: 4746: 4739: 4730: 4660:(1992 and 2008, 4643: 4626:Reichl, Linda E. 4621: 4602: 4583: 4537: 4515: 4496: 4456: 4455: 4443: 4434: 4428: 4427: 4401: 4381: 4375: 4374: 4373: 4359: 4353: 4352: 4342: 4310: 4304: 4303: 4301: 4299:quant-ph/0403061 4289: 4283: 4282: 4262: 4256: 4255: 4213: 4189: 4183: 4182: 4156: 4132: 4126: 4125: 4115: 4081: 4057: 4051: 4050: 4016: 3992: 3986: 3985: 3953: 3947: 3946: 3936: 3918: 3894: 3888: 3887: 3885: 3867: 3843: 3837: 3836: 3810: 3786: 3780: 3779: 3735: 3729: 3728: 3694: 3674: 3668: 3667: 3631: 3625: 3624: 3590: 3570: 3564: 3563: 3530:(5): 3604–3620. 3519: 3508: 3507: 3474:(9): 1538–1541. 3463: 3457: 3428: 3422: 3421: 3403: 3347: 3345: 3344: 3339: 3286: 3284: 3283: 3278: 3227: 3225: 3224: 3219: 3217: 3215: 3207: 3190: 3181: 3179: 3178: 3173: 3171: 3169: 3161: 3144: 3142: 3137: 3120: 3119: 3107: 3105: 3104: 3103: 3099: 3082: 3081: 3077: 3064: 3055: 3053: 3052: 3047: 3012: 3010: 3009: 3004: 3002: 3001: 2981: 2979: 2978: 2973: 2970: 2965: 2964: 2944: 2942: 2941: 2936: 2924: 2922: 2921: 2916: 2896: 2894: 2893: 2888: 2876: 2874: 2873: 2868: 2865: 2860: 2859: 2839: 2837: 2836: 2831: 2829: 2828: 2827: 2805: 2803: 2802: 2797: 2789: 2788: 2787: 2771: 2770: 2765: 2764: 2755: 2730: 2725: 2724: 2710: 2705: 2689: 2655: 2653: 2652: 2647: 2598: 2596: 2595: 2590: 2569: 2567: 2566: 2561: 2547: 2546: 2510: 2502: 2451: 2449: 2448: 2443: 2421: 2419: 2418: 2413: 2408: 2371: 2369: 2368: 2363: 2355: 2348: 2343: 2342: 2313: 2311: 2310: 2305: 2293: 2291: 2290: 2285: 2271: 2270: 2251: 2249: 2248: 2243: 2241: 2240: 2221: 2219: 2218: 2213: 2211: 2204: 2199: 2198: 2169: 2167: 2166: 2161: 2159: 2152: 2147: 2146: 2113: 2111: 2110: 2105: 2103: 2102: 2083: 2081: 2080: 2075: 2073: 2066: 2061: 2060: 2038: 2019: 2017: 2016: 2011: 2009: 2008: 1989: 1987: 1986: 1981: 1969: 1967: 1966: 1961: 1949: 1947: 1946: 1941: 1939: 1938: 1919: 1917: 1916: 1911: 1909: 1908: 1892: 1890: 1889: 1884: 1882: 1881: 1861: 1859: 1858: 1853: 1834: 1832: 1831: 1826: 1821: 1820: 1813: 1805: 1804: 1789: 1788: 1764: 1762: 1761: 1754: 1749: 1748: 1719: 1716: 1711: 1696: 1695: 1685: 1664: 1663: 1590: 1588: 1587: 1582: 1577: 1576: 1572: 1567: 1566: 1543: 1535: 1508: 1506: 1505: 1500: 1484: 1482: 1481: 1476: 1472: 1468: 1467: 1403:Wigner's surmise 1378: 1376: 1375: 1370: 1358: 1356: 1355: 1350: 1348: 1347: 1318: 1316: 1315: 1310: 1298: 1296: 1295: 1290: 1288: 1287: 1271: 1269: 1268: 1263: 1261: 1260: 1241: 1239: 1238: 1233: 1231: 1230: 1211: 1209: 1208: 1203: 1197: 1196: 1178: 1177: 1058: 1056: 1055: 1050: 889: 882: 875: 516:Superdeterminism 169:Bra–ket notation 120: 118: 117: 112: 104: 99: 98: 90: 78: 73: 71: 60: 32: 21: 6390: 6389: 6385: 6384: 6383: 6381: 6380: 6379: 6355: 6354: 6353: 6348: 6330: 6316:Wigner's friend 6292: 6283:Quantum gravity 6244: 6230:Quantum sensing 6210:Quantum network 6190:Quantum machine 6160:Quantum imaging 6123:Quantum circuit 6118:Quantum channel 6077: 6023:Quantum biology 6009: 5985:Elitzur–Vaidman 5960:Davisson–Germer 5943: 5895:Hidden-variable 5885:de Broglie–Bohm 5862:Interpretations 5856: 5805: 5759: 5646:Complementarity 5624: 5581: 5576: 5546: 5541: 5509: 5503: 5449:Caroline Series 5344:Mary Cartwright 5326: 5320: 5271:Double pendulum 5253: 5243: 5192: 5185: 5111:Exponential map 5062: 5048: 5042: 5000: 4994: 4987: 4973: 4939:Ergodic theorem 4932: 4925: 4916:Stable manifold 4906:Recurrence plot 4822: 4776: 4762: 4757: 4720:by Arnd Bäcker. 