Knowledge (XXG)

Bidirectional reflectance distribution function

Source đź“ť

2159:
is limited by the camera being used; this can be as low as 8 bits for older image sensors or as high as 32 bits for the newer automotive image sensors. The other disadvantage is that for BRDF measurements the beam must pass from an external light source, bounce off a pellicle and pass in reverse through the first few elements of the conoscope before being scattered by the sample. Each of these elements is antireflection-coated, but roughly 0.3% of the light is reflected at each air-glass interface. These reflections will show up in the image as a spurious signal. For scattering surfaces with a large signal, this is not a problem, but for Lambertian surfaces it is.
645: 1959:, NASA uses a BRDF model to characterise surface reflectance anisotropy. For a given land area, the BRDF is established based on selected multiangular observations of surface reflectance. While single observations depend on view geometry and solar angle, the MODIS BRDF/Albedo product describes intrinsic surface properties in several spectral bands, at a resolution of 500 meters. The BRDF/Albedo product can be used to model surface 417: 2148:
Unfortunately, using such a device to densely measure the BRDF is very time-consuming. One of the first improvements on these techniques used a half-silvered mirror and a digital camera to take many BRDF samples of a planar target at once. Since this work, many researchers have developed other devices for efficiently acquiring BRDFs from real world samples, and it remains an active area of research.
2021: 2045: 2033: 20: 2207: 640:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})\,=\,{\frac {\mathrm {d} L_{\text{r}}(\omega _{\text{r}})}{\mathrm {d} E_{\text{i}}(\omega _{\text{i}})}}\,=\,{\frac {\mathrm {d} L_{\text{r}}(\omega _{\text{r}})}{L_{\text{i}}(\omega _{\text{i}})\cos \theta _{\text{i}}\mathrm {d} \omega _{\text{i}}}}} 1902: 2203:
This procedure starts with sampling the BRDF distribution and generating it with microfacet geometry then the surfaced is optimized in terms of smoothness and continuity to meet the limitations of the milling machine. The final BRDF distribution is the convolution of the substrate and the geometry of
2158:
A fast way to measure BRDF or BTDF is a conoscopic scatterometer The advantage of this measurement instrument is that a near-hemispheric measurement can be captured in a fraction of a second with resolution of roughly 0.1°. This instrument has two disadvantages. The first is that the dynamic range
2229:
In addition to color and specularity, real-world objects also contain texture. A 3D printer can be used to manufacture the geometry and cover the surface with a suitable ink; by optimally creating the facets and choosing the ink combination, this method can give us a higher degree of freedom in
2222:
to achieve the targeted BRDF. Given a set of metallic inks with known BRDF an algorithm proposed to linearly combine them to produce the targeted distribution.  So far printing only means gray-scale or color printing but real-world surfaces can exhibit different amounts of specularity that
2147:
employ one or more goniometric arms to position a light source and a detector at various directions from a flat sample of the material to be measured. To measure a full BRDF, this process must be repeated many times, moving the light source each time to measure a different incidence angle.
1778: 1493: 1398: 1298: 2836:
E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, Non-linear approximation of reflectance functions. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pp. 117–126. ACM SIGGRAPH, Addison Wesley, August
2083:, physically motivated approximation of the radiative transfer solution for a porous, irregular, and particulate surface. Often used in astronomy for planet/small body surface reflection simulations. Multiple versions and modifications exist. 2167:
BRDF fabrication refers to the process of implementing a surface based on the measured or synthesized information of a target BRDF. There exist three ways to perform such a task, but in general, it can be summarized as the following steps:
1785: 1164: 1597: 2911:
Marschner S.R., Westin S.H., Lafortune E.P.F., Torrance K.E., Greenberg D.P. (1999) Image-Based BRDF Measurement Including Human Skin. In: Lischinski D., Larson G.W. (eds) Rendering Techniques’ 99. Eurographics. Springer,
1672: 947: 164: 1199:) is appropriate for modeling non-flat surfaces, and has the same parameterization as the SVBRDF; however in contrast, the BTF includes non-local scattering effects like shadowing, masking, interreflections or 1086: 1038: 890: 1533: 1683: 990: 2056:
Three elemental components that can be used to model a variety of light-surface interactions. The incoming light ray is shown in black, the reflected ray(s) modeled by the BRDF in gray.
1407: 1318: 2998:
Matusik, Wojciech; Ajdin, Boris; Gu, Jinwei; Lawrence, Jason; Lensch, Hendrik P. A.; Pellacini, Fabio; Rusinkiewicz, Szymon (2009-12-01). "Printing spatially-varying reflectance".
1221: 3117:
Schaepman-Strub, G.; M. E. Schaepman; T. H. Painter; S. Dangel; J. V. Martonchik (2006-07-15). "Reflectance quantities in optical remote sensing: definitions and case studies".
765: 738: 325: 294: 234: 207: 75: 48: 1186: 791: 259: 2827:
X. He, K. Torrance, F. Sillon, and D. Greenberg, A comprehensive physical model for light reflection, Computer Graphics 25 (1991), no. Annual Conference Series, 175–186.
835: 813: 2404:"Photovoltaic System Performance Enhancement with Nontracking Planar Concentrators: Experimental Results and Bidirectional Reflectance Function (BDRF)-Based Modeling" 394: 345: 1897:{\displaystyle \forall \omega _{\text{i}},\,\int _{\Omega }f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})\,\cos {\theta _{\text{r}}}d\omega _{\text{r}}\leq 1} 371: 2245: 1215: 703: 667: 95: 1103: 2940: 2110:, a specular-microfacet model with an elliptical-Gaussian distribution function dependent on surface tangent orientation (in addition to surface normal). 1538: 1614: 3107: 3084: 2548: 2378: 895: 112: 2952:
Weyrich, Tim; Peers, Pieter; Matusik, Wojciech; Rusinkiewicz, Szymon (2009). "Fabricating microgeometry for custom surface reflectance".
