Knowledge

Algae fuel

Source 📝

1419:
heavy metal contaminants absorbed from wastewater streams that would otherwise be directly discharged into surface and ground-water. Moreover, this process also allows the recovery of phosphorus from waste, which is an essential but scarce element in nature – the reserves of which are estimated to have depleted in the last 50 years. Another possibility is the use of algae production systems to clean up non-point source pollution, in a system known as an algal turf scrubber (ATS). This has been demonstrated to reduce nitrogen and phosphorus levels in rivers and other large bodies of water affected by eutrophication, and systems are being built that will be capable of processing up to 110 million liters of water per day. ATS can also be used for treating point source pollution, such as the waste water mentioned above, or in treating livestock effluent.
478:. Macroalgae has high methane production rate compared to plant biomass. Biogas production from macroalgae is more technically viable compared to other fuels, but it is not economically viable due to the high cost of macroalgae feedstock. Carbohydrate and protein in microalgae can be converted into biogas through anaerobic digestion, which includes hydrolysis, fermentation, and methanogenesis steps. The conversion of algal biomass into methane can potentially recover as much energy as it obtains, but it is more profitable when the algal lipid content is lower than 40%. Biogas production from microalgae is relatively low because of the high ratio of protein in microalgae, but microalgae can be co-digested with high C/N ratio products such as wastepaper. Another method to produce biogas is through gasification, where hydrocarbon is converted to 1323:
and with low conservation value, and can use water from salt aquifers that is not useful for agriculture or drinking. Algae can also grow on the surface of the ocean in bags or floating screens. Thus microalgae could provide a source of clean energy with little impact on the provisioning of adequate food and water or the conservation of biodiversity. Algae cultivation also requires no external subsidies of insecticides or herbicides, removing any risk of generating associated pesticide waste streams. In addition, algal biofuels are much less toxic, and degrade far more readily than petroleum-based fuels. However, due to the flammable nature of any combustible fuel, there is potential for some environmental hazards if ignited or spilled, as may occur in a train derailment or a pipeline leak. This hazard is reduced compared to
1658:
2010, the U.S. House of Representatives passed a legislation seeking to give algae-based biofuels parity with cellulose biofuels in federal tax credit programs. The algae-based renewable fuel promotion act (HR 4168) was implemented to give biofuel projects access to a $ 1.01 per gal production tax credit and 50% bonus depreciation for biofuel plant property. The U.S Government also introduced the domestic Fuel for Enhancing National Security Act implemented in 2011. This policy constitutes an amendment to the Federal property and administrative services act of 1949 and federal defense provisions in order to extend to 15 the number of years that the Department of Defense (DOD) multiyear contract may be entered into the case of the purchase of advanced biofuel. Federal and DOD programs are usually limited to a 5-year period
1279:
shows comparable results, making it an economical substitute for nitrogen source in large scale culturing of algae. Despite the clear increase in growth in comparison to a nitrogen-less medium, it has been shown that alterations in nitrogen levels affect lipid content within the algal cells. In one study nitrogen deprivation for 72 hours caused the total fatty acid content (on a per cell basis) to increase by 2.4-fold. 65% of the total fatty acids were esterified to triacylglycerides in oil bodies, when compared to the initial culture, indicating that the algal cells utilized de novo synthesis of fatty acids. It is vital for the lipid content in algal cells to be of high enough quantity, while maintaining adequate cell division times, so parameters that can maximize both are under investigation.
1535:
a by-product of farming, as its primary source of water and nutrients. Because of this, it prevents this contaminated water from mixing with the lakes and rivers that currently supply our drinking water. In addition to this, the ammonia, nitrates, and phosphates that would normally render the water unsafe actually serve as excellent nutrients for the algae, meaning that fewer resources are needed to grow the algae. Many algae species used in biodiesel production are excellent bio-fixers, meaning they are able to remove carbon dioxide from the atmosphere to use as a form of energy for themselves. Because of this, they have found use in industry as a way to treat flue gases and reduce GHG emissions.
1106:
surface is coated with a rough plastic membrane or a screen, which allows naturally occurring algal spores to settle and colonize the surface. Once the algae has been established, it can be harvested every 5–15 days, and can produce 18 metric tons of algal biomass per hectare per year. In contrast to other methods, which focus primarily on a single high yielding species of algae, this method focuses on naturally occurring polycultures of algae. As such, the lipid content of the algae in an ATS system is usually lower, which makes it more suitable for a fermented fuel product, such as ethanol, methane, or butanol. Conversely, the harvested algae could be treated with a
1314:
impact various other workings in the machinery of cells. The same is true for ocean water, but the contaminants are found in different concentrations. Thus, agricultural-grade fertilizer is the preferred source of nutrients, but heavy metals are again a problem, especially for strains of algae that are susceptible to these metals. In open pond systems the use of strains of algae that can deal with high concentrations of heavy metals could prevent other organisms from infesting these systems. In some instances it has even been shown that strains of algae can remove over 90% of nickel and zinc from industrial wastewater in relatively short periods of time.
1483:
cost-effective in warm climates with very low labor costs, and fermenters may become cost-effective subsequent to significant process improvements. The group found that capital cost, labor cost and operational costs (fertilizer, electricity, etc.) by themselves are too high for algae biofuels to be cost-competitive with conventional fuels. Similar results were found by others, suggesting that unless new, cheaper ways of harnessing algae for biofuels production are found, their great technical potential may never become economically accessible. In 2012,
1428:
Experiments have also shown that more diverse aquatic microbial communities tend to be more stable through time than less diverse communities. Recent studies found that polycultures of microalgae produced significantly higher lipid yields than monocultures. Polycultures also tend to be more resistant to pest and disease outbreaks, as well as invasion by other plants or algae. Thus culturing microalgae in polyculture may not only increase yields and stability of yields of biofuel, but also reduce the environmental impact of an algal biofuel industry.
1471:
5.30/gal) and $ 1.81 ($ 6.85/gal) for photobioreactors and raceways, respectively. Oil recovered from the lower cost biomass produced in photobioreactors is estimated to cost $ 2.80/L, assuming the recovery process contributes 50% to the cost of the final recovered oil. If existing algae projects can achieve biodiesel production price targets of less than $ 1 per gallon, the United States may realize its goal of replacing up to 20% of transport fuels by 2020 by using environmentally and economically sustainable fuels from algae production.
1526:
the fuel produced. Using algae as a source of biodiesel can alleviate this problem in a number of ways. First, algae is not used as a primary food source for humans, meaning that it can be used solely for fuel and there would be little impact in the food industry. Second, many of the waste-product extracts produced during the processing of algae for biofuel can be used as a sufficient animal feed. This is an effective way to minimize waste and a much cheaper alternative to the more traditional corn- or grain-based feeds.
982: 1114:
species. The projected costs for energy production in an ATS system are $ 0.75/kg, compared to a photobioreactor which would cost $ 3.50/kg. Furthermore, due to the fact that the primary purpose of ATS is removing nutrients and pollutants out of water, and these costs have been shown to be lower than other methods of nutrient removal, this may incentivize the use of this technology for nutrient removal as the primary function, with biofuel production as an added benefit.
950:
low-energy lights arranged in a helix pattern. Water temperature also influences the metabolic and reproductive rates of algae. Although most algae grow at low rate when the water temperature gets lower, the biomass of algal communities can get large due to the absence of grazing organisms. The modest increases in water current velocity may also affect rates of algae growth since the rate of nutrient uptake and boundary layer diffusion increases with current velocity.
1644:
methanol in 1992. The federal government also announced their renewable fuels strategy in 2006 which proposed four components: increasing availability of renewable fuels through regulation, supporting the expansion of Canadian production of renewable fuels, assisting farmers to seize new opportunities in this sector and accelerating the commercialization of new technologies. These mandates were quickly followed by the Canadian provinces:
1005:. As algae have a harvesting cycle of 1–10 days, their cultivation permits several harvests in a very short time-frame, a strategy differing from that associated with annual crops. In addition, algae can be grown on land unsuitable for terrestrial crops, including arid land and land with excessively saline soil, minimizing competition with agriculture. Most research on algae cultivation has focused on growing algae in clean but expensive 1497:
bio-active compounds. These chemicals and excess biomass have found numerous use in other industries. For example, the dyes and oils have found a place in cosmetics, commonly as thickening and water-binding agents. Discoveries within the pharmaceutical industry include antibiotics and antifungals derived from microalgae, as well as natural health products, which have been growing in popularity over the past few decades. For instance
1517:
normally hinder plant growth has been shown to be very effective in growing algae. Because of this, algae can be grown without taking up arable land that would otherwise be used for producing food crops, and the better resources can be reserved for normal crop production. Microalgae also require fewer resources to grow and little attention is needed, allowing the growth and cultivation of algae to be a very passive process.
990: 33: 7411: 1678: 590:. As the oxygen is present in crude oil at rather low levels, of the order of 0.5%, deoxygenation in petroleum refining is not of much concern, and no catalysts are specifically formulated for oxygenates hydrotreating. Hence, one of the critical technical challenges to make the hydrodeoxygenation of algae oil process economically feasible is related to the research and development of effective catalysts. 1692: 586:. While hydrotreating is currently the most common pathway to produce fuel-like hydrocarbons via decarboxylation/decarbonylation, there is an alternative process offering a number of important advantages over hydrotreating. In this regard, the work of Crocker et al. and Lercher et al. is particularly noteworthy. For oil refining, research is underway for catalytic conversion of 1118: 123:
are low in cost but vulnerable to environmental disturbances like temperature swings and biological invasions. 3,000 algal strains were collected from around the country and screened for desirable properties such as high productivity, lipid content, and thermal tolerance, and the most promising strains were included in the SERI microalgae collection at the
1593: 1437:
petroleum. The production of several products from algae has been mentioned as the most important factor for making algae production economically viable. Other factors are the improving of the solar energy to biomass conversion efficiency (currently 3%, but 5 to 7% is theoretically attainable)and making the oil extraction from the algae easier.
132:
at a cost that would be competitive with petroleum, especially as oil prices sank in the 1990s. Even in the best case scenario, it was estimated that unextracted algal oil would cost $ 59–186 per barrel, while petroleum cost less than $ 20 per barrel in 1995. Therefore, under budget pressure in 1996, the Aquatic Species Program was abandoned.