4694:(January 2008, 4650: 4640: 4624: 4618: 4605: 4599: 4586: 4546:Dirac, P. A. M. 4540: 4534: 4518: 4512: 4499: 4468: 4465: 4460: 4459: 4441: 4436: 4435: 4431: 4383: 4382: 4378: 4371: 4361: 4360: 4356: 4312: 4311: 4307: 4291: 4290: 4286: 4279: 4264: 4263: 4259: 4191: 4190: 4186: 4134: 4133: 4129: 4059: 4058: 4054: 3994: 3993: 3989: 3955: 3954: 3950: 3896: 3895: 3891: 3845: 3844: 3840: 3788: 3787: 3783: 3737: 3736: 3732: 3676: 3675: 3671: 3633: 3632: 3628: 3572: 3571: 3567: 3521: 3520: 3511: 3465: 3464: 3460: 3454:Wayback Machine 3429: 3425: 3418: 3405: 3404: 3400: 3395: 3378: 3366:Riemann surface 3358: 3300: 3299: 3269: 3268: 3242: 3230:half derivative 3208: 3191: 3184: 3183: 3162: 3145: 3108: 3087: 3083: 3065: 3058: 3057: 3023: 3022: 3019: 2993: 2988: 2987: 2947: 2946: 2927: 2926: 2907: 2906: 2879: 2878: 2842: 2841: 2815: 2810: 2809: 2775: 2756: 2661: 2660: 2638: 2637: 2610: 2572: 2571: 2538: 2478: 2477: 2462: 2428: 2427: 2396: 2395: 2372:at a classical 2331: 2316: 2315: 2296: 2295: 2259: 2254: 2253: 2229: 2224: 2223: 2187: 2172: 2171: 2135: 2120: 2119: 2091: 2086: 2085: 2049: 2026: 2025: 2020:is the orbit's 1997: 1992: 1991: 1972: 1971: 1952: 1951: 1930: 1922: 1921: 1900: 1895: 1894: 1873: 1868: 1867: 1864:periodic orbits 1844: 1843: 1793: 1780: 1766: 1737: 1723: 1687: 1655: 1650: 1649: 1610: 1605: 1558: 1547: 1514: 1513: 1491: 1490: 1456: 1436: 1435: 1390: 1361: 1360: 1339: 1334: 1333: 1301: 1300: 1279: 1274: 1273: 1249: 1244: 1243: 1222: 1217: 1216: 1185: 1169: 1158: 1157: 1127: 1114:distributions. 1096:level repulsion 1032: 1031: 1024: 996: 944:Planck constant 940:classical limit 932:classical chaos 922:focused on how 918:is a branch of 893: 864: 863: 862: 627: 619: 618: 564: 563:Advanced topics 556: 555: 554: 506:Hidden-variable 496:de Broglie–Bohm 475: 473:Interpretations 465: 464: 463: 433: 425: 424: 423: 381: 373: 372: 371: 338: 294:CHSH inequality 283: 275: 274: 273: 202:Complementarity 196: 188: 187: 186: 154: 125: 64: 48: 47: 28: 23: 22: 15: 12: 11: 5: 6388: 6386: 6378: 6377: 6372: 6367: 6357: 6356: 6350: 6349: 6347: 6346: 6335: 6332: 6331: 6329: 6328: 6323: 6318: 6313: 6312: 6311: 6300: 6298: 6294: 6293: 6291: 6290: 6285: 6280: 6279: 6278: 6268: 6263: 6261:Casimir effect 6258: 6252: 6250: 6246: 6245: 6243: 6242: 6237: 6232: 6227: 6222: 6220:Quantum optics 6217: 6212: 6207: 6202: 6197: 6192: 6187: 6182: 6177: 6172: 6167: 6162: 6157: 6152: 6147: 6142: 6141: 6140: 6130: 6125: 6120: 6115: 6114: 6113: 6103: 6098: 6093: 6087: 6085: 6079: 6078: 6076: 6075: 6070: 6065: 6060: 6055: 6050: 6045: 6040: 6035: 6030: 6025: 6019: 6017: 6011: 6010: 6008: 6007: 6002: 5997: 5995:Quantum eraser 5992: 5987: 5982: 5977: 5972: 5967: 5962: 5957: 5951: 5949: 5945: 5944: 5942: 5941: 5936: 5931: 5926: 5921: 5916: 5911: 5910: 5909: 5908: 5907: 5892: 5887: 5882: 5877: 5872: 5866: 5864: 5858: 5857: 5855: 5854: 5849: 5844: 5839: 5834: 5829: 5824: 5819: 5813: 5811: 5807: 5806: 5804: 5803: 5798: 5793: 5788: 5783: 5778: 5773: 5767: 5765: 5761: 5760: 5758: 5757: 5756: 5755: 5750: 5740: 5735: 5730: 5725: 5720: 5715: 5710: 5705: 5700: 5695: 5690: 5685: 5680: 5679: 5678: 5673: 5668: 5663: 5653: 5651:Density matrix 5648: 5643: 5638: 5632: 5630: 5626: 5625: 5623: 5622: 5617: 5612: 5607: 5606: 5605: 5595: 5589: 5587: 5583: 5582: 5577: 5575: 5574: 5567: 5560: 5552: 5543: 5542: 5540: 5539: 5534: 5532:Predictability 5529: 5524: 5519: 5513: 5511: 5505: 5504: 5502: 5501: 5499:Lai-Sang Young 5496: 5494:James A. Yorke 5491: 5489:Amie Wilkinson 5486: 5481: 5476: 5471: 5466: 5461: 5456: 5451: 5446: 5441: 5436: 5431: 5426: 5424:Henri PoincarĂ© 5421: 5416: 5411: 5406: 5401: 5396: 5391: 5386: 5381: 5376: 5371: 5366: 5361: 5356: 5351: 5346: 5341: 5336: 5330: 5328: 5322: 5321: 5319: 5318: 5313: 5308: 5303: 5298: 5293: 5291:Kicked rotator 5288: 5283: 5278: 5273: 5268: 5263: 5261:Chua's circuit 5257: 5255: 5249: 5248: 5245: 5244: 5242: 5241: 5236: 5231: 5226: 5221: 5216: 5211: 5206: 5201: 5195: 5193: 5190: 5187: 5186: 5184: 5183: 5181:Zaslavskii map 5178: 5176:Tinkerbell map 5173: 5168: 5163: 5158: 5153: 5148: 5143: 5138: 5133: 5128: 5123: 5118: 5113: 5108: 5107: 5106: 5096: 5091: 5086: 5081: 5076: 5071: 5065: 5063: 5060: 5054: 5044: 5043: 5041: 5040: 5035: 5030: 5025: 5023:Ergodic theory 5020: 5015: 5010: 5004: 5002: 4996: 4995: 4980: 4978: 4975: 4974: 4972: 4971: 4966: 4961: 4956: 4951: 4946: 4941: 4935: 4933: 4930: 4927: 4926: 4924: 4923: 4918: 4913: 4908: 4903: 4898: 4893: 4888: 4883: 4878: 4873: 4868: 4863: 4858: 4853: 4848: 4843: 4838: 4833: 4827: 4824: 4823: 4821: 4820: 4815: 4813:Periodic point 4810: 4805: 4800: 4795: 4790: 4785: 4779: 4777: 4774: 4768: 4764: 4763: 4758: 4756: 4755: 4748: 4741: 4733: 4727: 4726: 4721: 4715: 4701: 4685: 4680: 4665: 4649: 4648:External links 4646: 4645: 4644: 4638: 4622: 4616: 4603: 4597: 4584: 4538: 4532: 4516: 4510: 4497: 4479:(3): 343–358. 