2507: 2974: 2639: 2334:
Duvenhage, Bernardt (2013). "Numerical verification of bidirectional reflectance distribution functions for physical plausibility".
2351:"Photovoltaic system performance enhancement with non-tracking planar concentrators: Experimental results and BDRF based modelling" 2490: 2350: 2125:
Fitted Lafortune model, a generalization of Phong with multiple specular lobes, and intended for parametric fits of measured data.
1043: 995: 847: 3167: 2850: 1498: 1196: 2092: 2012:
W. Matusik et al. found that interpolating between measured samples produced realistic results and was easy to understand.
1773:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})=f_{\text{r}}(\omega _{\text{r}},\,\omega _{\text{i}})} 1921: 2924: 2113: 2953: 2119:
Ashikhmin–Shirley model, allowing for anisotropic reflectance, along with a diffuse substrate under a specular surface.
2223:
affects their final appearance, as a result this novel method can help us print images even more realistically.  
1535:: that is, it will only emit light at wavelength equal to the incoming light. In this case it can be parameterized as 952: 348: 2357: 2941:
https://www.photonicsspectra-digital.com/photonicsspectra/september 2020/MobilePagedReplica.action?pm=2&folio=56
2275: 2155:. The standard algorithm is to measure the BRDF point cloud from images and optimize it by one of the BRDF models. 2152: 1488:{\displaystyle f_{\text{r}}(\lambda _{\text{i}},\,\omega _{\text{i}},\,\lambda _{\text{r}},\,\omega _{\text{r}})=0} 841: 2098:
Torrance–Sparrow model, a general model representing surfaces as distributions of perfectly specular microfacets.
1393:{\displaystyle f_{\text{r}}(\lambda _{\text{i}},\,\omega _{\text{i}},\,\lambda _{\text{r}},\,\omega _{\text{r}})} 844:
and not directly as a quotient between the undifferentiated quantities, is because irradiating light other than
1293:{\displaystyle S(\mathbf {x} _{\text{i}},\,\omega _{\text{i}},\,\mathbf {x} _{\text{r}},\,\omega _{\text{r}})} 2867: 2754:
Nayar, S. K.; Oren, M. (1995). "Generalization of the Lambertian Model and Implications for Machine Vision".
3182: 2095:, resembling Phong, but allowing for certain quantities to be interpolated, reducing computational overhead. 1307:
of light has been ignored. In reality, the BRDF is wavelength dependent, and to account for effects such as
2336:
Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference
2260: 2086: 1980: 1972: 1971:
BRDFs can be measured directly from real objects using calibrated cameras and lightsources; however, many
3162: 3147: 2068: 1677: 1200: 743: 716: 303: 272: 212: 185: 53: 26: 3025:
Lan, Yanxiang; Dong, Yue; Pellacini, Fabio; Tong, Xin (2013-07-01). "Bi-scale appearance fabrication".
3126: 2672: 2528: 2308: 3177: 2218:
In order to generate spatially varying BRDF (svBRDF) it has been proposed to use gamut mapping and
2198: 2116:, a "directed-diffuse" microfacet model, with perfectly diffuse (rather than specular) microfacets. 2104:, a specular-microfacet model (Torrance–Sparrow) accounting for wavelength and thus color shifting. 2189:
Optimize the continuity and smoothness of the surface with respect to the manufacturing procedure.
1169: 774: 242: 3050: 2980: 2810: 2771: 2645: 2604: 2423: 2384: 2280: 2250: 2144: 2107: 2005: 1949: 1937: 1925: 2663:
Torrance, K.; Sparrow, E. (1967). "Theory for Off-Specular Reflection from Roughened Surfaces".
2101: 818: 796: 166:, is a function of four real variables that defines how light from a source is reflected off an 1607:
Physically realistic BRDFs for reciprocal linear optics have additional properties, including,
3103: 3080: 3042: 2970: 2635: 2544: 2467: 2374: 1998: 1983:
model frequently assumed in computer graphics. Some useful features of recent models include:
1917: 237: 175: 379: 330: 3134: 3034: 3007: 2962: 2896: 2895:
Church E., Takacs P., Leonard T., The prediction of BSDFs from surface profile measurements
2802: 2763: 2736: 2711: 2680: 2627: 2594: 2536: 2415: 2366: 2316: 2255: 2080: 167: 396:, therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr, with 356: 3172: 3099: 2928: 2854: 2494: 2074: 1945: 1933: 1929: 674: 179: 1300:
in which light entering the surface may scatter internally and exit at another location.
3130: 2676: 2624:
Proceedings of the 4th annual conference on Computer graphics and interactive techniques
2532: 2312: 16:
Function of four real variables that defines how light is reflected at an opaque surface
2880: 2622:
James F. Blinn (1977). "Models of light reflection for computer synthesized pictures".
2487: 2299:
Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface".
1976: 1956: 768: 688: 682: 652: 80: 3156: 2790: 2564: 1401: 351: 2984: 2848:
Image-based modelling of material reflective properties of flat objects (In Russian)
2814: 2427: 2388: 1159:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}},\,\mathbf {x} )} 3054: 2806: 2775: 2649: 2608: 2193:
Many approaches have been proposed for manufacturing the BRDF of the target :
1312: 374: 2847: 2419: 2270: 2122:
HTSG (He, Torrance, Sillion, Greenberg), a comprehensive physically based model.
1988: 1913: 1592:{\displaystyle f_{\text{r}}(\lambda ,\,\omega _{\text{i}},\,\omega _{\text{r}})} 1308: 1203:. The functions defined by the BTF at each point on the surface are thus called 678: 401: 2522: 23:
Diagram showing vectors used to define the BRDF. All vectors are unit length.
3138: 2939:
Eckhardt S, Lunda K., Digital Age Sees New Demand for the Venerable Conoscope
2921: 2370: 2265: 2179: 1941: 1304: 706: 297: 3046: 2540: 2441: 412:
The BRDF was first defined by Fred Nicodemus around 1965. The definition is:
3038: 3011: 2966: 2175:
Sample this distribution to discretize it and make the fabrication feasible.