1327:, due to the ability for algal biofuels to be produced in a much more localized manner, and due to the lower toxicity overall, but the hazard is still there nonetheless. Therefore, algal biofuels should be treated in a similar manner to petroleum fuels in transportation and use, with sufficient safety measures in place at all times. 184:, state funding, and private funding, as well as in other countries. More recently, rising oil prices in the 2000s spurred a revival of interest in algal biofuels and US federal funding has increased, numerous research projects are being funded in Australia, New Zealand, Europe, the Middle East, and other parts of the world. 1643:
Numerous policies have been put in place since the 1975 oil crisis in order to promote the use of Renewable Fuels in the United States, Canada and Europe. In Canada, these included the implementation of excise taxes exempting propane and natural gas which was extended to ethanol made from biomass and
1436:
There is clearly a demand for sustainable biofuel production, but whether a particular biofuel will be used ultimately depends not on sustainability but cost efficiency. Therefore, research is focusing on cutting the cost of algal biofuel production to the point where it can compete with conventional
1084:
Open pond systems consist of simple in ground ponds, which are often mixed by a paddle wheel. These systems have low power requirements, operating costs, and capital costs when compared to closed loop photobioreactor systems. Nearly all commercial algae producers for high value algal products utilize
285:
As they do not have to produce structural compounds such as cellulose for leaves, stems, or roots, and because they can be grown floating in a rich nutritional medium, microalgae can have faster growth rates than terrestrial crops. Also, they can convert a much higher fraction of their biomass to oil
135:
Other contributions to algal biofuels research have come indirectly from projects focusing on different applications of algal cultures. For example, in the 1990s Japan's Research Institute of Innovative Technology for the Earth (RITE) implemented a research program with the goal of developing systems
122:
in 1978. The Aquatic Species Program spent $ 25 million over 18 years with the goal of developing liquid transportation fuel from algae that would be price competitive with petroleum-derived fuels. The research program focused on the cultivation of microalgae in open outdoor ponds, systems which
1565:
Algae biodiesel is still a fairly new technology. Despite the fact that research began over 30 years ago, it was put on hold during the mid-1990s, mainly due to a lack of funding and a relatively low petroleum cost. For the next few years algae biofuels saw little attention; it was not until the gas
1534:
Growing algae as a source of biofuel has also been shown to have numerous environmental benefits, and has presented itself as a much more environmentally friendly alternative to current biofuels. For one, it is able to utilize run-off, water contaminated with fertilizers and other nutrients that are
1474:
Whereas technical problems, such as harvesting, are being addressed successfully by the industry, the high up-front investment of algae-to-biofuels facilities is seen by many as a major obstacle to the success of this technology. Only few studies on the economic viability are publicly available, and
1418:
streams as an energy source. This opens a new strategy to produce biofuel in conjunction with waste water treatment, while being able to produce clean water as a byproduct. When used in a microalgal bioreactor, harvested microalgae will capture significant quantities of organic compounds as well as
1130:
After harvesting the algae, the biomass is typically processed in a series of steps, which can differ based on the species and desired product; this is an active area of research and also is the bottleneck of this technology: the cost of extraction is higher than those obtained. One of the solutions
966:
medium. These commercially available nutrient solutions may reduce time for preparing all the nutrients required to grow algae. However, due to their complexity in the process of generation and high cost, they are not used for large-scale culture operations. Therefore, enrichment media used for mass
953:
Other than light and water, phosphorus, nitrogen, and certain micronutrients are also useful and essential in growing algae. Nitrogen and phosphorus are the two most significant nutrients required for algal productivity, but other nutrients such as carbon and silica are additionally required. Of the
131:
may be necessary to be able to overcome this and other natural limitations of algal strains, and that the ideal species might vary with place and season. Although it was successfully demonstrated that large-scale production of algae for fuel in outdoor ponds was feasible, the program failed to do so
1525:
Many traditional feedstocks for biodiesel, such as corn and palm, are also used as feed for livestock on farms, as well as a valuable source of food for humans. Because of this, using them as biofuel reduces the amount of food available for both, resulting in an increased cost for both the food and
1516:
One of the main advantages that using microalgae as the feedstock when compared to more traditional crops is that it can be grown much more easily. Algae can be grown in land that would not be considered suitable for the growth of the regularly used crops. In addition to this, wastewater that would
1496:
Many of the byproducts produced in the processing of microalgae can be used in various applications, many of which have a longer history of production than algal biofuel. Some of the products not used in the production of biofuel include natural dyes and pigments, antioxidants, and other high-value
1470:
The IEA estimates that algal biomass can be produced for a little as $ 0.54/kg in open pond in a warm climate to $ 10.20/kg in photobioreactors in cooler climates. Assuming that the biomass contains 30% oil by weight, the cost of biomass for providing a liter of oil would be approximately $ 1.40 ($
1402:
from fossil fuels. Furthermore, compared to fuels like diesel and petroleum, and even compared to other sources of biofuels, the production and combustion of algal biofuel does not produce any sulfur oxides or nitrous oxides, and produces a reduced amount of carbon monoxide, unburned hydrocarbons,
526:
archaea to release a gas mixture containing methane. A number of studies have successfully shown that biomass from microalgae can be converted into biogas via anaerobic digestion. Therefore, in order to improve the overall energy balance of microalgae cultivation operations, it has been proposed to
296:
could be the only viable method by which to produce enough fuel to replace current world diesel usage. If algae-derived biodiesel were to replace the annual global production of 1.1bn tons of conventional diesel then a land mass of 57.3 million hectares would be required, which would be highly
187:
In March 2023, researchers said that the commercialization of biofuels would require several billion dollars of funding, plus a long-term dedication to overcoming what appear to be fundamental biological limitations of wild organisms. Most researchers believe that large scale production of biofuels
1657:
encourage wasteful consumption, reduce our energy security, impede investment in clean sources and undermine efforts to deal with the threat of climate change". If this commitment is followed through and subsidies are removed, a fairer market in which algae biofuels can compete will be created. In
1322:
In comparison with terrestrial-based biofuel crops such as corn or soybeans, microalgal production results in a much less significant land footprint due to the higher oil productivity from the microalgae than all other oil crops. Algae can also be grown on marginal lands useless for ordinary crops
1313:
The utilization of wastewater and ocean water instead of freshwater is strongly advocated due to the continuing depletion of freshwater resources. However, heavy metals, trace metals, and other contaminants in wastewater can decrease the ability of cells to produce lipids biosynthetically and also
1105:
is a system designed primarily for cleaning nutrients and pollutants out of water using algal turfs. An algal turf scrubber (ATS) mimics the algal turfs of a natural coral reef by taking in nutrient rich water from waste streams or natural water sources, and pulsing it over a sloped surface. This
958:
was analyzed to see which nutrient affects its growth the most. The concentrations of phosphorus (P), iron (Fe), cobalt (Co), zinc (Zn), manganese (Mn) and molybdenum (Mo), magnesium (Mg), calcium (Ca), silicon (Si) and sulfur (S) concentrations were measured daily using inductively coupled plasma
1652:
Policies in the United States have included a decrease in the subsidies provided by the federal and state governments to the oil industry which have usually included $ 2.84 billion. This is more than what is actually set aside for the biofuel industry. The measure was discussed at the G20 in
1278:
Nitrogen is a valuable substrate that can be utilized in algal growth. Various sources of nitrogen can be used as a nutrient for algae, with varying capacities. Nitrate was found to be the preferred source of nitrogen, in regards to amount of biomass grown. Urea is a readily available source that
1113:
There are three major advantages of ATS over other systems. The first advantage is documented higher productivity over open pond systems. The second is lower operating and fuel production costs. The third is the elimination of contamination issues due to the reliance on naturally occurring algae
486:
reaction at high temperature (typically 800 °C to 1000 °C). Gasification is usually performed with catalysts. Uncatalyzed gasification requires temperature to be about 1300 °C. Syngas can be burnt directly to produce energy or used a fuel in turbine engines. It can also be used as
5710:
Hector, A.; Schmid, B; Beierkuhnlein, C; Caldeira, M. C.; Diemer, M; Dimitrakopoulos, P. G.; Finn, J. A.; Freitas, H; Giller, P. S.; Good, J; Harris, R; Hogberg, P; Huss-Danell, K; Joshi, J; Jumpponen, A; Korner, C; Leadley, P. W.; Loreau, M; Minns, A; Mulder, C. P.; O'Donovan, G; Otway, S. J.;
1578:
The biodiesel produced from the processing of microalgae differs from other forms of biodiesel in the content of polyunsaturated fats. Polyunsaturated fats are known for their ability to retain fluidity at lower temperatures. While this may seem like an advantage in production during the colder
1569:
Increasing interest in seaweed farming for carbon sequestration, eutrophication reduction and production of food has resulted in the creation of commercial seaweed cultivation since 2017. Reductions in the cost of cultivation and harvesting as well as the development of commercial industry will
1427:
Nearly all research in algal biofuels has focused on culturing single species, or monocultures, of microalgae. However, ecological theory and empirical studies have demonstrated that plant and algae polycultures, i.e. groups of multiple species, tend to produce larger yields than monocultures.
114:
could be induced via nitrogen starvation to accumulate as much as 70% of its dry weight as lipids. Since the need for alternative transportation fuel had subsided after World War II, research at this time focused on culturing algae as a food source or, in some cases, for wastewater treatment.
1163:
Products include crude oil, which can be further refined into aviation fuel, gasoline, or diesel fuel using one or many upgrading processes. The test process converted between 50 and 70 percent of the algae's carbon into fuel. Other outputs include clean water, fuel gas and nutrients such as
949:
Light is what algae primarily need for growth as it is the most limiting factor. Many companies are investing for developing systems and technologies for providing artificial light. One of them is OriginOil that has developed a Helix BioReactorTM that features a rotating vertical shaft with
127:(SERI) in Golden, Colorado and used for further research. Among the program's most significant findings were that rapid growth and high lipid production were "mutually exclusive", since the former required high nutrients and the latter required low nutrients. The final report suggested that 1482:
and estimated that algae oil would only be competitive at an oil price of $ 800 per barrel. A study by Alabi et al. examined raceways, photobioreactors and anaerobic fermenters to make biofuels from algae and found that photobioreactors are too expensive to make biofuels. Raceways might be
959:(ICP) analysis. Among all these elements being measured, phosphorus resulted in the most dramatic decrease, with a reduction of 84% over the course of the culture. This result indicates that phosphorus, in the form of phosphate, is required in high amounts by all organisms for metabolism. 261:
Biodiesel is a diesel fuel derived from animal or plant lipids (oils and fats). Studies have shown that some species of algae can produce 60% or more of their dry weight in the form of oil. Because the cells grow in aqueous suspension, where they have more efficient access to water,
235:, or oily part of the algae biomass can be extracted and converted into biodiesel through a process similar to that used for any other vegetable oil, or converted in a refinery into "drop-in" replacements for petroleum-based fuels. Alternatively or following lipid extraction, the 1570:
improve the economics of macroalgae biofuels. Climate change has created a proliferation of brown macroalgae mats, which wash up on the shores of the Caribbean. Currently these mats are disposed of but there is interest in developing them into a feedstock for biofuel production.
286:
than conventional crops, e.g. 60% versus 2-3% for soybeans. The per unit area yield of oil from algae is estimated to be from 58,700 to 136,900 L/ha/year, depending on lipid content, which is 10 to 23 times as high as the next highest yielding crop, oil palm, at 5 950 L/ha/year.
676:. The preference for microalgae has come about due largely to their less complex structure, fast growth rates, and high oil-content (for some species). However, some research is being done into using seaweeds for biofuels, probably due to the high availability of this resource. 1403:
and reduced emission of other harmful pollutants. Since terrestrial plant sources of biofuel production simply do not have the production capacity to meet current energy requirements, microalgae may be one of the only options to approach complete replacement of fossil fuels.
160:
source, an important development for algal biofuel research. Other work focusing on harvesting hydrogen gas, methane, or ethanol from algae, as well as nutritional supplements and pharmaceutical compounds, has also helped inform research on biofuel production from algae.
335:. In most gasoline engines, butanol can be used in place of gasoline with no modifications. In several tests, butanol consumption is similar to that of gasoline, and when blended with gasoline, provides better performance and corrosion resistance than that of ethanol or 1075:
Running a PBR is more difficult than using an open pond, and costlier, but may provide a higher level of control and productivity. In addition, a photobioreactor can be integrated into a closed loop cogeneration system much more easily than ponds or other methods.
1131:
is to use filter feeders to "eat" them. Improved animals can provide both foods and fuels. An alternative method to extract the algae is to grow the algae with specific types of fungi. This causes bio-flocculation of the algae which allows for easier extraction.
97:
be grown as a source of lipids for food or fuel. Following World War II, research began in the US, Germany, Japan, England, and Israel on culturing techniques and engineering systems for growing microalgae on larger scales, particularly species in the genus
3143:
Eisenberg, D.M., W.J. Oswald, J.R. Benemann, R.P. Goebel, and T.T. Tiburzi. 1979. Methane fermentation of microalgae. In Anaerobic digestion, edited by D. A. Stafford, B. I. Wheatley and D. E. Hughes. London, United Kingdom: Applied Science Publishers
6021:
Cardinale, B. J.; Duffy, J. E.; Gonzalez, A.; Hooper, D. U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G. M.; Tilman, D.; Wardle, D. A.; Kinzig, A. P.; Daily, G. C.; Loreau, M.; Grace, J. B.; Larigauderie, A.; Srivastava, D. S.; Naeem, S. (2012).
3888: 2018:
Gummert F., M.E. Meffert, and H. Stratmann. 1953. Nonsterile large-scale culture of Chlorella in greenhouse and open air. In: Burlew J.S. (ed). Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, p.
1094: 4663:
Mackay, S.; Gomes, E.; Holliger, C.; Bauer, R.; Schwitzguébel, J.-P. (2015). "Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification".
1017:
The lack of equipment and structures needed to begin growing algae in large quantities has inhibited widespread mass-production of algae for biofuel production. Maximum use of existing agriculture processes and hardware is the goal.
1487:
demonstrated a new reaction and proposed a process for harvesting and extracting raw materials for biofuel and chemical production that requires a fraction of the energy of current methods, while extracting all cell constituents.
514:. In gasification and pyrolysis methods methane is extracted under high temperature and pressure. Anaerobic digestion is a straightforward method involved in decomposition of algae into simple components then transforming it into 2188:
Sheehan J., T. Dunahay, J. Benemann, P. Roessler. 1998. A look back at the U.S. Department of Energy's Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory: Golden, Colorado. NREL/TP-580-24190, p.
581:
engines. It has the same chemical properties as petroleum-based diesel meaning that it does not require new engines, pipelines or infrastructure to distribute and use. It has yet to be produced at a cost that is competitive with
6263:
Steiner, U. "Biofuels' cost explosion necessitates adaptation of process concepts. Algae as alternative raw materials. (slide presentation). Paper presented at the European White Biotechnology Summit, 21–22 May 2008, Frankfurt,
1548:
The process of microalgae cultivation is highly water-intensive. Life cycle studies estimated that the production of 1 liter of microalgae based biodiesel requires between 607 and 1944 liters of water. That said, abundant
1297:
from the treatment of sewage, agricultural, or flood plain run-off, all currently major pollutants and health risks. However, this waste water cannot feed algae directly and must first be processed by bacteria, through
3321: 5463:
Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F. X.; Van Langenhove, H. (2010). "Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions".