4464: 4461: 4458: 4457: 4429: 4376: 4354: 4305: 4284: 4277: 4257: 4204:(10): 105301. 4184: 4127: 4052: 4007:(21): 214101. 3987: 3948: 3889: 3838: 3781: 3746:(1): 178–191. 3730: 3669: 3626: 3565: 3509: 3458: 3439:Jim Al-Khalili 3423: 3416: 3397: 3396: 3394: 3391: 3390: 3389: 3384: 3382:Scar (physics) 3377: 3374: 3357: 3354: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3316: 3313: 3310: 3307: 3293:kicked rotator 3276: 3246:Hilbert spaces 3241: 3238: 3214: 3211: 3206: 3203: 3200: 3197: 3194: 3168: 3165: 3160: 3157: 3154: 3151: 3148: 3140: 3135: 3132: 3129: 3126: 3123: 3118: 3115: 3111: 3102: 3098: 3094: 3090: 3086: 3080: 3076: 3072: 3068: 3045: 3042: 3039: 3036: 3033: 3030: 3018: 3015: 3000: 2996: 2969: 2963: 2960: 2955: 2934: 2914: 2886: 2864: 2858: 2855: 2850: 2826: 2823: 2818: 2807: 2806: 2795: 2792: 2786: 2783: 2778: 2774: 2768: 2763: 2759: 2752: 2749: 2746: 2743: 2740: 2737: 2734: 2729: 2723: 2720: 2715: 2709: 2704: 2701: 2698: 2694: 2688: 2684: 2680: 2677: 2674: 2671: 2668: 2645: 2609: 2606: 2601: 2600: 2588: 2585: 2582: 2579: 2559: 2556: 2553: 2550: 2545: 2541: 2537: 2534: 2531: 2528: 2525: 2522: 2519: 2516: 2513: 2508: 2505: 2500: 2497: 2494: 2491: 2488: 2485: 2474: 2470: 2466: 2461: 2458: 2441: 2438: 2435: 2411: 2407: 2403: 2361: 2358: 2354: 2351: 2347: 2341: 2338: 2334: 2330: 2326: 2323: 2303: 2283: 2280: 2277: 2274: 2269: 2266: 2262: 2239: 2236: 2232: 2210: 2207: 2203: 2197: 2194: 2190: 2186: 2182: 2179: 2158: 2155: 2151: 2145: 2142: 2138: 2134: 2130: 2127: 2101: 2098: 2094: 2072: 2069: 2065: 2059: 2056: 2052: 2048: 2044: 2041: 2037: 2033: 2007: 2004: 2000: 1979: 1959: 1937: 1933: 1929: 1907: 1903: 1880: 1876: 1851: 1836: 1835: 1824: 1819: 1816: 1812: 1808: 1803: 1800: 1796: 1792: 1787: 1783: 1779: 1776: 1773: 1769: 1760: 1757: 1753: 1747: 1744: 1740: 1736: 1732: 1729: 1726: 1722: 1715: 1710: 1707: 1704: 1700: 1694: 1690: 1684: 1680: 1676: 1673: 1670: 1667: 1662: 1658: 1609: 1606: 1604: 1601: 1592: 1591: 1580: 1575: 1571: 1565: 1561: 1557: 1554: 1550: 1546: 1541: 1538: 1533: 1530: 1527: 1524: 1521: 1498: 1486: 1485: 1471: 1466: 1463: 1459: 1455: 1452: 1449: 1446: 1443: 1389: 1386: 1368: 1346: 1342: 1308: 1286: 1282: 1259: 1256: 1252: 1229: 1225: 1213: 1212: 1200: 1195: 1192: 1188: 1184: 1181: 1176: 1172: 1168: 1165: 1126: 1123: 1108:time evolution 1079:, and even to 1048: 1045: 1042: 1039: 1023: 1020: 995: 992: 991: 990: 987: 981: 970: 963: 895: 894: 892: 891: 884: 877: 869: 866: 865: 861: 860: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 635: 629: 628: 625: 624: 621: 620: 617: 616: 611: 606: 601: 599:Density matrix 596: 591: 586: 581: 576: 571: 565: 562: 561: 558: 557: 553: 552: 547: 542: 537: 532: 527: 522: 521: 520: 519: 518: 503: 498: 493: 488: 483: 477: 476: 471: 470: 467: 466: 462: 461: 456: 451: 446: 441: 435: 434: 431: 430: 427: 426: 422: 421: 416: 411: 406: 401: 396: 390: 389: 388: 382: 379: 378: 375: 374: 370: 369: 364: 359: 353: 352: 351: 350: 349: 347:Delayed-choice 342:Quantum eraser 337: 336: 331: 326: 321: 316: 311: 306: 301: 296: 291: 285: 284: 281: 280: 277: 276: 272: 271: 270: 269: 259: 254: 249: 244: 239: 234: 232:Quantum number 229: 224: 219: 214: 209: 204: 198: 197: 194: 193: 190: 189: 185: 184: 179: 173: 172: 171: 166: 161: 155: 152: 151: 148: 147: 146: 145: 140: 135: 127: 126: 121: 110: 107: 103: 96: 93: 87: 84: 81: 77: 70: 67: 63: 58: 55: 44: 43: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6387: 6376: 