397: 2684: 1667:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})\geq 0} 2740: 2731:
Ward, Gregory J. (1992). "Measuring and modeling anisotropic reflection".
2716: 2699: 2631: 2599: 2582: 2210:
The final BRDF is the aggregated effect of the geometry and ink selection.
2020: 19: 2219: 2183: 670: 266: 2320: 2206: 2044: 2032: 2767: 2486:
Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan.
3148:
An intuitive introduction to the concept of reflection model and BRDF.
2900: 2240: 2071:, representing perfectly diffuse (matte) surfaces by a constant BRDF. 1960: 942:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})} 171: 159:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})} 2403: 2882:
A Study of Scattering Characteristics for Microscale Rough Surface
2205: 1212:
Bidirectional Surface Scattering Reflectance Distribution Function
949:, might illuminate the surface which would unintentionally affect 18: 1098:
Spatially Varying Bidirectional Reflectance Distribution Function
1400:. Note that in the typical case where all optical elements are 2402:
Andrews, Rob W.; Pollard, Andrew; Pearce, Joshua M. (2015).
2349:
Andrews, Rob W.; Pollard, Andrew; Pearce, Joshua M. (2013).
2089:, a phenomenological model akin to plastic-like specularity. 1081:{\displaystyle \mathrm {d} E_{\text{i}}(\omega _{\text{i}})} 1033:{\displaystyle \mathrm {d} L_{\text{r}}(\omega _{\text{r}})} 885:{\displaystyle \mathrm {d} E_{\text{i}}(\omega _{\text{i}})} 182:
algorithms. The function takes an incoming light direction,
2359:
2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
1940:. BRDF has also been used for modeling light trapping in 2178:
Design a geometry that produces this distribution (with
840:
The reason the function is defined as a quotient of two
2885:(Master's thesis). Rose-Hulman Institute of Technology. 2527:(2 ed.). Cambridge University Press. p. 323. 2468:"A Survey of BRDF Representation for Computer Graphics" 2172:
Measuring or synthesizing the target BRDF distribution.
1528:{\displaystyle \lambda _{\text{i}}=\lambda _{\text{r}}} 2151:
There is an alternative way to measure BRDF based on
2128:
Lebedev model for analytical-grid BRDF approximation.
1994:
editable using a small number of intuitive parameters
1788: 1686: 1617: 1541: 1501: 1410: 1321: 1224: 1172: 1106: 1046: 998: 955: 898: 850: 821: 799: 777: 746: 719: 691: 655: 420: 382: 359: 333: 306: 275: 245: 215: 188: 115: 83: 56: 29: 2961:. New York, New York, USA: ACM Press. pp. 1–6. 2868:
Approximated Scatter Models for Stray Light Analysis
1315:
the dependence on wavelength must be made explicit:
2846:Ilyin A., Lebedev A., Sinyavsky V., Ignatenko, A., 1218:), is a further generalized 8-dimensional function 2565:"Fundamentals of the Planetary Spectrum Generator" 1896: 1772: 1666: 1591: 1527: 1487: 1392: 1292: 1188:describes a 2D location over an object's surface. 1180: 1158: 1080: 1032: 984: 941: 884: 829: 807: 785: 759: 732: 697: 661: 639: 388: 365: 339: 319: 288: 253: 228: 201: 158: 89: 69: 42: 2524:Theory of Reflectance and Emittance Spectroscopy 985:{\displaystyle L_{\text{r}}(\omega _{\text{r}})} 2143:Traditionally, BRDF measurement devices called 103:bidirectional reflectance distribution function 2583:"Illumination for computer generated pictures" 8: 815:indicates incident light, whereas the index 2793:(2000). "An Anisotropic Phong BRDF Model". 2700:"A reflectance model for computer graphics" 2497:. ACM Transactions on Graphics. 22(3) 2002. 265:-axis), and returns the ratio of reflected 2230:design and more accurate BRDF fabrication. 1303:In all these cases, the dependence on the 2715: 2665:Journal of the Optical Society of America 2598: 1882: 1868: 1863: 1856: 1847: 1842: 1833: 1820: 1810: 1805: 1796: 1787: 1761: 1756: 1747: 1734: 1718: 1713: 1704: 1691: 1685: 1649: 1644: 1635: 1622: 1616: 1580: 1575: 1566: 1561: 1546: 1540: 1519: 1506: 1500: 1470: 1465: 1456: 1451: 1442: 1437: 1428: 1415: 1409: 1381: 1376: 1367: 1362: 1353: 1348: 1339: 1326: 1320: 1281: 1276: 1267: 1262: 1260: 1251: 1246: 1237: 1232: 1223: 1173: 1171: 1148: 1147: 1138: 1133: 1124: 1111: 1105: 1069: 1056: 1047: 1045: 1021: 1008: 999: 997: 973: 960: 954: 930: 925: 916: 903: 897: 873: 860: 851: 849: 822: 820: 800: 798: 778: 776: 751: 745: 724: 718: 690: 654: 628: 619: 613: 594: 581: 566: 553: 544: 541: 540: 536: 524: 511: 502: 491: 478: 469: 466: 465: 461: 452: 447: 438: 425: 419: 381: 358: 332: 311: 305: 280: 274: 246: 244: 220: 214: 193: 187: 147: 142: 133: 120: 114: 82: 61: 55: 34: 28: 3071:Lubin, Dan; Robert Massom (2006-02-10). 