5373:
Acién Fernández, F. G.; González-López, C. V.; Fernández Sevilla, J. M.; Molina Grima, E. (2012). "Conversion of CO2 into biomass by microalgae: How realistic a contribution may it be to significant CO2 removal?".
5500: 4018:
Chen, Meng; Tang, Haiying; Ma, Hongzhi; Holland, Thomas C.; Ng, K. Y. Simon; Salley, Steven O. (1 January 2011). "Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta".
1143:
from the dried material. Then, the extracted compounds can be processed into fuel using standard industrial procedures. For example, the extracted triglycerides are reacted with methanol to create biodiesel via
5969:
Stockenreiter, M.; Haupt, F.; Graber, A. K.; Seppälä, J.; Spilling, K.; Tamminen, T.; Stibor, H. (2013). "Functional group richness: Implications of biodiversity for light use and lipid yield in microalgae".
2028:
Mituya A., T. Nyunoya, and H. Tamiya. 1953. Pre-pilot-plant experiments on algal mass culture. In: Burlew J.S. (ed). Algal culture: from labo- ratory to pilot plant. Carnegie Institution, Washington, DC, p.
4111:
Schenk, P. M.; Thomas-Hall, S. R.; Stephens, E.; Marx, U. C.; Mussgnug, J. H.; Posten, C.; Kruse, O.; Hankamer, B. (2008). "Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production".
4227: 2265:
Negoro, M.; Shioji, N.; Ikuta, Y.; Makita, T.; Uchiumi, M. (1992). "Growth characteristics of microalgae in high-concentration co2 gas, effects of culture medium trace components, and impurities thereon".
4892: 3885: 2680:
Atabani, A. E.; Silitonga, A. S.; Badruddin, I. A.; Mahlia, T. M. I.; Masjuki, H. H.; Mekhilef, S. (2012). "A comprehensive review on biodiesel as an alternative energy resource and its characteristics".
2935:
Mascal, M.; Dutta, S.; Gandarias, I. (2014). "Hydrodeoxygenation of the Angelica Lactone Dimer, a Cellulose-Based Feedstock: Simple, High-Yield Synthesis of Branched C7-C10Gasoline-like Hydrocarbons".
2050:, A.M. Mayer, and E. Gottesman. 1953. Experiments of culture of algae in Israel. In: Burlew J.S. (ed). Algal culture. From laboratory to pilot plant. Carnegie Institution, Washington, DC, p. 197–203. 5616:
Cardinale, B. J.; Srivastava, D. S.; Duffy, J. E.; Wright, J. P.; Downing, A. L.; Sankaran, M.; Jouseau, C. (2006). "Effects of biodiversity on the functioning of trophic groups and ecosystems".
1052:
To produce micro-algae at large-scale under controlled environment using PBR system, strategies such as light guides, sparger, and PBR construction materials required should be well considered.
3040:
Suganya, T.; Varman, M.; Masjuki, H.; Renganathan (2016). "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach".
1666:
The European Union (EU) has also responded by quadrupling the credits for second-generation algae biofuels which was established as an amendment to the Biofuels and Fuel Quality Directives
5533: 4919: 2905: 6080:
Stephens, E.; Ross, I.L.; Mussgnug, J.H.; Wagner, L.D.; Borowitzka, M.A.; Posten, C.; Kruse, O.; Hankamer, B. (October 2010). "Future prospects of microalgal biofuel production systems".
1148:. The unique composition of fatty acids of each species influences the quality of the resulting biodiesel and thus must be taken into account when selecting algal species for feedstock. 652:
devices, eliminating the need for traditional batteries such as lithium-ion batteries. The goal is to have more a environmentally friendly power source that can be used in remote areas.
2038:
Geoghegan M.J. 1953. Experiments with Chlorella at Jealott's Hill. In: Burlew J.S. (ed). Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, p. 182–189.
1021:
Closed systems (not exposed to open air) avoid the problem of contamination by other organisms blown in by the air. The problem of a closed system is finding a cheap source of sterile
181: 342:
The green waste left over from the algae oil extraction can be used to produce butanol. In addition, it has been shown that macroalgae (seaweeds) can be fermented by bacteria of genus
5899:
Steiner, C. F.; Long, Z.; Krumins, J.; Morin, P. (2005). "Temporal stability of aquatic food webs: partitioning the effects of species diversity, species composition and enrichment".
2341:
Scott D. Doughman; Srirama Krupanidhi; Carani B. Sanjeevi (2007). "Omega-3 Fatty Acids for Nutrition and Medicine: Considering Microalgae Oil as a Vegetarian Source of EPA and DHA".
573:' (also known as renewable diesel, hydrotreating vegetable oil or hydrogen-derived renewable diesel) through a hydrotreating refinery process that breaks molecules down into shorter 2009:
Burlew J.S. 1953. Current status of large-scale culture of algae. In: Burlew J.S. (ed). Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, p. 3–23.
5420:
Hemaiswarya, S.; Raja, R.; Carvalho, I. S.; Ravikumar, R.; Zambare, V.; Barh, D. (2012). "An Indian scenario on renewable and sustainable energy sources with emphasis on algae".
1160:
employs a continuous process that subjects harvested wet algae to high temperatures and pressures—350 °C (662 °F) and 3,000 pounds per square inch (21,000 kPa).
3318: 1302:. If waste water is not processed before it reaches the algae, it will contaminate the algae in the reactor, and at the very least, kill much of the desired algae strain. In 118:
Interest in the application of algae for biofuels was rekindled during the oil embargo and oil price surges of the 1970s, leading the US Department of Energy to initiate the
148:
using microalgae. Although the goal was not energy production, several studies produced by RITE demonstrated that algae could be grown using flue gas from power plants as a
164:
Following the disbanding of the Aquatic Species Program in 1996, there was a relative lull in algal biofuel research. Still, various projects were funded in the US by the
6311: 4791:
Elliott, D. C.; Hart, T. R.; Schmidt, A. J.; Neuenschwander, G. G.; Rotness, L. J.; Olarte, M. V.; Zacher, A. H.; Albrecht, K. O.; Hallen, R. T.; Holladay, J. E. (2013).
3966:"Chapter 1 - Introduction to Algae Biofuels - Selecting Algae Species, Algae Production Issues, Harvesting Algae and Extracting Oil, and Converting Algae Oil to Biofuels" 1310:, and organic fertilizer. Organic fertilizer that comes out of the digester is liquid, and nearly suitable for algae growth, but it must first be cleaned and sterilized. 5507: 1194:
and iron, as well as several trace elements, may also be considered important marine nutrients as the lack of one can limit the growth of, or productivity in, an area.
6763: 5276: 4406:"The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina" 3528: 1503:
contains numerous polyunsaturated fats (Omega 3 and 6), amino acids, and vitamins, as well as pigments that may be beneficial, such as beta-carotene and chlorophyll.
7288: 3205:
Rigoni-Stern, S.; Rismondo, R.; Szpyrkowicz, L.; Zilio-Grandi, F.; Vigato, P.A. (1990). "Anaerobic digestion of nitrophilic algal biomass from the Venice Lagoon".
4231: 4896: 1706: 282:
which could be sold for use in automobiles. Regional production of microalgae and processing into biofuels will provide economic benefits to rural communities.
1001:
Algae grow much faster than food crops, and can produce hundreds of times more oil per unit area than conventional crops such as rapeseed, palms, soybeans, or
1991:
Cook P.M. 1950. Large-scale culture of Chlorella. In: Brunel J., G.W. Prescott (eds) The culture of algae. Charles F. Kettering Foundation, Dayton, p. 53–77.
540: 2641: 1834:
Scott, S. A.; Davey, M. P.; Dennis, J. S.; Horst, I.; Howe, C. J.; Lea-Smith, D. J.; Smith, A. G. (2010). "Biodiesel from algae: Challenges and prospects".
1045:
from a smokestack works well for growing algae. For reasons of economy, some experts think that algae farming for biofuels will have to be done as part of
2752:
Shirvani, T.; Yan, X.; Inderwildi, O. R.; Edwards, P. P.; King, D. A. (2011). "Life cycle energy and greenhouse gas analysis for algae-derived biodiesel".
6719:
Orozco-González, Jorge Gabriel; Amador-Castro, Fernando; Gordillo-Sierra, Angela R.; García-Cayuela, Tomás; Alper, Hal S.; Carrillo-Nieves, Danay (2022).
5068:
Chong, A. M. Y.; Wong, Y. S.; Tam, N. F. Y. (2000). "Performance of different microalgal species in removing nickel and zinc from industrial wastewater".
679:
As of 2012 researchers across various locations worldwide have started investigating the following species for their suitability as a mass oil-producers:
6245: 6155: 6183:
Ghasemi, Y.; Rasoul-Amini, S.; Naseri, A. T.; Montazeri-Najafabady, N.; Mobasher, M. A.; Dabbagh, F. (2012). "Microalgae biofuel potentials (Review)".
4933:
Arumugam, M.; Agarwal, A.; Arya, M. C.; Ahmed, Z. (2013). "Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus".
3925:"Final Report - Extraction of Sugars from Algae for Direct Conversion to Butanol - Research Project Database - Grantee Research Project - ORD - US EPA" 7293: 6477:
Tokuşoglu, O.; Uunal, M. K. (2003). "Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana".
1467:
is the price of crude oil in dollars per barrel. This equation assumes that algal oil has roughly 80% of the caloric energy value of crude petroleum.
63:
as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from
4286: 3842: 5934:
Stockenreiter, M.; Graber, A. K.; Haupt, F.; Stibor, H. (2011). "The effect of species diversity on lipid production by micro-algal communities".
1792: 1754: 177: 5540: 5207:
Groom, M. J.; Gray, E. M.; Townsend, P. A. (2008). "Biofuels and Biodiversity: Principles for Creating Better Policies for Biofuel Production".
2913: 7445: 5348: 3907: 1718: 911: 4870: 3005:
Singh, Bhaskar; Guldhe, Abhishek; Bux, Faizal (2014). "Toward a sustainable approach for development of biodiesel from plant and microalgae".
2716: 6876: 6838: 6817: 6663: 2128: 6849: 5534:"Application of Algal Turf Scrubber Technique to remove nutrient from a eutrophic reservoir in the Jiulong River watershed, Southeast China" 7361: 3695: 967:
production of algae contain only the most important nutrients with agriculture-grade fertilizers rather than laboratory-grade fertilizers.
124: 1214:
through algal cultivation systems can greatly increase productivity and yield (up to a saturation point). Typically, about 1.8 tonnes of
6948: 976: 274:
and dissolved nutrients, microalgae are capable of producing large amounts of biomass and usable oil in either high rate algal ponds or
169: 5322: 2063:
Aach, H. G. (1952). "Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen".
1440:
In a 2007 report a formula was derived estimating the cost of algal oil in order for it to be a viable substitute to petroleum diesel:
5025:
Pittman, J. K.; Dean, A. P.; Osundeko, O. (2011). "The potential of sustainable algal biofuel production using wastewater resources".
4297: 1476: 612:
as early as 2008, although there is little evidence that using algae is a reasonable source for jet biofuels. By 2015, cultivation of
587: 555:
also have shown to be potentially suitable for ethanol production due to its capacity for accumulating large amount of carbohydrates.
165: 6503:
Vonshak, A. (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. London: Taylor & Francis, 1997.
3924: 1330:
Studies have determined that replacing fossil fuels with renewable energy sources, such as biofuels, have the capability of reducing
906:, (SOFT stands for Solar Oxygen Fuel Turbine), a closed-cycle power-generation system suitable for use in arid, subtropical regions. 2000:
Burlew J.S. (ed). 1953. Algae culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, p. 1–357.
1625: 648:, is a small container with water and blue green algae. The device does not generate a huge amount of power, but it can be used for 3501:
Lercher, Johannes A.; Brück, Thomas; Zhao, Chen (21 June 2013). "Catalytic deoxygenation of microalgae oil to green hydrocarbons".
2787: 1896: 6921: 6887: 2481: 1870: 7465: 5290: 4645: 4264: 2811:
Potts, T.; Du, J.; Paul, M.; May, P.; Beitle, R.; Hestekin, J. (2012). "The Production of Butanol from Jamaica Bay Macro Algae".