6373: 6371: 6368: 6366: 6363: 6362: 6360: 6345: 6337: 6336: 6333: 6327: 6324: 6322: 6319: 6317: 6314: 6310: 6307: 6306: 6305: 6302: 6301: 6299: 6295: 6289: 6286: 6284: 6281: 6277: 6274: 6273: 6272: 6269: 6267: 6264: 6262: 6259: 6257: 6254: 6253: 6251: 6247: 6241: 6238: 6236: 6233: 6231: 6228: 6226: 6223: 6221: 6218: 6216: 6213: 6211: 6208: 6206: 6203: 6201: 6198: 6196: 6193: 6191: 6188: 6186: 6183: 6181: 6180:Quantum logic 6178: 6176: 6173: 6171: 6168: 6166: 6163: 6161: 6158: 6156: 6153: 6151: 6148: 6146: 6143: 6139: 6136: 6135: 6134: 6131: 6129: 6126: 6124: 6121: 6119: 6116: 6112: 6109: 6108: 6107: 6104: 6102: 6099: 6097: 6094: 6092: 6089: 6088: 6086: 6084: 6080: 6074: 6071: 6069: 6066: 6064: 6061: 6059: 6056: 6054: 6051: 6049: 6046: 6044: 6041: 6039: 6036: 6034: 6033:Quantum chaos 6031: 6029: 6026: 6024: 6021: 6020: 6018: 6016: 6012: 6006: 6003: 6001: 6000:Stern–Gerlach 5998: 5996: 5993: 5991: 5988: 5986: 5983: 5981: 5978: 5976: 5973: 5971: 5968: 5966: 5963: 5961: 5958: 5956: 5953: 5952: 5950: 5946: 5940: 5937: 5935: 5934:Transactional 5932: 5930: 5927: 5925: 5924:Quantum logic 5922: 5920: 5917: 5915: 5912: 5906: 5903: 5902: 5901: 5898: 5897: 5896: 5893: 5891: 5888: 5886: 5883: 5881: 5878: 5876: 5873: 5871: 5868: 5867: 5865: 5863: 5859: 5853: 5850: 5848: 5845: 5843: 5840: 5838: 5835: 5833: 5830: 5828: 5825: 5823: 5820: 5818: 5815: 5814: 5812: 5808: 5802: 5799: 5797: 5794: 5792: 5789: 5787: 5784: 5782: 5779: 5777: 5774: 5772: 5769: 5768: 5766: 5762: 5754: 5751: 5749: 5746: 5745: 5744: 5743:Wave function 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5718:Superposition 5716: 5714: 5713:Quantum state 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5689: 5686: 5684: 5681: 5677: 5674: 5672: 5669: 5667: 5666:Excited state 5664: 5662: 5659: 5658: 5657: 5654: 5652: 5649: 5647: 5644: 5642: 5639: 5637: 5634: 5633: 5631: 5627: 5621: 5618: 5616: 5613: 5611: 5608: 5604: 5601: 5600: 5599: 5596: 5594: 5591: 5590: 5588: 5584: 5580: 5573: 5568: 5566: 5561: 5559: 5554: 5553: 5550: 5538: 5535: 5533: 5530: 5528: 5527:Edge of chaos 5525: 5523: 5520: 5518: 5515: 5514: 5512: 5506: 5500: 5497: 5495: 5492: 5490: 5487: 5485: 5484:Marcelo Viana 5482: 5480: 5477: 5475: 5474:Audrey Terras 5472: 5470: 5469:Floris Takens 5467: 5465: 5462: 5460: 5457: 5455: 5452: 5450: 5447: 5445: 5442: 5440: 5437: 5435: 5432: 5430: 5427: 5425: 5422: 5420: 5417: 5415: 5412: 5410: 5407: 5405: 5402: 5400: 5397: 5395: 5392: 5390: 5387: 5385: 5382: 5380: 5377: 5375: 5372: 5370: 5369:Celso Grebogi 5367: 5365: 5362: 5360: 5357: 5355: 5352: 5350: 5349:Chen Guanrong 5347: 5345: 5342: 5340: 5337: 5335: 5334:Michael Berry 5332: 5331: 5329: 5323: 5317: 5314: 5312: 5309: 5307: 5304: 5302: 5299: 5297: 5294: 5292: 5289: 5287: 5284: 5282: 5279: 5277: 5274: 5272: 5269: 5267: 5264: 5262: 5259: 5258: 5256: 5250: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5215: 5212: 5210: 5209:Lorenz system 5207: 5205: 5202: 5200: 5197: 5196: 5194: 5188: 5182: 5179: 5177: 5174: 5172: 5169: 5167: 5164: 5162: 5159: 5157: 5156:Langton's ant 5154: 5152: 5149: 5147: 5144: 5142: 5139: 5137: 5134: 5132: 5131:Horseshoe map 5129: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5105: 5102: 5101: 5100: 5097: 5095: 5092: 5090: 5087: 5085: 5082: 5080: 5077: 5075: 5072: 5070: 5067: 5066: 5064: 5058: 5055: 5052: 5045: 5039: 5036: 5034: 5031: 5029: 5028:Quantum chaos 5026: 5024: 5021: 5019: 5016: 5014: 5011: 5009: 5006: 5005: 5003: 4997: 4992: 4988: 4984: 4970: 4967: 4965: 4962: 4960: 4957: 4955: 4952: 4950: 4947: 4945: 4942: 4940: 4937: 4936: 4934: 4928: 4922: 4919: 4917: 4914: 4912: 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4872: 4869: 4867: 4864: 4862: 4859: 4857: 4854: 4852: 4849: 4847: 4844: 4842: 4839: 4837: 4836:Arnold tongue 4834: 4832: 4829: 4828: 4825: 4819: 4816: 4814: 4811: 4809: 4806: 4804: 4801: 4799: 4796: 4794: 4791: 4789: 4786: 4784: 4781: 4780: 4778: 