2857:. In: GraphiCon'2009.; 2009. p. 198-201. 2756:International Journal of Computer Vision 236:(taken in a coordinate system where the 3079:(1st ed.). Springer. p. 756. 2291: 300:incident on the surface from direction 1599:, with only one wavelength parameter. 1100:(SVBRDF) is a 6-dimensional function, 1963:depending on atmospheric scattering. 7: 3094:Matt, Pharr; Greg Humphreys (2004). 1916:concept, and accordingly is used in 681:-in-the-direction-of-a-ray per unit 77:points toward the viewer (camera). 2626:. Vol. 11. pp. 192–198. 1811: 1789: 1048: 1000: 852: 760:{\displaystyle \omega _{\text{i}}} 733:{\displaystyle \theta _{\text{i}}} 620: 545: 503: 470: 320:{\displaystyle \omega _{\text{i}}} 289:{\displaystyle \omega _{\text{r}}} 229:{\displaystyle \omega _{\text{r}}} 202:{\displaystyle \omega _{\text{i}}} 70:{\displaystyle \omega _{\text{r}}} 43:{\displaystyle \omega _{\text{i}}} 14: 2446:NASA, Goddard Space Flight Center 1979:have been proposed including the 2227:Combination of Ink and Geometry: 2043: 2031: 2019: 1263: 1233: 1174: 1149: 779: 247: 50:points toward the light source. 2698:Cook, R.; Torrance, K. (1981). 2488:A Data-Driven Reflectance Model 2077:, lunar and Martian reflection. 892:, which are of no interest for 170:surface. It is employed in the 2807:10.1080/10867651.2000.10487522 2704:ACM SIGGRAPH Computer Graphics 1853: 1826: 1767: 1740: 1724: 1697: 1655: 1628: 1586: 1552: 1476: 1421: 1387: 1332: 1287: 1228: 1193:Bidirectional Texture Function 1153: 1117: 1075: 1062: 1027: 1014: 979: 966: 936: 909: 879: 866: 600: 587: 572: 559: 530: 517: 497: 484: 458: 431: 153: 126: 1: 3119:Remote Sensing of Environment 2508:"mental ray Layering Shaders" 2408:IEEE Journal of Photovoltaics 1924:of synthetic scenes (see the 3027:ACM Transactions on Graphics 3000:ACM Transactions on Graphics 2420:10.1109/JPHOTOV.2015.2478064 1955:In the context of satellite 1181:{\displaystyle \mathbf {x} } 786:{\displaystyle \mathbf {n} } 254:{\displaystyle \mathbf {n} } 837:indicates reflected light. 685:-perpendicular-to-the-ray, 3199: 3096:Physically Based Rendering 1912:The BRDF is a fundamental 830:{\displaystyle {\text{r}}} 808:{\displaystyle {\text{i}}} 209:, and outgoing direction, 3139:10.1016/j.rse.2006.03.002 2795:Journal of Graphics Tools 2587:Communications of the ACM 2371:10.1109/PVSC.2013.6744136 2134:K-correlation (ABC) model 1404:, the function will obey 2955:ACM SIGGRAPH 2009 papers 2541:10.1017/CBO9781139025683 1922:photorealistic rendering 174:of real-world light, in 3039:10.1145/2461912.2461989 3012:10.1145/1618452.1618474 2967:10.1145/1576246.1531338 2733:Proceedings of SIGGRAPH 2276:Schlick's approximation 2087:Phong reflectance model 1948:) or low concentration 389:{\displaystyle \theta } 340:{\displaystyle \omega } 2866:Richard N. Pfisterer, 2685:10.1364/JOSA.57.001105 2365:. pp. 0229–0234. 2261:Photometry (astronomy) 2211: 2081:Hapke scattering model 1981:Lambertian reflectance 1898: 1774: 1668: 1603:Physically based BRDFs 1593: 1529: 1489: 1394: 1294: 1182: 1160: 1082: 1034: 986: 943: 886: 831: 809: 787: 761: 734: 699: 663: 641: 390: 367: 341: 321: 290: 255: 230: 203: 160: 98: 97:is the surface normal. 91: 71: 44: 3168:Astrophysics concepts 3077:Atmosphere and Oceans 2879:Won, Yonghee (2014). 2741:10.1145/133994.134078 2717:10.1145/965161.806819 2632:10.1145/563858.563893 2600:10.1145/360825.360839 2581:Phong, B. T. (1975). 2521:Hapke, Bruce (2012). 2209: 2004:being well-suited to 1899: 1775: 1678:Helmholtz reciprocity 1669: 1594: 1530: 1490: 1395: 1295: 1201:subsurface scattering 1183: 1161: 1083: 1035: 987: 944: 887: 832: 810: 788: 762: 740:is the angle between 735: 700: 664: 642: 400:(sr) being a unit of 391: 368: 366:{\displaystyle \phi } 342: 322: 291: 256: 231: 204: 161: 92: 72: 45: 22: 3073:Polar Remote Sensing 2789:Ashikhmin, Michael; 2735:. pp. 265–272. 