231:
Algae can be converted into various types of fuels, depending on the production technologies and the part of the cells used. The
5501:"Algae Based Water Treatment Systems – Cost-Effective Nutrient Pollution Control and for Point and Nonpoint Source Applications" 1228:
will be utilised per tonne of algal biomass (dry) produced, though this varies with algae species. The Glenturret Distillery in
962:
There are two enrichment media that have been extensively used to grow most species of algae: Walne medium and the Guillard's F/
5667:
Tilman, D.; Wedin, D.; Knops, J. (1996). "Productivity and sustainability influenced by biodiversity in grassland ecosystems".
4404:
Huesemann, M.; Williams, P.; Edmundson, Scott J.; Chen, P.; Kruk, R.; Cullinan, V.; Crowe, B.; Lundquist, T. (September 2017).
3755: 1787: 1769: 1607: 954:
nutrients required, phosphorus is one of the most essential ones as it is used in numerous metabolic processes. The microalgae
644:, initially powering the processor for six months, and then kept going for a full year. The device, which is about the size of 5711:
Pereira, J. S.; Prinz, A; Read, D. J.; Et, al (1999). "Plant Diversity and Productivity Experiments in European Grasslands".
4293: 3558:
Zhou, Lin (2015). "Evaluation of Presulfided NiMo/γ-Al2O3 for Hydrodeoxygenation of Microalgae Oil To Produce Green Diesel".
6760: 2226:
Negoro, M.; Shioji, N.; Miyamoto, K.; Micira, Y. (1991). "Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX".
3536: 1475:
must often rely on the little data (often only engineering estimates) available in the public domain. Dmitrov examined the
732:
The amount of oil each strain of algae produces varies widely. Note the following microalgae and their various oil yields:
4259: 2648: 1288: 85:
Algal fuels boast high yields, a high ignition point, and can be cultivated with minimal impact on freshwater resources.
7045: 6318: 2627: 1764: 824: 7308: 5754:
Ptacnik, R.; Solimini, A. G.; Andersen, T.; Tamminen, T.; Brettum, P.; Lepisto, L.; Willen, E.; Rekolainen, S. (2008).
5565:
Downing, A. L.; Leibold, M. A. (2002). "Ecosystem consequences of species richness and composition in pond food webs".
5114:
Smith, V. H.; Sturm, B. S. M.; Denoyelles, F. J.; Billings, S. A. (2010). "The ecology of algal biodiesel production".
3624: 7455: 7391: 7381: 173: 6721:"Opportunities Surrounding the Use of Sargassum Biomass as Precursor of Biogas, Bioethanol, and Biodiesel Production" 4978:"RNA Interference Silencing of a Major Lipid Droplet Protein Affects Lipid Droplet Size in Chlamydomonas reinhardtii" 3737: 1579:
temperatures of the winter, the polyunsaturated fats result in lower stability during regular seasonal temperatures.
6809:
Biofuels for Transport: Global Potential and Implications for Sustainable Agriculture and Energy in the 21st century
6421:
Singh, S.; Kate, B.N.; Banerjee, U.C. (2005). "Bioactive Compounds from Cyanobacteria and Microalgae: An Overview".
3965: 2970:
Amaro, Helena; Macedo, Angela; Malcata, F. (2012). "Microalgae: An alternative as sustainable source of biofuels?".
1246:
made during the whisky distillation through a microalgae bioreactor. Each tonne of microalgae absorbs two tonnes of
6782: 4779: 570: 434: 7450: 7366: 7244: 4594: 4330: 2652: 1954:
Harder, R.; von Witsch, H. (1942). "Bericht über versuche zur fettsynthese mittels autotropher microorganismen".
1157: 1107: 848: 4834:"A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels" 4167: 3990: 1139:
Often, the algae is dehydrated, and then a solvent such as hexane is used to extract energy-rich compounds like
7460: 7340: 7313: 1807: 1173: 888: 544: 5161: 3075:
Trivedi, Jayati; Aila, Mounika; Bangwal, D.; Garg, M. (2015). "Algae based biorefinery – How to make sense?".
761: 6249: 4360:
Johnson, Tylor J.; Katuwal, Sarmila; Anderson, Gary A.; Ruanbao Zhou, Liping Gu; Gibbons, William R. (2018).
3232:
Samson, R. J.; Leduyt, A. (1986). "Detailed study of anaerobic digestion of Spirulina maxima algal biomass".
527:
recover the energy contained in waste biomass via anaerobic digestion to methane for generating electricity.
7435: 6941: 4461:
Benemann, John; Woertz, Ian; Lundquist, Tryg (2012). "Life Cycle Assessment for Microalgae Oil Production".
2723: 2510: 1712: 1683: 1566:
peak of the early 2000s that it eventually had a revitalization in the search for alternative fuel sources.
981: 832: 637: 613: 366: 289: 119: 7298: 6694: 1557:, which also contain various nutrients, can theoretically be used for this purpose instead of freshwater. 793: 777: 712: 698: 4301: 1484: 6643: 4716: 4620: 3834: 3795: 3275:
Yen, H.; Brune, D. (2007). "Anaerobic co-digestion of algal sludge and waste paper to produce methane".
2151: 1654: 552: 212: 110: 6141: 7440: 7074: 6803: 6529: 6463:
Sporalore, P., C.Joannis-Cassan, E. Duran, and A. Isambert, "Commercial Applications of Microalgae",
6284: 6089: 6038: 5979: 5908: 5865: 5822: 5767: 5676: 5625: 5574: 5216: 5123: 5077: 5034: 4942: 4806: 4728: 4673: 4417: 4334: 4182: 4121: 4028: 3388: 3284: 3084: 3049: 3014: 2979: 2820: 2690: 2072: 745: 684: 564: 399: 216: 105: 5813:
McGrady-Steed, J.; Harris, P.; Morin, P. (1997). "Biodiversity regulates ecosystem predictability".
4793:"Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor" 3904: 3586: 1258:. Scottish Bioenergy, who run the project, sell the microalgae as high value, protein-rich food for 7396: 4866: 2727: 1299: 1267: 1145: 880: 511: 349: 208: 204: 128: 6343:
Teixeira, R. E. (2012). "Energy-efficient extraction of fuel and chemical feedstocks from algae".
5259: 3669: 7414: 7215: 7040: 7028: 6934: 6669: 6624: 6589: 6446: 6403: 6360: 6208: 6062: 6003: 5951: 5881: 5838: 5736: 5692: 5649: 5598: 5445: 5399: 5240: 4208: 4137: 4060: 3587:"Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts" 3257: 2836: 2769: 2609: 2562: 2366: 2323: 2279: 2247: 2088: 1748: 1736: 649: 354: 200: 3703: 2386:"Algal-Oil Capsules and Cooked Salmon: Nutritionally Equivalent Sources of Docosahexaenoic Acid" 2385: 1602:
may contain an excessive amount of intricate detail that may interest only a particular audience
6911: 5756:"Diversity predicts stability and resource use efficiency in natural phytoplankton communities" 4717:"Comparative life cycle assessment of biodiesel from algae and jatropha: A case study of India" 664:(organisms capable of photosynthesis that are less than 0.4 mm in diameter, including the 7335: 7227: 6872: 6834: 6813: 6742: 6659: 6581: 6438: 6395: 6200: 6105: 6054: 6023: 5995: 5795: 5728: 5641: 5590: 5481: 5437: 5391: 5270: 5232: 5139: 5093: 5050: 5007: 4958: 4744: 4697: 4689: 4621:"A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae" 4443: 4435: 4383: 4052: 4044: 3300: 3249: 3187: 2952: 2601: 2554: 2463: 2405: 2358: 2239: 2124: 1904: 1851: 1727: 1498: 925: 640:
announced they created an algae energy harvester, that uses natural sunlight to power a small
483: 471: 6520:
Demirbas, A.; Fatih Demirbas, M. (2011). "Importance of algae oil as a source of biodiesel".
6246:"Microalgae Technologies and Processes for Biofuels/Bioenergy Production in British Columbia" 5183: 2628:"Mechanical CO2 sequestration improves algae production - Chemical Engineering | Page 1" 7267: 7178: 7018: 6732: 6651: 6616: 6571: 6537: 6486: 6430: 6387: 6352: 6292: 6192: 6097: 6046: 5987: 5943: 5916: 5873: 5830: 5785: 5775: 5720: 5684: 5633: 5582: 5473: 5429: 5383: 5326: 5224: 5131: 5085: 5042: 4997: 4989: 4950: 4845: 4814: 4736: 4681: 4573: 4470: 4425: 4373: 4198: 4190: 4129: 4036: 3598: 3567: 3510: 3481: 3396: 3350: 3292: 3241: 3214: 3177: 3167: 3092: 3057: 3022: 2987: 2944: 2867: 2828: 2761: 2698: 2593: 2546: 2453: 2443: 2397: 2350: 2315: 2271: 2231: 2208: 2157:. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program 2116: 2080: 1843: 1263: 931: 599: 406: 392: 56: 4562:"Algal Turf Scrubbing: Cleaning Surface Waters with Solar Energy while Producing a Biofuel" 3647: 2856:"Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass" 7376: 7238: 7188: 7100: 6786: 6767: 3911: 3892: 3808: 3325: 3110: 2047: 1759: 1479: 1069: 1006: 817: 609: 275: 4528:
Algal Turf Scrubbers: Cleaning Water while Capturing Solar Energy for Bio fuel Production
6533: 6288: 6275:
Radmer, R.J. (1994). "Commercial applications of algae: opportunities and constraints".
6093: 6042: 5983: 5912: 5869: 5826: 5771: 5680: 5629: 5578: 5220: 5127: 5081: 5038: 4946: 4810: 4732: 4677: 4421: 4186: 4125: 4032: 3392: 3288: 3088: 3053: 3018: 2983: 2887: 2824: 2794: 2694: 2076: 6655: 6490: 5790: 5755: 5002: 4977: 4797: 3417: 3182: 3155: 2485: 2458: 2431: 1892: 1102: 989: 864: 737: 641: 463: 379:
The following species are being investigated as suitable species from which to produce
324: 32: 5297: 5089: 4254: 82:, the last large oil company to invest in algae biofuels, ended its research funding. 7429: 7386: 7052: 6906: 6673: 6007: 5920: 5228: 4534:. Proceedings of the Fourth Environmental Physics Conference (EPC'10). pp. 19–23 3787: 3218: 2773: 2550: 2432:"Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish?" 2212: 1781: 1697: 1342:
emissions by up to 80%. An algae-based system could capture approximately 80% of the
669: 522:
like acidogenic bacteria followed by removing any solid particles and finally adding
332: 6628: 6450: 6407: 6364: 6212: 5955: 5449: 5403: 5244: 4212: 4083: 4064: 3821: 3762: 3261: 2840: 2613: 2566: 2370: 2327: 2283: 2251: 7328: 7198: 7035: 6993: 6973: 6593: 6541: 6228:"GreenFuel Technologies: A Case Study for Industrial Photosynthetic Energy Capture" 6066: 5885: 5842: 5740: 5696: 5653: 5602: 5046: 4954: 4740: 4685: 4489: 4141: 4040: 3864: 3440: 3339:"Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum" 3296: 2092: 1324: 1140: 1046: 994: 872: 809: 523: 503: 360: 328: 306: 292:, 1978–1996, focused on biodiesel from microalgae. The final report suggested that 244: 236: 6378:
Pulz, O.; Gross, W. (2004). "Valuable Products from Biotechnology of Microalgae".
6101: 5724: 5477: 17: 6866: 2991: 2110: 1847: 1110:
process, which would make possible biodiesel, gasoline, and jet fuel production.