4772: 4769: 4765: 4761: 4754: 4749: 4747: 4742: 4740: 4735: 4734: 4731: 4725: 4724:ChaosBook.org 4722: 4719: 4716: 4713: 4709: 4707: 4702: 4699: 4698: 4693: 4692:Ze'ev Rudnick 4689: 4686: 4684: 4681: 4679: 4675: 4672: 4669: 4668:Quantum Chaos 4666: 4663: 4659: 4655: 4654:Quantum Chaos 4652: 4651: 4647: 4641: 4635: 4631: 4627: 4623: 4619: 4613: 4609: 4604: 4600: 4594: 4590: 4585: 4581: 4577: 4573: 4569: 4565: 4561: 4557: 4553: 4552: 4547: 4543: 4539: 4535: 4529: 4525: 4521: 4517: 4513: 4507: 4503: 4498: 4494: 4490: 4486: 4482: 4478: 4474: 4473: 4467: 4466: 4462: 4453: 4449: 4448: 4440: 4433: 4430: 4425: 4421: 4417: 4413: 4409: 4405: 4400: 4395: 4391: 4387: 4380: 4377: 4370: 4369: 4364: 4363:Marklof, Jens 4358: 4355: 4350: 4346: 4341: 4336: 4332: 4328: 4324: 4320: 4316: 4309: 4306: 4300: 4295: 4288: 4285: 4280: 4274: 4270: 4269: 4261: 4258: 4253: 4249: 4245: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4212: 4207: 4203: 4199: 4195: 4188: 4185: 4180: 4176: 4172: 4168: 4164: 4160: 4155: 4150: 4147:(9): 094204. 4146: 4142: 4138: 4131: 4128: 4123: 4119: 4114: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4080: 4075: 4071: 4067: 4063: 4056: 4053: 4048: 4044: 4040: 4036: 4032: 4028: 4024: 4020: 4015: 4010: 4006: 4002: 3998: 3991: 3988: 3983: 3979: 3975: 3971: 3967: 3963: 3959: 3952: 3949: 3944: 3940: 3935: 3930: 3926: 3922: 3917: 3912: 3909:(4): 041019. 3908: 3904: 3900: 3893: 3890: 3884: 3879: 3875: 3871: 3866: 3861: 3858:(2): 021062. 3857: 3853: 3849: 3842: 3839: 3834: 3830: 3826: 3822: 3818: 3814: 3809: 3804: 3801:(3): 035442. 3800: 3796: 3792: 3785: 3782: 3777: 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3745: 3741: 3734: 3731: 3726: 3722: 3718: 3714: 3710: 3706: 3702: 3698: 3693: 3688: 3685:(4): 044103. 3684: 3680: 3673: 3670: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3630: 3627: 3622: 3618: 3614: 3610: 3606: 3602: 3598: 3594: 3589: 3584: 3581:(4): 040605. 3580: 3576: 3569: 3566: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3533: 3529: 3525: 3518: 3516: 3514: 3510: 3505: 3501: 3497: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3462: 3459: 3455: 3451: 3448: 3444: 3440: 3436: 3432: 3431:Michael Berry 3427: 3424: 3419: 3413: 3409: 3402: 3399: 3392: 3388: 3385: 3383: 3380: 3379: 3375: 3373: 3371: 3367: 3363: 3355: 3353: 3351: 3329: 3323: 3320: 3317: 3314: 3311: 3305: 3296: 3294: 3290: 3274: 3265: 3263: 3259: 3253: 3251: 3247: 3239: 3237: 3235: 3231: 3212: 3209: 3201: 3195: 3192: 3166: 3163: 3155: 3149: 3146: 3138: 3133: 3130: 3124: 3116: 3113: 3109: 3100: 3096: 3092: 3088: 3084: 3078: 3074: 3070: 3066: 3043: 3040: 3034: 3028: 3016: 3014: 2998: 2994: 2983: 2967: 2953: 2932: 2912: 2904: 2900: 2899:Rydberg atoms 2884: 2862: 2848: 2816: 2793: 2776: 2772: 2761: 2757: 2750: 2747: 2744: 2741: 2735: 2732: 2727: 2713: 2702: 2699: 2696: 2692: 2686: 2682: 2678: 2672: 2666: 2659: 2658: 2657: 2643: 2634: 2632: 2631:Rydberg atoms 2626: 2619: 2618:Rydberg atoms 2614: 2607: 2605: 2583: 2577: 2551: 2548: 2539: 2535: 2532: 2526: 2520: 2517: 2506: 2503: 2498: 2495: 2489: 2483: 2475: 2471: 2467: 2464: 2463: 2459: 2457: 2453: 2439: 2436: 2433: 2425: 2409: 2405: 2401: 2393: 2390: 2385: 2381: 2379: 2375: 2359: 2356: 2349: 2345: 2339: 2336: 2332: 2324: 2321: 2301: 2281: 2278: 2275: 2272: 2267: 2264: 2260: 2237: 2234: 2230: 2205: 2201: 2195: 2192: 2188: 2180: 2177: 2153: 2149: 2143: 2140: 2136: 2128: 2125: 2117: 2099: 2096: 2092: 2067: 2063: 2057: 2054: 2050: 2042: 2039: 2035: 2031: 2023: 2005: 2002: 1998: 1977: 1957: 1935: 1931: 1927: 1905: 1901: 1878: 1874: 1865: 1849: 1841: 1822: 1814: 1810: 1806: 1801: 1798: 1794: 1790: 1785: 1781: 1777: 1771: 1767: 1755: 1751: 1745: 1742: 1738: 1730: 1727: 1724: 1720: 1708: 1705: 1702: 1698: 1692: 1688: 1682: 1678: 1674: 1668: 1660: 1656: 1648: 1647: 1646: 1643: 1640: 1630: 1623: 1619: 1614: 1607: 1602: 1600: 1598: 1578: 1573: 1569: 1563: 1559: 1555: 1552: 