1786: 1684: 1615: 1539: 1499: 1408: 1319: 1222: 1170: 1104: 1044: 1040:is only affected by 996: 953: 896: 848: 819: 797: 775: 744: 717: 709:, or power per unit 689: 653: 418: 380: 357: 331: 304: 273: 243: 213: 186: 113: 81: 54: 27: 3131:2006RSEnv.103...27S 2677:1967JOSA...57.1105T 2533:2012tres.book.....H 2338:. pp. 200–208. 2321:10.1364/AO.4.000767 2313:1965ApOpt...4..767N 2204:the milled surface. 2145:gonioreflectometers 2102:Cook–Torrance model 2006:Monte Carlo methods 1782:conserving energy: 178:algorithms, and in 2927:2011-07-06 at the 2853:2011-07-06 at the 2768:10.1007/BF01679684 2493:2018-07-21 at the 2281:Specular highlight 2251:Gonioreflectometer 2216:Printing the BRDF: 2212: 1950:solar photovoltaic 1938:object recognition 1926:rendering equation 1894: 1770: 1664: 1589: 1525: 1485: 1390: 1290: 1178: 1156: 1078: 1030: 982: 939: 882: 827: 805: 783: 757: 730: 695: 659: 637: 386: 363: 337: 317: 286: 251: 226: 199: 156: 99: 87: 67: 40: 3109:978-0-12-553180-1 3086:978-3-540-43097-1 2922:BRDFRecon project 2901:10.1117/12.962842 2550:978-0-521-88349-8 2466:Rusinkiewicz, S. 2380:978-1-4799-3299-3 2093:Blinn–Phong model 2001:at grazing angles 1928:), as well as in 1918:computer graphics 1885: 1871: 1850: 1836: 1823: 1799: 1764: 1750: 1737: 1721: 1707: 1694: 1652: 1638: 1625: 1583: 1569: 1549: 1522: 1509: 1473: 1459: 1445: 1431: 1418: 1384: 1370: 1356: 1342: 1329: 1284: 1270: 1254: 1240: 1141: 1127: 1114: 1092:Related functions 1072: 1059: 1024: 1011: 976: 963: 933: 919: 906: 876: 863: 825: 803: 754: 727: 698:{\displaystyle E} 662:{\displaystyle L} 635: 631: 616: 597: 584: 569: 556: 534: 527: 514: 494: 481: 455: 441: 428: 327:. Each direction 314: 283: 223: 196: 176:computer graphics 150: 136: 123: 90:{\displaystyle n} 64: 37: 3190: 3142: 3113: 3102:. p. 1019. 3098:(1st ed.). 3090: 3059: 3058: 3022: 3016: 3015: 2995: 2989: 2988: 2960: 2949: 2943: 2937: 2931: 2919: 2913: 2909: 2903: 2893: 2887: 2886: 2876: 2870: 2864: 2858: 2844: 2838: 2834: 2828: 2825: 2819: 2818: 2786: 2780: 2779: 2751: 2745: 2744: 2728: 2722: 2721: 2719: 2695: 2689: 2688: 2671:(9): 1105–1114. 2660: 2654: 2653: 2619: 2613: 2612: 2602: 2578: 2572: 2571: 2569: 2561: 2555: 2554: 2518: 2512: 2511: 2504: 2498: 2484: 2478: 2477: 2475: 2474: 2463: 2457: 2456: 2454: 2452: 2438: 2432: 2431: 2414:(6): 1626–1635. 2399: 2393: 2392: 2364: 2355: 2346: 2340: 2339: 2331: 2325: 2324: 2296: 2256:Opposition spike 2163:BRDF fabrication 2114:Oren–Nayar model 2069:Lambertian model 2047: 2035: 2023: 1973:phenomenological 1944:(e.g. using the 1934:inverse problems 1903: 1901: 1900: 1895: 1887: 1886: 1883: 1874: 1873: 1872: 1869: 1852: 1851: 1848: 1838: 1837: 1834: 1825: 1824: 1821: 1815: 1814: 1801: 1800: 1797: 1779: 1777: 1776: 1771: 1766: 1765: 1762: 1752: 1751: 1748: 1739: 1738: 1735: 1723: 1722: 1719: 1709: 1708: 1705: 1696: 1695: 1692: 1673: 1671: 1670: 1665: 1654: 1653: 1650: 1640: 1639: 1636: 1627: 1626: 1623: 1598: 1596: 1595: 1590: 1585: 1584: 1581: 1571: 1570: 1567: 1551: 1550: 1547: 1534: 1532: 1531: 1526: 1524: 1523: 1520: 1511: 1510: 1507: 1494: 1492: 1491: 1486: 1475: 1474: 1471: 1461: 1460: 1457: 1447: 1446: 1443: 1433: 1432: 1429: 1420: 1419: 1416: 1399: 1397: 1396: 1391: 1386: 1385: 1382: 1372: 1371: 1368: 1358: 1357: 1354: 1344: 1343: 1340: 1331: 1330: 1327: 1299: 1297: 1296: 1291: 1286: 1285: 1282: 1272: 1271: 1268: 1266: 1256: 1255: 1252: 1242: 1241: 1238: 1236: 1187: 1185: 1184: 1179: 1177: 1165: 1163: 1162: 1157: 1152: 1143: 1142: 1139: 1129: 1128: 1125: 1116: 1115: 1112: 1087: 1085: 1084: 1079: 1074: 1073: 1070: 1061: 1060: 1057: 1051: 1039: 1037: 1036: 1031: 1026: 1025: 1022: 1013: 1012: 1009: 1003: 991: 989: 988: 983: 978: 977: 974: 965: 964: 961: 948: 946: 945: 940: 935: 934: 931: 921: 920: 917: 908: 907: 904: 891: 889: 888: 883: 878: 877: 874: 865: 864: 861: 855: 836: 834: 833: 828: 826: 823: 814: 812: 811: 806: 804: 801: 792: 790: 789: 784: 782: 766: 764: 763: 758: 756: 755: 752: 739: 737: 736: 731: 729: 728: 725: 704: 702: 701: 696: 668: 666: 665: 660: 646: 644: 643: 638: 636: 634: 633: 632: 629: 623: 618: 