7371: 7323: 7318: 7303: 7111: 7089: 7062: 7023: 7008: 6983: 6227: 4818: 4430: 4405: 3376: 2120: 1798: 1677: 1378:
would have entered the atmosphere regardless. The possibility of reducing total
1117: 944: 898: 856: 770: 578: 574: 515: 499: 418: 320: 5760:
Proceedings of the National Academy of Sciences of the United States of America
5135: 4526: 4508:"最新のF-01α 歌舞伎モデル一覧製品は今、人気のUT通販サイトで探す。新作のその他, イベント&特集続々入荷!お買い物マラソンはこちらへ!全品送料無料!" 4490:"A Realistic Technology and Engineering Assessment of Algae Biofuel Production" 4194: 3942: 3400: 3172: 3131: 3096: 3061: 3026: 2702: 2401: 2354: 7262: 7232: 7168: 7013: 6737: 6720: 6620: 6576: 6559: 6434: 6391: 6196: 5947: 5433: 5387: 4773: 4133: 3486: 3465: 3355: 3338: 2597: 1742: 1673: 1550: 1294: 1229: 1183: 1065: 801: 785: 705: 661: 645: 344: 240: 197: 94: 79: 6746: 4693: 4439: 4048: 3319:
A realistic technology and engineering assessment of algae biofuel production
3317:
Lundquist, T.J., I.C. Woertz, N.W.T. Quinn, and J.R. Benemann, October 2010,
1908: 1897:"Big oil firms touted algae as climate solution. Now all have pulled funding" 1406:
Microalgae production also includes the ability to use saline waste or waste
1306:
facilities, organic waste is often converted to a mixture of carbon dioxide,
7356: 7272: 7173: 6998: 6957: 6642:
Pishvaee, Mir Saman; Mohseni, Shayan; Bairamzadeh, Samira (1 January 2021),
5780: 4578: 4561: 3648:"Jet Fuel from Algae? Scientists probe fuel potential in common ocean plant" 3616: 1775: 1691: 1187: 1093: 1009:, or in open ponds, which are cheap to maintain but prone to contamination. 840: 766: 753: 720: 691: 625: 605: 583: 507: 293: 279: 256: 100: 6585: 6442: 6399: 6204: 6109: 6058: 5999: 5799: 5732: 5645: 5594: 5485: 5441: 5395: 5236: 5143: 5097: 5054: 5011: 4962: 4893:"Accelerating the uptake of CCS: Industrial use of captured carbon dioxide" 4748: 4701: 4619:
Sheehan, John; Dunahay, Terri; Benemann, John; Roessler, Paul (July 1998).
4387: 4056: 3725:
Seaweed Biofuels: Production of Biogas and Bioethanol from Brown Macroalgae
3304: 3253: 3191: 2956: 2948: 2605: 2558: 2467: 2409: 2362: 1855: 1190:(K), are important for plant growth and are essential parts of fertilizer. 5349:"Large Volume Ethanol Spills – Environmental Impacts and Response Options" 4764:{{cite web utes in the lab |publisher=Gizmag.com |access-date=2013-12-31}} 4474: 4203: 3741: 3245: 2580:
Banerjee, Anirban; Sharma, Rohit; Chisti, Yusuf; Banerjee, U. C. (2002). "
2243: 7256: 7221: 7146: 7136: 7079: 5856:
Naeem, S.; Li, S. (1997). "Biodiversity enhances ecosystem reliability".
4362:"Photobioreactor cultivation strategies for microalgae and cyanobacteria" 1554: 1366:
will later be released into the atmosphere when the fuel is burned, this
1179: 1061: 1002: 617: 519: 475: 430: 37: 6779: 6609:
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
6050: 5637: 4993: 4228:"Will algae beat its competitors to become the king source of biofuels?" 2854:
Milledge, John; Smith, Benjamin; Dyer, Philip; Harvey, Patricia (2014).
1097:
2.5 acre ATS system, installed by Hydromentia on a farm creek in Florida
7163: 7157: 7106: 6988: 6965: 6356: 6296: 5202: 5200: 4287:"Growth Rates of Emission-Fed Algae Show Viability of New Biomass Crop" 3724: 3602: 3514: 2765: 2509:
Tornabene, et al. (1983), Lipid composition of nitrogen starved, green
2275: 2235: 2199:
Michiki, H. (1995). "Biological CO2 fixation and utilization project".
2084: 1307: 1259: 673: 536: 495: 452: 422: 384: 380: 64: 5991: 5539:. International Summer Water Resources Research School. Archived from 4850: 4833: 4447: 4378: 4361: 4338: 4168:"Microalgae for biodiesel production and other applications: A review" 3571: 2872: 2855: 2448: 1354:
emitted from a power plant when sunlight is available. Although this
551:, Mexico utilizes seawater and industrial exhaust to produce ethanol. 352:
of seaweed oil (into biodiesel) is also possible with species such as
7209: 7141: 7057: 7003: 6807: 6648:
Biomass to Biofuel Supply Chain Design and Planning Under Uncertainty
5688: 4920:"Forget palm oil and soya, microalgae is the next big biofuel source" 2832: 2109:
Borowitzka, M. A. (2013). "Energy from Microalgae: A Short History".
1973:
Harder, R.; von Witsch, H. (1942). "Die massenkultur von diatomeen".
1303: 1191: 665: 660:
Research into algae for the mass-production of oil focuses mainly on
548: 479: 446: 426: 316: 220: 5586: 4792: 4507: 2319: 2303: 6916: 4560:
Adey, Walter H.; Kangas, Patrick C.; Mulbry, Walter (1 June 2011).
4488:
Lundquist, T.; Woertz, I.; Quinn, N.; Benemann, J. (October 2010).
1715: – Manufacturing by chemical reactions of biological organisms 7183: 7126: 7116: 7069: 5877: 5834: 4331:"Better Than Corn? Algae Set to Beat Out Other Biofuel Feedstocks" 1116: 1092: 1049:, where it can make use of waste heat and help soak up pollution. 988: 980: 312: 232: 60: 31: 3670:"Algae energy harvester powers electronics for a year on its own" 2104: 2102: 1829: 1827: 1825: 1064:-rich water through plastic or borosilicate glass tubes (called " 7151: 7121: 6828: 6607:
Demirbaş, A. (2008). "Production of Biodiesel from Algae Oils".
4555: 4553: 4551: 4549: 2675: 2673: 1795: – Scottish oceanographic society and research organization 372: 6930: 4832:
Ramirez, Jerome; Brown, Richard; Rainey, Thomas (1 July 2015).
4106: 4104: 3886:
Seaweed Ulva Photosynthesis and Zero Emissions Power Generation
3788:"Selection of Optimal Microalgae Species for CO2 Sequestration" 3696:"Seaweed to breathe new life into fight against global warming" 425:. Like traditionally produced gasoline, it contains between 6 ( 7131: 6560:"Biodiesel production—current state of the art and challenges" 1606:
Please help by removing excessive detail that may be against
1586: 1233: 1215: 336: 5162:"Algae-Based Fuels Set to Bloom | MIT Technology Review" 1390:
emissions therefore lies in the prevention of the release of
1262:. In the future, they will use the algae residues to produce 93:
In 1942 Harder and Von Witsch were the first to propose that
6926: 6780:
European biofuels technology platform. R&D&D funding
2584:: A Renewable Source of Hydrocarbons and Other Chemicals". 2532: 2530: 2528: 2526: 2524: 2522: 2520: 2518: 2304:"The promise and challenges of microalgal-derived biofuels" 1751: – Method of carbon capture from carbon dioxide in air 1060:
Most companies pursuing algae as a source of biofuels pump
6922:
Current Status and Potential for Algal Biofuels Production
6889:
Current status and potential for algal biofuels production
4595:"Whole Algae Hydrothermal Liquefaction Technology Pathway" 1872:
Current status and potential for algal biofuels production
1778: – Branch of botany concerned with the study of algae 1463:
is the price of microalgal oil in dollars per gallon and C
6865:
Bhatnagar, S.K.; Atul Saxena; Stefan Kraan, eds. (2011).
4626:. U.S. Department of Energy's Office of Fuels Development 2430:
Lenihan-Geels, G; Bishop, K. S.; Ferguson, L. R. (2013).
188:
is either "a decade, and more likely two decades, away."
6912:
A Sober Look at Biofuels from Algae (Biodiesel Magazine)
6907:
A Report on Commercial Usage and Production of Algal Oil
6553: 6551: 5415: 5413: 2184: 2182: 2180: 2178: 2176: 2174: 2172: 2058: 2056: 502:, can be produced from algae by various methods, namely 327:
10% less than gasoline, and greater than that of either
4593:
Biddy, Mary; Davis, Ryan; Jones, Susanne; Zhu, Yunhua.
4166:
Mata, T. M.; Martins, A. N. A.; Caetano, N. S. (2010).
3824:. Ecogenicsresearchcenter.org. Retrieved 15 April 2012. 3470:
Recycling Using Microalgae for the Production of Fuels"
2146: 2144: 2142: 2140: 1929: 1732:
Pages displaying short descriptions of redirect targets
1723:
Pages displaying short descriptions of redirect targets
290:
The U.S. Department of Energy's Aquatic Species Program
6564:
Journal of Industrial Microbiology & Biotechnology
6312:"Algae biofuels challenge- frequently asked questions" 2726:, National Renewable Energy Laboratory. Archived from 6515: 6513: 6511: 6509: 6248:. British Columbia Innovation Council. Archived from 2906:"From the Sea to the Pump: Is Kelp a Viable Biofuel?" 1784: – Autotrophic members of the plankton ecosystem 1730: – Rate of human-caused greenhouse gas emissions 604:
Trials of using algae as biofuel were carried out by
6917:
US National Renewable Energy Laboratory Publications
6283:(2). Journal of Applied Phycology, 6(2), 93–98: 93. 3134:. Oilgae (2 December 2009). Retrieved 15 April 2012. 2297: 2295: 2293: 1803:
Pages displaying wikidata descriptions as a fallback