1548: 1544: 1539: 1536: 1531: 1525: 1519: 1512: 1511: 1510: 1496: 1469: 1464: 1461: 1457: 1453: 1447: 1441: 1434: 1433: 1432: 1430: 1424: 1421: 1415: 1412: 1411:Random matrix 1404: 1399: 1394: 1387: 1385: 1381: 1366: 1344: 1340: 1329: 1325: 1321: 1306: 1284: 1280: 1257: 1254: 1250: 1227: 1223: 1198: 1193: 1190: 1186: 1182: 1179: 1174: 1170: 1166: 1163: 1156: 1155: 1154: 1148: 1143: 1136: 1131: 1124: 1122: 1120: 1115: 1113: 1109: 1105: 1101: 1097: 1092: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1046: 1043: 1040: 1037: 1028: 1021: 1019: 1017: 1013: 1005: 1000: 993: 988: 985: 982: 979: 975: 971: 968: 964: 961: 957: 956: 955: 952: 949: 945: 941: 937: 933: 929: 925: 921: 917: 916:Quantum chaos 910: 906: 901: 890: 885: 883: 878: 876: 871: 870: 868: 867: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 630: 623: 622: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 589:Quantum chaos 587: 585: 582: 580: 577: 575: 572: 570: 567: 566: 560: 559: 551: 548: 546: 545:Transactional 543: 541: 538: 536: 535:Quantum logic 533: 531: 528: 526: 523: 517: 514: 513: 512: 509: 508: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 478: 474: 469: 468: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 436: 429: 428: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 391: 387: 384: 383: 377: 376: 368: 365: 363: 360: 358: 355: 354: 348: 345: 344: 343: 340: 339: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 286: 279: 278: 268: 265: 264: 263: 262:Wave function 260: 258: 255: 253: 250: 248: 245: 243: 242:Superposition 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 199: 192: 191: 183: 180: 178: 175: 174: 170: 167: 165: 162: 160: 157: 156: 150: 149: 144: 141: 139: 136: 134: 131: 130: 129: 128: 124: 91: 85: 68: 65: 61: 53: 46: 45: 42: 38: 34: 33: 30: 19: 6365:Chaos theory 6063:Quantum mind 6032: 5975:Franck–Hertz 5817:Klein–Gordon 5771:Formulations 5764:Formulations 5693:Interference 5683:Entanglement 5661:Ground state 5656:Energy level 5629:Fundamentals 5593:Introduction 5479:Mary Tsingou 5444:David Ruelle 5439:Otto Rössler 5384:Michel HĂ©non 5354:Leon O. Chua 5311:Tilt-A-Whirl 5281:FPUT problem 5166:Standard map 5161:Logistic map 5027: 4986: 4760:Chaos theory 4705: 4695: 4676:2(12):3146. 4674:Scholarpedia 4661: 4629: 4607: 4588: 4555: 4549: 4523: 4501: 4476: 4470: 4451: 4445: 4432: 4392:(2): 27005. 4389: 4385: 4379: 4367: 4357: 4322: 4319:Scholarpedia 4318: 4308: 4287: 4267: 4260: 4201: 4197: 4187: 4144: 4140: 4130: 4072:(1): 37656. 4069: 4065: 4055: 4004: 4000: 3990: 3965: 3961: 3951: 3906: 3902: 3892: 3855: 3851: 3841: 3798: 3794: 3784: 3743: 3739: 3733: 3692:nlin/0610053 3682: 3678: 3672: 3639: 3635: 3629: 3578: 3574: 3568: 3527: 3523: 3471: 3467: 3461: 3434: 3426: 3407: 3401: 3359: 3349: 3297: 3289:standard map 3266: 3254: 3243: 3020: 2984: 2808: 2635: 2627: 2623: 2602: 2454: 2386: 2382: 2022:Maslov index 1837: 1644: 1636: 1593: 1487: 1425: 1418:of freedom ( 1416: 1408: 1398:Rydberg atom 1382: 1330: 1326: 1322: 1214: 1152: 1147:Rydberg atom 1135:Rydberg atom 1119:Dyson series 1116: 1104:spectroscopy 1093: 1062: 1009: 1004:bifurcations 953: 915: 914: 588: 444:Klein–Gordon 380:Formulations 217:Energy level 212:Entanglement 195:Fundamentals 182:Interference 133:Introduction 29: 6321:EPR paradox 6101:Quantum bus 5970:Double-slit 5948:Experiments 5914:Many-worlds 5852:Schrödinger 5801:Phase space 5791:Schrödinger 5781:Interaction 5738:Uncertainty 5708:Nonlocality 5703:Measurement 5698:Decoherence 5688:Hamiltonian 5464:Nina Snaith 5454:Yakov Sinai 5339:Rufus Bowen 5089:Duffing map 5074:Baker's map 4999:Theoretical 4911:SRB measure 4818:Phase space 4788:Bifurcation 4454:(1): 32–34. 4325:(6): 9806. 