617: 614: 599: 598: 595: 586: 585: 582: 575: 571: 570: 567: 558: 557: 554: 548: 542: 535: 533: 529: 528: 525: 516: 515: 512: 506: 500: 496: 495: 492: 483: 482: 479: 473: 467: 457: 456: 453: 443: 442: 439: 430: 429: 426: 395: 393: 392: 387: 372: 370: 369: 364: 349:parameterized by 346: 344: 343: 338: 326: 324: 323: 318: 316: 315: 312: 295: 293: 292: 287: 285: 284: 281: 260: 258: 257: 252: 250: 235: 233: 232: 227: 225: 224: 221: 208: 206: 205: 200: 198: 197: 194: 165: 163: 162: 157: 152: 151: 148: 138: 137: 134: 125: 124: 121: 96: 94: 93: 88: 76: 74: 73: 68: 66: 65: 62: 49: 47: 46: 41: 39: 38: 35: 3198: 3197: 3193: 3192: 3191: 3189: 3188: 3187: 3153: 3152: 3116: 3110: 3100:Morgan Kaufmann 3093: 3087: 3070: 3067: 3065:Further reading 3062: 3024: 3023: 3019: 2997: 2996: 2992: 2977: 2958: 2951: 2950: 2946: 2938: 2934: 2929:Wayback Machine 2920: 2916: 2910: 2906: 2894: 2890: 2878: 2877: 2873: 2865: 2861: 2855:Wayback Machine 2845: 2841: 2835: 2831: 2826: 2822: 2788: 2787: 2783: 2753: 2752: 2748: 2730: 2729: 2725: 2697: 2696: 2692: 2662: 2661: 2657: 2642: 2621: 2620: 2616: 2580: 2579: 2575: 2567: 2563: 2562: 2558: 2551: 2520: 2519: 2515: 2506: 2505: 2501: 2495:Wayback Machine 2485: 2481: 2472: 2470: 2465: 2464: 2460: 2450: 2448: 2440: 2439: 2435: 2401: 2400: 2396: 2381: 2362: 2353: 2348: 2347: 2343: 2333: 2332: 2328: 2298: 2297: 2293: 2289: 2237: 2165: 2141: 2075:Lommel–Seeliger 2065: 2060: 2059: 2058: 2057: 2053: 2052: 2051: 2048: 2040: 2039: 2036: 2028: 2027: 2024: 1999:Fresnel effects 1997:accounting for 1977:analytic models 1969: 1946:OPTOS formalism 1930:computer vision 1910: 1878: 1864: 1843: 1829: 1816: 1806: 1792: 1784: 1783: 1757: 1743: 1730: 1714: 1700: 1687: 1682: 1681: 1645: 1631: 1618: 1613: 1612: 1605: 1576: 1562: 1542: 1537: 1536: 1515: 1502: 1497: 1496: 1466: 1452: 1438: 1424: 1411: 1406: 1405: 1377: 1363: 1349: 1335: 1322: 1317: 1316: 1277: 1261: 1247: 1231: 1220: 1219: 1168: 1167: 1134: 1120: 1107: 1102: 1101: 1094: 1065: 1052: 1042: 1041: 1017: 1004: 994: 993: 969: 956: 951: 950: 926: 912: 899: 894: 893: 869: 856: 846: 845: 817: 816: 795: 794: 773: 772: 747: 742: 741: 720: 715: 714: 687: 686: 651: 650: 624: 609: 590: 577: 576: 562: 549: 543: 520: 507: 501: 487: 474: 468: 448: 434: 421: 416: 415: 410: 378: 377: 355: 354: 329: 328: 307: 302: 301: 276: 271: 270: 261:lies along the 241: 240: 216: 211: 210: 189: 184: 183: 180:computer vision 143: 129: 116: 111: 110: 79: 78: 57: 52: 51: 30: 25: 24: 17: 12: 11: 5: 3196: 3194: 3186: 3185: 3183:Remote sensing 3180: 3175: 3170: 3165: 3155: 3154: 3151: 3150: 3144: 3143: 3114: 3108: 3091: 3085: 3066: 3063: 3061: 3060: 3017: 2990: 2975: 2944: 2932: 2914: 2904: 2888: 2871: 2859: 2839: 2829: 2820: 2791:Shirley, Peter 2781: 2762:(3): 227–251. 2746: 2723: 2710:(3): 301–316. 2690: 2655: 2640: 2614: 2593:(6): 311–317. 2573: 2556: 2549: 2513: 2499: 2479: 2458: 2433: 2394: 2379: 2341: 2326: 2307:(7): 767–775. 2301:Applied Optics 2290: 2288: 2285: 2284: 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2248: 2243: 2236: 2233: 2232: 2231: 2224: 2213: 2191: 2190: 2187: 2176: 2173: 2164: 2161: 2140: 2137: 2136: 2135: 2132: 2129: 2126: 2123: 2120: 2117: 2111: 2105: 2099: 2096: 2090: 2084: 2078: 2072: 2064: 2061: 2055: 2054: 2049: 2042: 2041: 2037: 2030: 2029: 2025: 2018: 2017: 2016: 2015: 2014: 2010: 2009: 2002: 1995: 1992: 1987:accommodating 1968: 1965: 1957:remote sensing 1909: 1906: 1905: 1904: 1893: 1890: 1881: 1877: 1867: 1862: 1859: 1855: 1846: 1841: 1832: 1828: 1819: 1813: 1809: 1804: 1795: 1791: 1780: 1769: 1760: 1755: 1746: 1742: 1733: 1729: 1726: 1717: 1712: 1703: 1699: 1690: 1674: 1663: 1660: 1657: 1648: 1643: 1634: 1630: 1621: 1604: 1601: 1588: 1579: 1574: 1565: 1560: 1557: 1554: 1545: 1518: 1514: 1505: 1484: 1481: 1478: 1469: 1464: 1455: 1450: 1441: 1436: 1427: 1423: 1414: 1389: 1380: 1375: 1366: 1361: 1352: 1347: 1338: 1334: 1325: 1289: 1280: 1275: 1265: 1259: 1250: 1245: 1235: 1230: 1227: 1205:Apparent BRDFs 1176: 1155: 1151: 1146: 1137: 1132: 1123: 1119: 1110: 1093: 1090: 1077: 1068: 1064: 1055: 1050: 1029: 1020: 1016: 1007: 1002: 981: 972: 968: 959: 938: 929: 924: 915: 911: 902: 881: 872: 868: 859: 854: 781: 769:surface