7349: 7281: 7197: 7088: 6964: 6644:"Chapter 4 - Uncertainties in biofuel supply chain" 6140:Organization of the Petroleum Exporting Countries: 1801: – a seaweed company based in Bangalore, India 219:. Its DHA content is roughly equivalent to that of 4161: 4159: 4157: 4155: 4153: 4151: 3154:Golueke, C.G.; Oswald, W.J.; Gotaas, H.B. (1957). 2505: 2503: 1653:Pittsburgh where leaders agreed that "inefficient 1121:Algae being harvested and dried from an ATS system 6886:Darzins, Al; Pienkos, Philip; Edye, Les (2010). 2537:Chisti, Y. (2007). "Biodiesel from microalgae". 1869:Darzins, Al; Pienkos, Philip; Edye, Les (2010). 1068:" ) that are exposed to sunlight (and so-called 7289:Bioconversion of biomass to mixed alcohol fuels 6850:"Salt Water: The Tangy Taste of Energy Freedom" 3464:Crocker, Mark H.; et al. (21 March 2015). 1975:Berichte der Deutschen Botanischen Gesellschaft 902:has been investigated as a fuel for use in the 624:, was under research as a possible jet biofuel 433:) carbon atoms per molecule and can be used in 6156:"State of Technology Review - Algae Bioenergy" 6024:"Biodiversity loss and its impact on humanity" 5155: 5153: 5109: 5107: 3943:"Ethanol from Algae - Oilgae - Oil from Algae" 3646:Reddy, Chris; O'Neil, Greg (28 January 2015). 3377:"Biodiesel and renewable diesel: A comparison" 2642:"Microalgal Production SARDI AQUATIC SCIENCES" 2482:"Biofuels from industrial/domestic wastewater" 1721: – Hydrogen that is produced biologically 6942: 6871:. New Delhi: Studium Press (India) Pvt. Ltd. 4324: 4322: 2813:Environmental Progress and Sustainable Energy 8: 6244:Alabi, Yomi; et al. (14 January 2009). 5296:. OECD SIDS. 9 November 2001. Archived from 5275:: CS1 maint: multiple names: authors list ( 4255:"Algae – Like a Breath Mint for Smokestacks" 3132:Methane from algae – Oilgae – Oil from Algae 2390:Journal of the American Dietetic Association 2152:"National Algal Biofuels Technology Roadmap" 27:Use of algae as a source of energy-rich oils 6122:Note that for biofuel crops it is only 0,5% 6949: 6935: 6927: 4760: 4758: 4582:– via bioscience.oxfordjournals.org. 3895:. Pennenergy.com. Retrieved 15 April 2012. 1810: – Process for breaking-down polymers 896:In addition, due to its high growth-rate, 487:feedstock for other chemical productions. 7294:Bioenergy with carbon capture and storage 6736: 6575: 5789: 5779: 5001: 4849: 4577: 4429: 4377: 4202: 3485: 3381:Progress in Energy and Combustion Science 3354: 3181: 3171: 2871: 2457: 2447: 1626:Learn how and when to remove this message 6465:Journal of Bioscience and Bioengineering 5499:Mark J. Zivojnovich (16 February 2010). 4230:. Environmental Graffiti. Archived from 4175:Renewable and Sustainable Energy Reviews 3412: 3410: 3370: 3368: 3366: 3077:Renewable and Sustainable Energy Reviews 3042:Renewable and Sustainable Energy Reviews 3007:Renewable and Sustainable Energy Reviews 2683:Renewable and Sustainable Energy Reviews 1772: – Extracting energy from the ocean 539:system which is being commercialized by 458: 4976:Moellering, E. R.; Benning, C. (2009). 2937:Angewandte Chemie International Edition 1821: 1793:Scottish Association for Marine Science 1755:International Renewable Energy Alliance 1745: – Toxin produced by cyanobacteria 1033:. Several experimenters have found the 239:content of algae can be fermented into 6695:"Seaweed Aquaculture | NOAA Fisheries" 6380:Applied Microbiology and Biotechnology 5422:Applied Microbiology and Biotechnology 5376:Applied Microbiology and Biotechnology 5268: 4895:. Global CCS Institute. Archived from 4600:. National Renewable Energy Laboratory 4267:from the original on 14 September 2008 3804: 3793: 3727:. Amazon.com. Retrieved 15 April 2012. 3441:"Fast Pyrolysis and Bio-Oil Upgrading" 3160:Applied and Environmental Microbiology 2268:Applied Biochemistry and Biotechnology 2228:Applied Biochemistry and Biotechnology 1719:Biological hydrogen production (algae) 912:Clostridium saccharoperbutylacetonicum 297:favorable compared to other biofuels. 6693:Fisheries, NOAA (28 September 2020). 6558:Vasudevan, P. T.; Briggs, M. (2008). 6185:Applied Biochemistry and Microbiology 5258:EPA, OSWER, OEM, US (13 March 2013). 4525:Jeffrey Bannon, J.; Adey, W. (2008). 4399: 4397: 4078: 4076: 4074: 4013: 4011: 3960: 3958: 3956: 3627:from the original on 29 February 2008 2308:Biofuels, Bioproducts and Biorefining 1930:"View source for Biofuel - Knowledge" 1164:nitrogen, phosphorus, and potassium. 724:, with 10 times the output volume of 7: 7362:Cellulosic ethanol commercialization 4865:Anderson, Genny (18 December 2004). 2302:Pienkos, P. T.; Darzins, A. (2009). 1887: 1885: 1707:Acetone–butanol–ethanol fermentation 672:) as opposed to macroalgae, such as 6827:McKay, David JC (3 November 2008). 4300:. 26 September 2008. Archived from 3905:Toward a live sea near the dead one 3835:"Algae eyed as biofuel alternative" 3617:"First biofuel flight touches down" 3439:Brown, Robert; Holmgren, Jennifer. 977:Culture of microalgae in hatcheries 278:. This oil can then be turned into 6830:Sustainable Energy-Without Hot Air 6656:10.1016/b978-0-12-820640-9.00004-0 6650:, Academic Press, pp. 65–93, 6491:10.1111/j.1365-2621.2003.tb09615.x 6154:Laurens, Lieve (31 January 2017). 5532:Dixner, Charlotta (20 July 2013). 5323:"RFA: Renewable Fuels Association" 4918:Aylott, Matthew (September 2010). 4298:GreenFuel Technologies Corporation 3914:. (PDF) . Retrieved 15 April 2012. 3591:Catalysis Science & Technology 3418:"Alternative & Advanced Fuels" 3337:Razaghi, Ali (21 September 2013). 2754:Energy & Environmental Science 588:renewable fuels by decarboxylation 57:alternative to liquid fossil fuels 25: 6423:Critical Reviews in Biotechnology 5291:"n-Butyl Alcohol CAS N°: 71-36-3" 5160:Bullis, Kevin (5 February 2007). 5116:Trends in Ecology & Evolution 4873:from the original on 10 June 2008 4463:Disruptive Science and Technology 4253:Clayton, Mark (11 January 2006). 3845:from the original on 24 July 2008 2717:"Biodiesel Production from Algae" 2586:Critical Reviews in Biotechnology 203:in food products, as it contains 196:Algal oil is used as a source of 7410: 7409: 6522:Energy Conversion and Management 5921:10.1111/j.1461-0248.2005.00785.x 5229:10.1111/j.1523-1739.2007.00879.x 3234:Biotechnology and Bioengineering 2551:10.1016/j.biotechadv.2007.02.001 2201:Energy Conversion and Management 1836:Current Opinion in Biotechnology 1739: – Renewable energy company 1690: 1676: 1591: 985:Photobioreactor from glass tubes 67:(macroalgae) it can be known as 6770:- 2009 Pittsburgh Summit. 2009. 6226:Dmitrov, Krassen (March 2007). 4329:Herro, Alana (8 October 2007). 3668:Irving, Michael (14 May 2022). 1788:Residual sodium carbonate index 1770:Ocean thermal energy conversion 1156:An alternative approach called 997:commonly used for algal culture 348:to butanol and other solvents. 125:Solar Energy Research Institute 6542:10.1016/j.enconman.2010.06.055 5047:10.1016/j.biortech.2010.06.035 4955:10.1016/j.biortech.2012.12.159 4741:10.1016/j.biortech.2013.09.118 4686:10.1016/j.biortech.2015.03.026 4294:Arizona Public Service Company 4041:10.1016/j.biortech.2010.09.062 3474:Applied Petrochemical Research 3297:10.1016/j.biortech.2005.11.010 3156:"Anaerobic digestion of algae" 2912:. 14 June 2013. Archived from 1293:A possible nutrient source is 569:Algae can be used to produce ' 1: 7446:High lipid content microalgae 6102:10.1016/j.tplants.2010.06.003 5725:10.1126/science.286.5442.1123 5478:10.1016/j.tibtech.2010.04.004 5090:10.1016/S0045-6535(99)00418-X 4260:The Christian Science Monitor 3529:"ACS Presentations on Demand" 3113:. FAO, Agriculture Department 2649:Government of South Australia 2112:Algae for Biofuels and Energy 1289:Wastewater treatment facility 451:Biogas is composed mainly of 6833:. 3.5.2. UIT Cambridge Ltd. 6277:Journal of Applied Phycology 5936:Journal of Applied Phycology 4494:Energy Biosciences Institute 3219:10.1016/0144-4565(90)90058-r 2992:10.1016/j.energy.2012.05.006 2910:www.renewableenergyworld.com 2213:10.1016/0196-8904(95)00102-J 1848:10.1016/j.copbio.2010.03.005 1765:List of algal fuel producers 1608:Knowledge's inclusion policy 825:Nannochloropsis and biofuels 632:Algae-based energy harvester 7392:Issues relating to biofuels 7382:Energy return on investment 6848:Lane, Jim (18 April 2010). 6725:Frontiers in Marine Science 4819:10.1016/j.algal.2013.08.005 4431:10.1016/j.algal.2017.06.017 4226:Maryking (29 August 2007). 2384:Arterburn, LM (July 2008). 2121:10.1007/978-94-007-5479-9_1 1956:Forschungsdienst Sonderheft 939:Nutrients and growth inputs 909:Other species used include 636:In May 2022, scientists at 435:internal-combustion engines 319:using only a solar powered 174:National Science Foundation 36:A conical flask of "green" 7482: 6789:(accessed 28 January 2013) 6310:Carbon Trust (UK) (2008). 5136:10.1016/j.tree.2009.11.007 4195:10.1016/j.rser.2009.07.020 3694:Lewis, Leo (14 May 2005). 3401:10.1016/j.pecs.2009.11.004 3173:10.1128/AEM.5.1.47-55.1957 3097:10.1016/j.rser.2015.03.052 3062:10.1016/j.rser.2015.11.026 3027:10.1016/j.rser.2013.08.067 2703:10.1016/j.rser.2012.01.003 2402:10.1016/j.jada.2008.04.020 2355:10.2174/157339907781368968 1286: 1171: 974: 942: 597: 562: 498:, the main constituent of 444: 421:is gasoline produced from 304: 254: 7405: 7367:Energy content of biofuel 6738:10.3389/fmars.2021.791054 6621:10.1080/15567030701521775 6577:10.1007/s10295-008-0312-2 6435:10.1080/07388550500248498 6392:10.1007/s00253-004-1647-x 6197:10.1134/S0003683812020068 5948:10.1007/s10811-010-9644-1 5434:10.1007/s00253-012-4487-0 5388:10.1007/s00253-012-4362-z 4512:www.algalturfscrubber.com 4134:10.1007/s12155-008-9008-8 3487:10.1007/s13203-014-0052-3 3420:. US Department of Energy 3356:10.2478/s11535-013-0248-z 2598:10.1080/07388550290789513 1158:Hydrothermal liquefaction 1152:Hydrothermal liquefaction 1108:hydrothermal liquefaction 849:Phaeodactylum tricornutum 311:Butanol can be made from 178:Department of Agriculture 7341:Thermal depolymerization 7314:Industrial biotechnology 6895:. IEA Bioenergy Task 39. 6852:. Renewable Energy World 6144:. (accessed 01/29, 2013) 6131:NewScientist, March 2014 6033:(Submitted manuscript). 4177:(Submitted manuscript). 3970:lawofalgae.wiki.zoho.com 3702:. London. Archived from 3375:Knothe, Gerhard (2010). 3324:15 February 2013 at the 2888:"Biofuels from seaweed?" 2343:Current Diabetes Reviews 2065:Archiv für Mikrobiologie 1878:. IEA Bioenergy Task 39. 