2389:anisotropic 2374:bifurcation 1840:Berry phase 967:Hamiltonian 833:von Neumann 818:Schrödinger 594:EPR paradox 525:Many-worlds 459:Schrödinger 414:Schrödinger 409:Phase-space 399:Interaction 304:Double-slit 282:Experiments 257:Uncertainty 227:Nonlocality 222:Measurement 207:Decoherence 177:Hamiltonian 6359:Categories 6249:Extensions 6083:Technology 5929:Relational 5880:Copenhagen 5776:Heisenberg 5723:Tunnelling 5586:Background 5522:Complexity 5419:Edward Ott 5266:Convection 5191:Continuous 4866:Ergodicity 4558:(4): 790. 4211:1806.02598 4154:1710.00585 4079:1511.04198 4014:1911.09729 3916:1712.06836 3865:1712.02665 3808:1611.08879 3588:2003.07267 3393:References 3370:integrable 1100:scattering 1085:microwaves 1022:Approaches 926:classical 828:Sommerfeld 743:Heisenberg 738:Gutzwiller 678:de Broglie 626:Scientists 540:Relational 491:Copenhagen 394:Heisenberg 252:Tunnelling 153:Background 5955:Bell test 5810:Equations 5636:Born rule 5434:Mary Rees 5394:Bryna Kra 5327:theorists 5136:Ikeda map 5126:HĂ©non map 5116:Gauss map 4798:Limit set 4783:Attractor 4580:120852535 4399:0804.3685 4349:1941-6016 4236:0953-8984 4179:119083672 4104:2045-2322 4047:208248295 3943:2160-3308 3833:119028983 3768:1050-2947 3717:0031-9007 3664:0080-4630 3621:212725801 3552:1050-2947 3496:0031-9007 3360:In 1977, 3350:many-body 3139:π 3114:− 2999:− 2913:ϵ 2817:ϕ 2777:ϕ 2773:− 2767:~ 2745:π 2736:⁡ 2708:∞ 2693:∑ 2683:∑ 2644:ϵ 2544:′ 2521:⁡ 2512:ℑ 2507:π 2499:− 2333:χ 2325:⁡ 2279:π 2261:χ 2231:χ 2189:χ 2181:⁡ 2137:χ 2129:⁡ 2093:χ 2051:χ 2043:⁡ 1999:α 1807:π 1795:α 1791:− 1739:χ 1731:⁡ 1714:∞ 1699:∑ 1679:∑ 1556:π 1553:− 1537:π 1462:− 1307:ϵ 1183:ε 1112:amplitude 1081:acoustics 1073:molecular 1044:− 1038:ϵ 969:(system). 858:Zeilinger 703:Ehrenfest 432:Equations 109:⟩ 106:Ψ 95:^ 83:⟩ 80:Ψ 57:ℏ 6344:Category 6138:Timeline 5890:Ensemble 5870:Bayesian 5832:Majorana 5748:Collapse 5620:Glossary 5603:Timeline 5510:articles 5252:Physical 5171:Tent map 5061:Discrete 5001:branches 4931:Theorems 4767:Concepts 4628:(2004). 4522:(1999). 4424:53550992 4252:51693305 4244:30566927 4122:27892510 4039:31809168 3725:17358777 3613:32794812 3504:10059054 3450:Archived 3376:See also 3291:and the 2294:, where 2222:, where 2170:becomes 1359:, where 783:Millikan 708:Einstein 693:Davisson 648:Blackett 633:Aharonov 501:Ensemble 481:Bayesian 386:Overview 267:Collapse 247:Symmetry 138:Glossary 6297:Related 6276:History 6015:Science 5847:Rydberg 5598:History 5508:Related 5316:Weather 5254:systems 5047:Chaotic 4793:Fractal 4560:Bibcode 4481:Bibcode 4404:Bibcode 4327:Bibcode 4216:Bibcode 4159:Bibcode 4113:5124902 4084:Bibcode 4019:Bibcode 3970:Bibcode 3921:Bibcode 3870:Bibcode 3813:Bibcode 3776:9912872 3748:Bibcode 3697:Bibcode 3644:Bibcode 3593:Bibcode 3560:9912027 3532:Bibcode 3476:Bibcode 3445:2003), 1620:of the 1065:nuclear 994:History 946:to the 934:?" The 924:chaotic 920:physics 823:Simmons 813:Rydberg 778:Moseley 758:Kramers 748:Hilbert 733:Glauber 728:Feynman 713:Everett 683:Compton 454:Rydberg 143:History 5990:Popper 5414:Hee Oh 5049:maps ( 4896:Mixing 4636:  4614:  4595:  4578:  4530:  4508:  4422:  4347:  4275:  4250:  4242:  4234:  4177:  4120:  4110:  4102:  4045:  4037:  3941:  3831:  3774:  3766:  3723:  3715:  3662:  3619:  3611:  3558:  3550:  3502:  3494:  3414:  2424:tensor 2392:Kepler 1473:  1215:where 1089:optics 1069:atomic 948:action 853:Zeeman 848:Wigner 798:Planck 768:Landau 753:Jordan 404:Matrix 334:Popper 5900:Local 5842:Pauli 5822:Dirac 5325:Chaos 5104:outer 4808:Orbit 4576:S2CID 4442:(PDF) 4420:S2CID 4394:arXiv 4372:(PDF) 4294:arXiv 4248:S2CID 4206:arXiv 4175:S2CID 4149:arXiv 4074:arXiv 4043:S2CID 4009:arXiv 3911:arXiv 3860:arXiv 3829:S2CID 3803:arXiv 3687:arXiv 3617:S2CID 3583:arXiv 3362:Berry 3262:scars 3182:here 2116:torus 1633:1.18. 1420:Berry 974:scars 808:Raman 793:Pauli 788:Onnes 723:Fermi 698:Debye 688:Dirac 653:Bloch 643:Bethe 511:Local 449:Pauli 439:Dirac 237:State 5827:Weyl 5051:list 4775:Core 4634:ISBN 4612:ISBN 4593:ISBN 4528:ISBN 4506:ISBN 4345:ISSN 4273:ISBN 4240:PMID 4232:ISSN 4118:PMID 4100:ISSN 4035:PMID 3939:ISSN 3772:PMID 3764:ISSN 3721:PMID 3713:ISSN 3660:ISSN 3609:PMID 3556:PMID 3548:ISSN 3500:PMID 3492:ISSN 3412:ISBN 2476:Use 2126:sinh 2040:sinh 1728:sinh 1405:(h). 