normal 750: 723: 694: 683:projected-area 658: 627: 622: 612: 608: 605: 602: 593: 589: 580: 574: 565: 561: 552: 547: 539: 532: 523: 519: 510: 505: 499: 490: 486: 477: 472: 464: 460: 451: 446: 437: 433: 424: 409: 406: 385: 362: 336: 310: 279: 269:exiting along 249: 238:surface normal 219: 192: 155: 146: 141: 132: 128: 119: 86: 60: 33: 15: 13: 10: 9: 6: 4: 3: 2: 3195: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3160: 3158: 3149: 3146: 3145: 3140: 3136: 3132: 3128: 3124: 3120: 3115: 3111: 3105: 3101: 3097: 3092: 3088: 3082: 3078: 3074: 3069: 3068: 3064: 3056: 3052: 3048: 3044: 3040: 3036: 3032: 3028: 3021: 3018: 3013: 3009: 3005: 3001: 2994: 2991: 2986: 2982: 2978: 2976:9781605587264 2972: 2968: 2964: 2957: 2956: 2948: 2945: 2942: 2936: 2933: 2930: 2926: 2923: 2918: 2915: 2908: 2905: 2902: 2898: 2892: 2889: 2884: 2883: 2875: 2872: 2869: 2863: 2860: 2856: 2852: 2849: 2843: 2840: 2833: 2830: 2824: 2821: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2785: 2782: 2777: 2773: 2769: 2765: 2761: 2757: 2750: 2747: 2742: 2738: 2734: 2727: 2724: 2718: 2713: 2709: 2705: 2701: 2694: 2691: 2686: 2682: 2678: 2674: 2670: 2666: 2659: 2656: 2651: 2647: 2643: 2641:9781450373555 2637: 2633: 2629: 2625: 2618: 2615: 2610: 2606: 2601: 2596: 2592: 2588: 2584: 2577: 2574: 2566: 2560: 2557: 2552: 2546: 2542: 2538: 2534: 2530: 2526: 2525: 2517: 2514: 2509: 2503: 2500: 2496: 2492: 2489: 2483: 2480: 2469: 2462: 2459: 2447: 2443: 2442:"BRDF/Albedo" 2437: 2434: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2398: 2395: 2390: 2386: 2382: 2376: 2372: 2368: 2361: 2360: 2352: 2345: 2342: 2337: 2330: 2327: 2322: 2318: 2314: 2310: 2306: 2302: 2295: 2292: 2286: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2238: 2234: 2228: 2225: 2221: 2217: 2214: 2208: 2202: 2200: 2196: 2195: 2194: 2188: 2185: 2181: 2177: 2174: 2171: 2170: 2169: 2162: 2160: 2156: 2154: 2149: 2146: 2138: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2103: 2100: 2097: 2094: 2091: 2088: 2085: 2082: 2079: 2076: 2073: 2070: 2067: 2066: 2063:Some examples 2062: 2046: 2034: 2022: 2013: 2007: 2003: 2000: 1996: 1993: 1990: 1986: 1985: 1984: 1982: 1978: 1974: 1966: 1964: 1962: 1958: 1953: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1907: 1891: 1888: 1879: 1875: 1865: 1860: 1857: 1844: 1839: 1830: 1817: 1807: 1802: 1793: 1781: 1758: 1753: 1744: 1731: 1727: 1715: 1710: 1701: 1688: 1679: 1675: 1661: 1658: 1646: 1641: 1632: 1619: 1610: 1609: 1608: 1602: 1600: 1577: 1572: 1563: 1558: 1555: 1543: 1516: 1512: 1503: 1482: 1479: 1467: 1462: 1453: 1448: 1439: 1434: 1425: 1412: 1403: 1378: 1373: 1364: 1359: 1350: 1345: 1336: 1323: 1314: 1310: 1306: 1301: 1278: 1273: 1257: 1248: 1243: 1225: 1217: 1213: 1208: 1206: 1202: 1198: 1194: 1189: 1144: 1135: 1130: 1121: 1108: 1099: 1091: 1089: 1066: 1053: 1018: 1005: 970: 957: 927: 922: 913: 900: 870: 857: 843: 842:differentials 838: 770: 748: 721: 712: 708: 692: 684: 680: 676: 672: 656: 647: 625: 610: 606: 603: 591: 578: 563: 550: 537: 521: 508: 488: 475: 462: 449: 444: 435: 422: 413: 407: 405: 403: 399: 383: 376: 360: 353: 352:azimuth angle 350: 334: 308: 299: 277: 268: 264: 239: 217: 190: 181: 177: 173: 169: 144: 139: 130: 117: 108: 104: 84: 58: 31: 21: 3163:3D rendering 3125:(1): 27–42. 3122: 3118: 3095: 3076: 3075:. Volume I: 3072: 3030: 3026: 3020: 3003: 2999: 2993: 2954: 2947: 2935: 2917: 2907: 2891: 2881: 2874: 2862: 2842: 2832: 2823: 2801:(2): 25–32. 2798: 2794: 2784: 2759: 2755: 2749: 2732: 2726: 2707: 2703: 2693: 2668: 2664: 2658: 2623: 2617: 2590: 2586: 2576: 2559: 2523: 2516: 2502: 2482: 2471:. Retrieved 2461: 2449:. Retrieved 2445: 2436: 2411: 2407: 2397: 2358: 2344: 2335: 2329: 2304: 2300: 2294: 2226: 2215: 2197: 2192: 2166: 2157: 2150: 2142: 2011: 1970: 1954: 1911: 1908:Applications 1611:positivity: 1606: 1495:except when 1313:luminescence 1302: 1211: 1209: 1204: 1192: 1190: 1097: 1095: 839: 793:. The index 711:surface area 710: 648: 414: 411: 375:zenith angle 262: 106: 102: 100: 3033:(4): 1–12. 2271:Reflectance 2139:Acquisition 1989:anisotropic 1942:solar cells 1914:radiometric 1309:iridescence 679:solid-angle 402:solid angle 3178:Radiometry 3157:Categories 3006:(5): 1–9. 