1808:Thermal depolymerization 1709: – Chemical process 1174:Algal nutrient solutions 889:Thalassiosira pseudonana 762:Chlorella protothecoides 741:TR-87: 28–40% dry weight 614:fatty acid methyl esters 474:, oxygen, nitrogen, and 7466:Biochemical engineering 7309:Fischer–Tropsch process 7299:Biomass heating systems 6479:Journal of Food Science 6082:Trends in Plant Science 5781:10.1073/pnas.0708328105 5466:Trends in Biotechnology 4579:10.1525/bio.2011.61.6.5 4084:"2.3. Algal production" 2724:Aquatic Species Program 2722:. Department of Energy 2511:Neochloris oleoabundans 1713:Biochemical engineering 1684:Renewable energy portal 1530:Minimalisation of waste 833:Neochloris oleoabundans 638:University of Cambridge 470:), with some traces of 120:Aquatic Species Program 6761:G20 Leaders' Statement 5164:. Technologyreview.com 5027:Bioresource Technology 4935:Bioresource Technology 4867:"Seawater Composition" 4775:Fuel extracation video 4721:Bioresource Technology 4715:Ajayebi, Atta (2013). 4666:Bioresource Technology 4366:Biotechnology Progress 4021:Bioresource Technology 3803:Cite journal requires 3277:Bioresource Technology 2949:10.1002/anie.201308143 2539:Biotechnology Advances 1583:International policies 1544:High water requirement 1122: 1098: 998: 986: 794:Dunaliella tertiolecta 778:Crypthecodinium cohnii 716:(also called CCMP647). 713:Pleurochrysis carterae 699:Dunaliella tertiolecta 367:Enteromorpha compressa 41: 6766:10 March 2013 at the 6467:, 101(2):87-96, 2006. 4475:10.1089/dst.2012.0013 3991:"Nutrients and Algae" 3533:presentations.acs.org 3246:10.1002/bit.260280712 1655:fossil fuel subsidies 1120: 1096: 992: 984: 821: : 46(31–68)%dw 553:Porphyridium cruentum 182:National Laboratories 170:Department of Defense 111:Chlorella pyrenoidosa 35: 6804:Worldwatch Institute 5972:Journal of Phycology 5303:on 24 September 2015 5260:"Emergency Response" 5209:Conservation Biology 5184:"NASA OMEGA Project" 4899:on 16 September 2012 4335:Worldwatch Institute 3910:19 July 2011 at the 3891:5 March 2012 at the 3623:. 24 February 2008. 3111:"Methane production" 2733:on 26 September 2006 2582:Botryococcus braunii 1561:Commercial viability 1318:Environmental impact 746:Botryococcus braunii 685:Botryococcus braunii 565:Biodiesel production 400:Laminaria saccharina 209:polyunsaturated fats 192:Food supplementation 166:Department of Energy 7397:Sustainable biofuel 6785:18 May 2013 at the 6534:2011ECM....52..163D 6289:1994JAPco...6...93R 6252:on 7 December 2009. 6094:2010TPS....15..554S 6051:10.1038/nature11148 6043:2012Natur.486...59C 5984:2013JPcgy..49..838S 5913:2005EcolL...8..819S 5870:1997Natur.390..507N 5827:1997Natur.390..162M 5772:2008PNAS..105.5134P 5681:1996Natur.379..718T 5638:10.1038/nature05202 5630:2006Natur.443..989C 5579:2002Natur.416..837D 5221:2008ConBi..22..602G 5128:2010TEcoE..25..301S 5082:2000Chmsp..41..251C 5039:2011BiTec.102...17P 4994:10.1128/EC.00203-09 4947:2013BiTec.131..246A 4811:2013AlgRe...2..445E 4733:2013BiTec.150..429A 4678:2015BiTec.185..353M 4652:. 30 November 2015. 4422:2017AlgRe..26...39H 4187:2010RSERv..14..217M 4126:2008BioER...1...20S 4033:2011BiTec.102.1649C 3841:. 12 January 2008. 3822:Ecogenics Product 2 3744:on 22 October 2008. 3393:2010PECS...36..364K 3289:2007BiTec..98..130Y 3089:2015RSERv..47..295T 3054:2016RSERv..55..909S 3019:2014RSERv..29..216S 2984:2012Ene....44..158A 2825:2012EPSE...31...29P 2800:on 30 October 2008. 2695:2012RSERv..16.2070A 2658:on 17 December 2008 2488:on 18 February 2009 2077:1952ArMic..17..213A 1485:Rodrigo E. Teixeira 1300:anaerobic digestion 1268:anaerobic digestion 1146:transesterification 1085:open pond systems. 881:Tetraselmis suecica 512:anaerobic digestion 350:Transesterification 323:. This fuel has an 129:genetic engineering 7456:Sustainable energy 6357:10.1039/C2GC16225C 6324:on 23 October 2008 6297:10.1007/BF02186062 5546:on 13 October 2016 5513:on 1 December 2016 4234:on 5 November 2010 4114:BioEnergy Research 3865:"Algal Oil Yields" 3603:10.1039/c5cy01307k 3585:Zhou, Lin (2016). 3560:Energy & Fuels 3539:on 22 January 2016 3515:10.1039/C3GC40558C 3343:Open Life Sciences 2894:. 12 October 2016. 2766:10.1039/C1EE01791H 2276:10.1007/BF02920589 2270:. 34–35: 681–692. 2236:10.1007/BF02922657 2085:10.1007/BF00410827 1749:Direct air capture 1737:Culture Biosystems 1432:Economic viability 1123: 1099: 1013:Closed-loop system 999: 995:race-way open pond 987: 650:Internet of Things 355:Chaetomorpha linum 78:In December 2022, 42: 18:Biofuel from algae 7423: 7422: 7336:Sabatier reaction 6878:978-93-8001-244-5 6840:978-0-9544529-3-3 6819:978-1-84407-422-8 6665:978-0-12-820640-9 5992:10.1111/jpy.12092 5864:(6659): 507–509. 5821:(6656): 162–165. 5766:(13): 5134–5138. 5675:(6567): 718–720. 5624:(7114): 989–992. 5573:(6883): 837–841. 4851:10.3390/en8076765 4379:10.1002/btpr.2628 3768:on 2 October 2018 3572:10.1021/ef502258q 2873:10.3390/en7117194 2866:(11): 7194–7222. 2449:10.3390/nu5041301 2230:. 28–29: 877–86. 2130:978-94-007-5478-2 2115:. pp. 1–15. 1895:(17 March 2023). 1728:Carbon neutrality 1636: 1635: 1628: 1492:Use of byproducts 926:Prymnesium parvum 484:partial oxidation 472:hydrogen sulphide 16:(Redirected from 7473: 7451:Renewable energy 7413: 7412: 7257:Pongamia pinnata 6951: 6944: 6937: 6928: 6896: 6894: 6882: 6861: 6859: 6857: 6844: 6823: 6790: 6777: 6771: 6757: 6751: 6750: 6740: 6716: 6710: 6709: 6707: 6705: 6690: 6684: 6683: 6682: 6680: 6639: 6633: 6632: 6604: 6598: 6597: 6579: 6555: 6546: 6545: 6517: 6504: 6501: 6495: 6494: 6485:(4): 1144–1148. 6474: 6468: 6461: 6455: 6454: 6418: 6412: 6411: 6375: 6369: 6368: 6340: 6334: 6333: 6331: 6329: 6323: 6317:. Archived from 6316: 6307: 6301: 6300: 6272: 6266: 6265: 6260: 6254: 6253: 6241: 6235: 6234: 6232: 6223: 6217: 6216: 6180: 6174: 6173: 6171: 6169: 6160: 6151: 6145: 6138: 6132: 6129: 6123: 6120: 6114: 6113: 6077: 6071: 6070: 6028: 6018: 6012: 6011: 5966: 5960: 5959: 5931: 5925: 5924: 5896: 5890: 5889: 5853: 5847: 5846: 5810: 5804: 5803: 5793: 5783: 5751: 5745: 5744: 5719:(5442): 1123–7. 5707: 5701: 5700: 5689:10.1038/379718a0 5664: 5658: 5657: 5613: 5607: 5606: 5562: 5556: 5555: 5553: 5551: 5545: 5538: 5529: 5523: 5522: 5520: 5518: 5512: 5506:. Archived from 5505: 5496: 5490: 5489: 5460: 5454: 5453: 5428:(5): 1125–1135. 5417: 5408: 5407: 5370: 5364: 5363: 5361: 5359: 5353: 5345: 5339: 5338: 5336: 5334: 5325:. Archived from 5319: 5313: 5312: 5310: 5308: 5302: 5295: 5287: 5281: 5280: 5274: 5266: 5264: 5255: 5249: 5248: 5204: 5195: 5194: 5192: 5190: 5180: 5174: 5173: 5171: 5169: 5157: 5148: 5147: 5111: 5102: 5101: 5065: 5059: 5058: 5022: 5016: 5015: 5005: 4973: 4967: 4966: 4930: 4924: 4923: 4915: 4909: 4908: 4906: 4904: 4889: 4883: 4882: 4880: 4878: 4862: 4856: 4855: 4853: 4844:(7): 6765–6794. 4829: 4823: 4822: 4788: 4782: 4776: 4771: 4765: 4762: 4753: 4752: 4712: 4706: 4705: 4660: 4654: 4653: 4646:"Cost Effective" 4642: 4636: 4635: 4633: 4631: 4625: 4616: 4610: 4609: 4607: 4605: 4599: 4590: 4584: 4583: 4581: 4557: 4544: 4543: 4541: 4539: 4533: 4522: 4516: 4515: 4504: 4498: 4497: 4485: 4479: 4478: 4458: 4452: 4451: 4433: 4401: 4392: 4391: 4381: 4357: 4351: 4350: 4348: 4346: 4337:. Archived from 4326: 4317: 4316: 4314: 4312: 4306: 4291: 4283: 4277: 4276: 4274: 4272: 4250: 4244: 4243: 4241: 4239: 4223: 4217: 4216: 4206: 4172: 4163: 4146: 4145: 4108: 4099: 4098: 4096: 4094: 4080: 4069: 4068: 4027:(2): 1649–1655. 4015: 4006: 4005: 4003: 4001: 3987: 3981: 3980: 3978: 3976: 3962: 3951: 3950: 3939: 3933: 3932: 3921: 3915: 3902: 3896: 3883: 3877: 3876: 3874: 3872: 3861: 3855: 3854: 3852: 3850: 3839:The Taipei Times 3831: 3825: 3819: 3813: 3812: 3806: 3801: 3799: 3791: 3784: 3778: 3777: 3775: 3773: 3767: 3761:. Archived from 3760: 3752: 3746: 3745: 3740:. Archived from 3734: 3728: 3722: 3716: 3715: 3713: 3711: 3700:The Times Online 3691: 3685: 3684: 3682: 3680: 3665: 3659: 3658: 3656: 3654: 3643: 3637: 3636: 3634: 3632: 3613: 3607: 3606: 3597:(5): 1442–1454. 3582: 3576: 3575: 3555: 3549: 3548: 3546: 3544: 3535:. Archived from 3525: 3519: 3518: 3509:(7): 1720–1739. 3498: 3492: 3491: 3489: 3461: 3455: 3454: 3452: 3450: 3445: 3436: 3430: 3429: 3427: 3425: 3414: 3405: 3404: 3372: 3361: 3360: 3358: 3334: 3328: 3315: 3309: 3308: 3272: 3266: 3265: 3240:(7): 1014–1023. 3229: 3223: 3222: 3202: 3196: 3195: 3185: 3175: 3151: 3145: 3141: 3135: 3129: 3123: 3122: 3120: 3118: 3107: 3101: 3100: 3072: 3066: 3065: 3037: 3031: 3030: 3002: 2996: 2995: 2967: 2961: 2960: 2943:(7): 1854–1857. 2932: 2926: 2925: 2923: 2921: 2902: 2896: 2895: 2884: 2878: 2877: 2875: 2851: 2845: 2844: 2833:10.1002/ep.10606 2808: 2802: 2801: 2799: 2793:. Archived from 2792: 2784: 2778: 2777: 2749: 2743: 2742: 2740: 2738: 2732: 2721: 2713: 2707: 2706: 2689:(4): 2070–2093. 2677: 2668: 2667: 2665: 2663: 2657: 2651:. Archived from 2646: 2638: 2632: 2631: 2624: 2618: 2617: 2577: 2571: 2570: 2534: 2513: 2507: 2498: 2497: 2495: 2493: 2484:. Archived from 2478: 2472: 2471: 2461: 2451: 2442:(4): 1301–1315. 2427: 2421: 2420: 2418: 2416: 2396:(7): 1204–1209. 2381: 2375: 2374: 2338: 2332: 2331: 2299: 2288: 2287: 2262: 2256: 2255: 2223: 2217: 2216: 2207:(6–9): 701–705. 2196: 2190: 2186: 2167: 2166: 2164: 2162: 2156: 2148: 2135: 2134: 2106: 2097: 2096: 2071:(1–4): 213–246. 