1087:and 1075:and 976:and 907:and 843:Wien 838:Weyl 803:Rabi 773:Laue 763:Lamb 718:Fock 673:Bose 668:Born 663:Bohr 658:Bohm 638:Bell 4690:by 4656:by 4568:doi 4489:doi 4412:doi 4386:EPL 4335:doi 4224:doi 4167:doi 4108:PMC 4092:doi 4027:doi 4005:123 3978:doi 3929:doi 3878:doi 3821:doi 3756:doi 3705:doi 3652:doi 3640:356 3601:doi 3579:125 3540:doi 3484:doi 3437:by 2733:sin 2322:sin 2178:sin 1067:to 1047:3.0 1014:in 6361:: 4574:. 4566:. 4556:47 4554:. 4544:; 4487:. 4477:12 4475:. 4452:55 4450:. 4444:. 4418:. 4410:. 4402:. 4390:83 4388:. 4365:, 4343:. 4333:. 4321:. 4317:. 4246:. 4238:. 4230:. 4222:. 4214:. 4202:31 4200:. 4196:. 4173:. 4165:. 4157:. 4145:96 4143:. 4139:. 4116:. 4106:. 4098:. 4090:. 4082:. 4068:. 4064:. 4041:. 4033:. 4025:. 4017:. 4003:. 3999:. 3976:. 3966:53 3964:. 3960:. 3937:. 3927:. 3919:. 3905:. 3901:. 3876:. 3868:. 3854:. 3850:. 3827:. 3819:. 3811:. 3799:96 3797:. 3793:. 3770:. 3762:. 3754:. 3744:53 3742:. 3719:. 3711:. 3703:. 3695:. 3683:98 3681:. 3658:. 3650:. 3638:. 3615:. 3607:. 3599:. 3591:. 3577:. 3554:. 3546:. 3538:. 3528:51 3526:. 3512:^ 3498:. 3490:. 3482:. 3472:74 3470:. 3372:. 3252:. 3236:. 2982:. 2518:Tr 2380:. 1990:. 1083:, 1071:, 980:). 5571:e 5564:t 5557:v 5053:) 4752:e 4745:t 4738:v 4714:. 4700:) 4664:) 4642:. 4620:. 4601:. 4582:. 4570:: 4562:: 4536:. 4514:. 4495:. 4491:: 4483:: 4426:. 4414:: 4406:: 4396:: 4351:. 4337:: 4329:: 4323:9 4302:. 4296:: 4281:. 4254:. 4226:: 4218:: 4208:: 4181:. 4169:: 4161:: 4151:: 4124:. 4094:: 4086:: 4076:: 4070:6 4049:. 4029:: 4021:: 4011:: 3984:. 3980:: 3972:: 3945:. 3931:: 3923:: 3913:: 3907:8 3886:. 3880:: 3872:: 3862:: 3856:8 3835:. 3823:: 3815:: 3805:: 3778:. 3758:: 3750:: 3727:. 3707:: 3699:: 3689:: 3666:. 3654:: 3646:: 3623:. 3603:: 3595:: 3585:: 3562:. 3542:: 3534:: 3506:. 3486:: 3478:: 3456:. 3441:( 3420:. 3336:) 3333:) 3330:t 3327:( 3324:R 3321:; 3318:p 3315:, 3312:x 3309:( 3306:H 3275:R 3213:x 3210:d 3205:) 3202:x 3199:( 3196:N 3193:d 3167:x 3164:d 3159:) 3156:x 3153:( 3150:N 3147:d 3134:2 3131:= 3128:) 3125:x 3122:( 3117:1 3110:V 3101:2 3097:/ 3093:1 3089:x 3085:d 3079:2 3075:/ 3071:1 3067:d 3044:0 3041:= 3038:) 3035:0 3032:( 3029:y 2995:H 2968:i 2962:k 2959:n 2954:D 2933:w 2885:i 2863:i 2857:k 2854:n 2849:D 2825:k 2822:n 2794:. 2791:) 2785:k 2782:n 2762:k 2758:S 2751:w 2748:n 2742:2 2739:( 2728:i 2722:k 2719:n 2714:D 2703:1 2700:= 2697:n 2687:k 2679:= 2676:) 2673:w 2670:( 2667:f 2599:. 2587:) 2584:E 2581:( 2578:d 2558:) 2555:) 2552:E 2549:, 2540:x 2536:, 2533:x 2530:( 2527:G 2524:( 2515:( 2504:1 2496:= 2493:) 2490:E 2487:( 2484:d 2473:3 2440:6 2437:= 2434:n 2410:r 2406:/ 2402:1 2360:0 2357:= 2353:) 2350:2 2346:/ 2340:k 2337:n 2329:( 2302:m 2282:m 2276:2 2273:= 2268:k 2265:n 2238:k 2235:n 2209:) 2206:2 2202:/ 2196:k 2193:n 2185:( 2157:) 2154:2 2150:/ 2144:k 2141:n 2133:( 2100:k 2097:n 2071:) 2068:2 2064:/ 2058:k 2055:n 2047:( 2036:/ 2032:1 2006:k 2003:n 1978:n 1958:n 1936:k 1932:S 1928:n 1906:k 1902:S 1879:k 1875:T 1850:k 1823:. 1818:) 1815:2 1811:/ 1802:k 1799:n 1786:k 1782:S 1778:n 1775:( 1772:i 1768:e 1759:) 1756:2 1752:/ 1746:k 1743:n 1735:( 1725:2 1721:1 1709:1 1706:= 1703:n 1693:k 1689:T 1683:k 1675:= 1672:) 1669:E 1666:( 1661:c 1657:g 1579:. 1574:4 1570:/ 1564:2 1560:s 1549:e 1545:s 1540:2 1532:= 1529:) 1526:s 1523:( 1520:P 1497:s 1470:. 1465:s 1458:e 1454:= 1451:) 1448:s 1445:( 1442:P 1367:N 1345:3 1341:N 1285:s 1281:H 1258:s 1255:n 1251:H 1228:s 1224:H 1199:, 1194:s 1191:n 1187:H 1180:+ 1175:s 1171:H 1167:= 1164:H 1059:. 1041:= 888:e 881:t 874:v 102:| 92:H 86:= 76:| 69:t 66:d 62:d 54:i 20:)

Index

Berry–Tabor conjecture
Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality
CHSH inequality
Davisson–Germer
Double-slit
Elitzur–Vaidman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