2473:2007-09-05 2287:References 2266:Radiometry 2220:halftoning 2184:halftoning 2180:microfacet 2153:HDR images 2108:Ward model 1991:reflection 1305:wavelength 992:, whereas 707:irradiance 408:Definition 398:steradians 347:is itself 298:irradiance 109:), symbol 3047:0730-0301 2201:the BRDF: 2131:ABg model 1952:systems. 1932:for many 1889:≤ 1880:ω 1866:θ 1861:⁡ 1845:ω 1831:ω 1812:Ω 1808:∫ 1794:ω 1790:∀ 1759:ω 1745:ω 1716:ω 1702:ω 1659:≥ 1647:ω 1633:ω 1578:ω 1564:ω 1556:λ 1517:λ 1504:λ 1468:ω 1454:λ 1440:ω 1426:λ 1379:ω 1365:λ 1351:ω 1337:λ 1279:ω 1249:ω 1136:ω 1122:ω 1067:ω 1019:ω 971:ω 928:ω 914:ω 871:ω 749:ω 722:θ 677:per unit 626:ω 611:θ 607:⁡ 592:ω 564:ω 522:ω 489:ω 450:ω 436:ω 384:θ 361:ϕ 335:ω 309:ω 278:ω 218:ω 191:ω 145:ω 131:ω 59:ω 32:ω 2985:13932018 2925:Archived 2851:Archived 2815:18520447 2491:Archived 2451:March 9, 2428:40828010 2389:32127698 2235:See also 1936:such as 1676:obeying 1166:, where 767:and the 671:radiance 267:radiance 3127:Bibcode 3055:4960068 2776:2367943 2673:Bibcode 2650:8043767 2609:1439868 2529:Bibcode 2309:Bibcode 2199:Milling 2026:Diffuse 296:to the 3173:Optics 3106:  3083:  3053:  3045:  2983:  2973:  2912:Vienna 2813:  2774:  2648:  2638:  2607:  2547:  2426:  2387:  2377:  2241:Albedo 2050:Mirror 2038:Glossy 1967:Models 1961:albedo 1402:linear 1216:BSSRDF 713:, and 649:where 172:optics 168:opaque 3051:S2CID 2981:S2CID 2959:(PDF) 2837:1997. 2811:S2CID 2772:S2CID 2646:S2CID 2605:S2CID 2568:(PDF) 2424:S2CID 2385:S2CID 2363:(PDF) 2354:(PDF) 675:power 673:, or 3104:ISBN 3081:ISBN 3043:ISSN 2971:ISBN 2636:ISBN 2545:ISBN 2453:2017 2375:ISBN 2246:BSDF 1975:and 1920:for 1210:The 1191:The 1096:The 373:and 107:BRDF 101:The 3135:doi 3123:103 3035:doi 3008:doi 2963:doi 2897:doi 2803:doi 2764:doi 2737:doi 2712:doi 2681:doi 2628:doi 2595:doi 2537:doi 2416:doi 2367:doi 2317:doi 1858:cos 1311:or 1197:BTF 705:is 669:is 604:cos 3159:: 3133:. 3121:. 3049:. 3041:. 3031:32 3029:. 3004:28 3002:. 2979:. 2969:. 2809:. 2797:. 2770:. 2760:14 2758:. 2708:15 2706:. 2702:. 2679:. 2669:57 2667:. 2644:. 2634:. 2603:. 2591:18 2589:. 2585:. 2543:. 2535:. 2444:. 2422:. 2410:. 2406:. 2383:. 2373:. 2356:. 2315:. 2303:. 2186:). 2182:, 1680:: 1207:. 1088:. 771:, 404:. 3141:. 3137:: 3129:: 3112:. 3089:. 3057:. 3037:: 3014:. 3010:: 2987:. 2965:: 2899:: 2817:. 2805:: 2799:5 2778:. 2766:: 2743:. 2739:: 2720:. 2714:: 2687:. 2683:: 2675:: 2652:. 2630:: 2611:. 2597:: 2570:. 2553:. 2539:: 2531:: 2510:. 2476:. 2455:. 2430:. 2418:: 2412:5 2391:. 2369:: 2323:. 2319:: 2311:: 2305:4 2008:. 1892:1 1884:r 1876:d 1870:r 1854:) 1849:r 1840:, 1835:i 1827:( 1822:r 1818:f 1803:, 1798:i 1768:) 1763:i 1754:, 1749:r 1741:( 1736:r 1732:f 1728:= 1725:) 1720:r 1711:, 1706:i 1698:( 1693:r 1689:f 1662:0 1656:) 1651:r 1642:, 1637:i 1629:( 1624:r 1620:f 1587:) 1582:r 1573:, 1568:i 1559:, 1553:( 1548:r 1544:f 1521:r 1513:= 1508:i 1483:0 1480:= 1477:) 1472:r 1463:, 1458:r 1449:, 1444:i 1435:, 1430:i 1422:( 1417:r 1413:f 1388:) 1383:r 1374:, 1369:r 1360:, 1355:i 1346:, 1341:i 1333:( 1328:r 1324:f 1288:) 1283:r 1274:, 1269:r 1264:x 1258:, 1253:i 1244:, 1239:i 1234:x 1229:( 1226:S 1214:( 1195:( 1175:x 1154:) 1150:x 1145:, 1140:r 1131:, 1126:i 1118:( 1113:r 1109:f 1076:) 1071:i 1063:( 1058:i 1054:E 1049:d 1028:) 1023:r 1015:( 1010:r 1006:L 1001:d 980:) 975:r 967:( 962:r 958:L 937:) 932:r 923:, 918:i 910:( 905:r 901:f 880:) 875:i 867:( 862:i 858:E 853:d 824:r 802:i 780:n 753:i 726:i 693:E 657:L 630:i 621:d 615:i 601:) 596:i 588:( 583:i 579:L 573:) 568:r 560:( 555:r 551:L 546:d 538:= 531:) 526:i 518:( 513:i 509:E 504:d 498:) 493:r 485:( 480:r 476:L 471:d 463:= 459:) 454:r 445:, 440:i 432:( 427:r 423:f 313:i 282:r 263:z 248:n 222:r 195:i 154:) 149:r 140:, 135:i 127:( 122:r 118:f 105:( 85:n 63:r 36:i

Index


opaque
optics
computer graphics
computer vision
surface normal
radiance
irradiance
parameterized by
azimuth angle
zenith angle
steradians
solid angle
radiance
power
solid-angle
projected-area
irradiance
surface normal
differentials
BTF
subsurface scattering
BSSRDF
wavelength
iridescence
luminescence
linear
Helmholtz reciprocity
radiometric
computer graphics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