2060: 2051: 2045: 2039: 2036: 2030: 2026: 2020: 2016: 2010: 2007: 2001: 1998: 1992: 1989: 1983: 1982: 1970: 1964: 1963: 1951: 1945: 1944: 1942: 1940: 1934:en.wikipedia.org 1926: 1920: 1919: 1917: 1915: 1889: 1880: 1879: 1877: 1866: 1860: 1859: 1831: 1804: 1733: 1724: 1700: 1695: 1694: 1686: 1681: 1680: 1631: 1624: 1620: 1617: 1611: 1595: 1594: 1587: 1417: 1416: 1415: 1401: 1400: 1399: 1389: 1388: 1387: 1377: 1376: 1375: 1365: 1364: 1363: 1353: 1352: 1351: 1341: 1340: 1339: 1264:renewable energy 1257: 1256: 1255: 1244: 1243: 1242: 1226: 1225: 1224: 1213: 1212: 1211: 1070:photobioreactors 1056:Photobioreactors 1044: 1043: 1042: 1032: 1031: 1030: 1007:photobioreactors 932:Euglena gracilis 844:TR-114: 28–50%dw 797: : 36–42%dw 620:from the algae, 600:Aviation biofuel 461: 407:Palmaria palmata 393:Alaria esculenta 276:photobioreactors 273: 272: 271: 223:based fish oil. 211:, in particular 159: 158: 157: 147: 146: 145: 21: 7481: 7480: 7476: 7475: 7474: 7472: 7471: 7470: 7461:Renewable fuels 7426: 7425: 7424: 7419: 7401: 7377:Energy forestry 7345: 7277: 7239:Jatropha curcas 7200: 7193: 7101:Camelina sativa 7091: 7084: 6960: 6955: 6903: 6892: 6885: 6879: 6864: 6855: 6853: 6847: 6841: 6826: 6820: 6802: 6799: 6797:Further reading 6794: 6793: 6787:Wayback Machine 6778: 6774: 6768:Wayback Machine 6758: 6754: 6718: 6717: 6713: 6703: 6701: 6692: 6691: 6687: 6678: 6676: 6666: 6641: 6640: 6636: 6606: 6605: 6601: 6557: 6556: 6549: 6519: 6518: 6507: 6502: 6498: 6476: 6475: 6471: 6462: 6458: 6420: 6419: 6415: 6377: 6376: 6372: 6345:Green Chemistry 6342: 6341: 6337: 6327: 6325: 6321: 6314: 6309: 6308: 6304: 6274: 6273: 6269: 6262: 6261: 6257: 6243: 6242: 6238: 6230: 6225: 6224: 6220: 6182: 6181: 6177: 6167: 6165: 6158: 6153: 6152: 6148: 6139: 6135: 6130: 6126: 6121: 6117: 6088:(10): 554–564. 6079: 6078: 6074: 6037:(7401): 59–67. 6026: 6020: 6019: 6015: 5968: 5967: 5963: 5933: 5932: 5928: 5901:Ecology Letters 5898: 5897: 5893: 5855: 5854: 5850: 5812: 5811: 5807: 5753: 5752: 5748: 5709: 5708: 5704: 5666: 5665: 5661: 5615: 5614: 5610: 5587:10.1038/416837a 5564: 5563: 5559: 5549: 5547: 5543: 5536: 5531: 5530: 5526: 5516: 5514: 5510: 5503: 5498: 5497: 5493: 5462: 5461: 5457: 5419: 5418: 5411: 5372: 5371: 5367: 5357: 5355: 5351: 5347: 5346: 5342: 5332: 5330: 5321: 5320: 5316: 5306: 5304: 5300: 5293: 5289: 5288: 5284: 5267: 5262: 5257: 5256: 5252: 5206: 5205: 5198: 5188: 5186: 5182: 5181: 5177: 5167: 5165: 5159: 5158: 5151: 5113: 5112: 5105: 5067: 5066: 5062: 5024: 5023: 5019: 4982:Eukaryotic Cell 4975: 4974: 4970: 4932: 4931: 4927: 4917: 4916: 4912: 4902: 4900: 4891: 4890: 4886: 4876: 4874: 4864: 4863: 4859: 4831: 4830: 4826: 4790: 4789: 4785: 4774: 4772: 4768: 4763: 4756: 4714: 4713: 4709: 4662: 4661: 4657: 4644: 4643: 4639: 4629: 4627: 4623: 4618: 4617: 4613: 4603: 4601: 4597: 4592: 4591: 4587: 4559: 4558: 4547: 4537: 4535: 4531: 4524: 4523: 4519: 4506: 4505: 4501: 4487: 4486: 4482: 4460: 4459: 4455: 4403: 4402: 4395: 4359: 4358: 4354: 4344: 4342: 4341:on 21 June 2008 4328: 4327: 4320: 4310: 4308: 4304: 4289: 4285: 4284: 4280: 4270: 4268: 4252: 4251: 4247: 4237: 4235: 4225: 4224: 4220: 4170: 4165: 4164: 4149: 4110: 4109: 4102: 4092: 4090: 4082: 4081: 4072: 4017: 4016: 4009: 3999: 3997: 3995:www.krisweb.com 3989: 3988: 3984: 3974: 3972: 3964: 3963: 3954: 3941: 3940: 3936: 3923: 3922: 3918: 3912:Wayback Machine 3903: 3899: 3893:Wayback Machine 3884: 3880: 3870: 3868: 3863: 3862: 3858: 3848: 3846: 3833: 3832: 3828: 3820: 3816: 3802: 3792: 3786: 3785: 3781: 3771: 3769: 3765: 3758: 3754: 3753: 3749: 3736: 3735: 3731: 3723: 3719: 3709: 3707: 3693: 3692: 3688: 3678: 3676: 3667: 3666: 3662: 3652: 3650: 3645: 3644: 3640: 3630: 3628: 3615: 3614: 3610: 3584: 3583: 3579: 3557: 3556: 3552: 3542: 3540: 3527: 3526: 3522: 3503:Green Chemistry 3500: 3499: 3495: 3469: 3463: 3462: 3458: 3448: 3446: 3443: 3438: 3437: 3433: 3423: 3421: 3416: 3415: 3408: 3374: 3373: 3364: 3336: 3335: 3331: 3326:Wayback Machine 3316: 3312: 3274: 3273: 3269: 3231: 3230: 3226: 3204: 3203: 3199: 3153: 3152: 3148: 3142: 3138: 3130: 3126: 3116: 3114: 3109: 3108: 3104: 3074: 3073: 3069: 3039: 3038: 3034: 3004: 3003: 2999: 2969: 2968: 2964: 2934: 2933: 2929: 2919: 2917: 2904: 2903: 2899: 2886: 2885: 2881: 2853: 2852: 2848: 2810: 2809: 2805: 2797: 2790: 2786: 2785: 2781: 2751: 2750: 2746: 2736: 2734: 2730: 2719: 2715: 2714: 2710: 2679: 2678: 2671: 2661: 2659: 2655: 2644: 2640: 2639: 2635: 2626: 2625: 2621: 2579: 2578: 2574: 2536: 2535: 2516: 2508: 2501: 2491: 2489: 2480: 2479: 2475: 2429: 2428: 2424: 2414: 2412: 2383: 2382: 2378: 2340: 2339: 2335: 2320:10.1002/bbb.159 2301: 2300: 2291: 2264: 2263: 2259: 2225: 2224: 2220: 2198: 2197: 2193: 2187: 2170: 2160: 2158: 2154: 2150: 2149: 2138: 2131: 2108: 2107: 2100: 2062: 2061: 2054: 2046: 2042: 2037: 2033: 2027: 2023: 2017: 2013: 2008: 2004: 1999: 1995: 1990: 1986: 1972: 1971: 1967: 1953: 1952: 1948: 1938: 1936: 1928: 1927: 1923: 1913: 1911: 1893:Westervelt, Amy 1891: 1890: 1883: 1875: 1868: 1867: 1863: 1833: 1832: 1823: 1818: 1813: 1802: 1760:Joule Unlimited 1731: 1722: 1696: 1689: 1682: 1675: 1672: 1664: 1650: 1641: 1632: 1621: 1615: 1612: 1605: 1596: 1592: 1585: 1576: 1563: 1546: 1541: 1532: 1523: 1514: 1509: 1494: 1480:photobioreactor 1466: 1462: 1453: 1449: 1434: 1425: 1414: 1411: 1410: 1409: 1407: 1398: 1395: 1394: 1393: 1391: 1386: 1383: 1382: 1381: 1379: 1374: 1371: 1370: 1369: 1367: 1362: 1359: 1358: 1357: 1355: 1350: 1347: 1346: 1345: 1343: 1338: 1335: 1334: 1333: 1331: 1320: 1291: 1285: 1276: 1254: 1251: 1250: 1249: 1247: 1241: 1238: 1237: 1236: 1234: 1223: 1220: 1219: 1218: 1216: 1210: 1207: 1206: 1205: 1203: 1200: 1178:Nutrients like 1176: 1170: 1154: 1137: 1128: 1126:Fuel production 1091: 1082: 1058: 1041: 1038: 1037: 1036: 1034: 1029: 1026: 1025: 1024: 1022: 1015: 979: 973: 965: 947: 941: 818:Nannochloropsis 658: 634: 610:Virgin Atlantic 602: 596: 577:chains used in 567: 561: 545:Puerto Libertad 533: 493: 469: 460: 456: 449: 443: 416: 309: 303: 270: 267: 266: 265: 263: 259: 253: 229: 201:supplementation 194: 156: 153: 152: 151: 149: 144: 141: 140: 139: 137: 91: 40:made from algae 28: 23: 22: 15: 12: 11: 5: 7479: 7477: 7469: 7468: 7463: 7458: 7453: 7448: 7443: 7438: 7436:Algae biofuels 7428: 7427: 7421: 7420: 7418: 7417: 7406: 7403: 7402: 7400: 7399: 7394: 7389: 7384: 7379: 7374: 7369: 7364: 7359: 7353: 7351: 7347: 7346: 7344: 7343: 7338: 7333: 7332: 7331: 7326: 7316: 7311: 7306: 7301: 7296: 7291: 7285: 7283: 7279: 7278: 7276: 7275: 7270: 7265: 7260: 7253: 7242: 7235: 7230: 7228:Chinese tallow 7225: 7218: 7213: 7205: 7203: 7195: 7194: 7192: 7191: 7186: 7181: 7176: 7171: 7166: 7161: 7154: 7149: 7144: 7139: 7134: 7129: 7124: 7119: 7114: 7109: 7104: 7096: 7094: 7086: 7085: 7083: 7082: 7077: 7075:Water hyacinth 7072: 7067: 7066: 7065: 7055: 7050: 7049: 7048: 7043: 7033: 7032: 7031: 7021: 7016: 7011: 7006: 7001: 6996: 6991: 6986: 6981: 6976: 6970: 6968: 6962: 6961: 6956: 6954: 6953: 6946: 6939: 6931: 6925: 6924: 6919: 6914: 6909: 6902: 6901:External links 6899: 6898: 6897: 6883: 6877: 6862: 6845: 6839: 6824: 6818: 6798: 6795: 6792: 6791: 6772: 6752: 6711: 6685: 6664: 6634: 6615:(2): 163–168. 6599: 6570:(5): 421–430. 6547: 6528:(1): 163–170. 6505: 6496: 6469: 6456: 6413: 6386:(6): 635–648. 6370: 6351:(2): 419–427. 6335: 6302: 6267: 6255: 6236: 6218: 6191:(2): 126–144. 6175: 6146: 6133: 6124: 6115: 6072: 6013: 5961: 5926: 5907:(8): 819–828. 5891: 5848: 5805: 5746: 5702: 5659: 5608: 5557: 5524: 5491: 5472:(7): 371–380. 5455: 5409: 5382:(3): 577–586. 5365: 5340: 5329:on 23 May 2010 5314: 5282: 5250: 5196: 5175: 5149: 5122:(5): 301–309. 5103: 5076:(1–2): 251–7. 5060: 5017: 4968: 4925: 4910: 4884: 4857: 4824: 4805:(4): 445–454. 4798:Algal Research 4783: 4766: 4754: 4707: 4655: 4637: 4611: 4585: 4572:(6): 434–441. 4545: 4517: 4499: 4480: 4453: 4410:Algal Research 4393: 4372:(4): 811–827. 4352: 4318: 4307:on 21 May 2008 4278: 4245: 4218: 4204:10400.22/10059 4181:(1): 217–232. 4147: 4100: 4070: 4007: 3982: 3952: 3947:www.oilgae.com 3934: 3916: 3897: 3878: 3856: 3826: 3814: 3805:|journal= 3779: 3747: 3729: 3717: 3686: 3660: 3638: 3608: 3577: 3550: 3520: 3493: 3467: 3456: 3431: 3406: 3362: 3349:(2): 156–162. 3329: 3310: 3283:(1): 130–134. 3267: 3224: 3213:(3): 179–199. 3197: 3146: 3136: 3124: 3102: 3067: 3032: 2997: 2978:(1): 158–166. 2962: 2927: 2897: 2879: 2846: 2803: 2779: 2744: 2708: 2669: 2633: 2619: 2592:(3): 245–279. 2572: 2545:(3): 294–306. 2514: 2499: 2473: 2422: 2376: 2349:(3): 198–203. 2333: 2314:(4): 431–440. 2289: 2257: 2218: 2191: 2168: 2136: 2129: 2098: 2052: 2040: 2031: 2021: 2011: 2002: 1993: 1984: 1965: 1946: 1921: 1881: 1861: 1842:(3): 277–286. 1820: 1819: 1817: 1814: 1812: 1811: 1805: 1796: 1790: 1785: 1779: 1773: 1767: 1762: 1757: 1752: 1746: 1740: 1734: 1725: 1716: 1710: 1703: 1702: 1701: 1687: 1671: 1668: 1663: 1660: 1649: 1646: 1640: 1637: 1634: 1633: 1599: 1597: 1590: 1584: 1581: 1575: 1572: 1562: 1559: 1545: 1542: 1540: 1537: 1531: 1528: 1522: 1521:Impact on food 1519: 1513: 1512:Ease of growth 1510: 1508: 1505: 1493: 1490: 1464: 1460: 1457: 1456: 1455: 1454: 1451: 1447: 1433: 1430: 1424: 1421: 1412: 1396: 1384: 1372: 1360: 1348: 1336: 1319: 1316: 1287:Main article: 1284: 1281: 1275: 1272: 1252: 1239: 1221: 1208: 1199: 1198:Carbon dioxide 1196: 1172:Main article: 1169: 1166: 1153: 1150: 1136: 1133: 1127: 1124: 1103:Algae scrubber 1090: 1087: 1081: 1078: 1057: 1054: 1039: 1027: 1014: 1011: 972: 969: 963: 956:D. tertiolecta 943:Main article: 940: 937: 894: 893: 885: 877: 869: 865:Schizochytrium 861: 853: 845: 837: 829: 828: 827: 814: 806: 798: 790: 782: 774: 758: 750: 742: 738:Ankistrodesmus 730: 729: 717: 709: 702: 695: 688: 657: 654: 642:microprocessor 633: 630: 598:Main article: 595: 592: 563:Main article: 560: 557: 532: 529: 492: 489: 467: 464:carbon dioxide 445:Main article: 442: 439: 415: 412: 411: 410: 403: 396: 325:energy density 305:Main article: 302: 299: 268: 255:Main article: 252: 249: 228: 225: 193: 190: 154: 142: 90: 87: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7478: 7467: 7464: 7462: 7459: 7457: 7454: 7452: 7449: 7447: 7444: 7442: 7439: 7437: 7434: 7433: 7431: 7416: 7408: 7407: 7404: 7398: 7395: 7393: 7390: 7388: 7387:Food vs. fuel 7385: 7383: 7380: 7378: 7375: 7373: 7370: 7368: 7365: 7363: 7360: 7358: 7355: 7354: 7352: 7348: 7342: 7339: 7337: 7334: 7330: 7327: 7325: 7322: 7321: 7320: 7317: 7315: 7312: 7310: 7307: 7305: 7302: 7300: 7297: 7295: 7292: 7290: 7287: 7286: 7284: 7280: 7274: 7271: 7269: 7266: 7264: 7261: 7259: 7258: 7254: 7252: 7251: 7247: 7243: 7241: 7240: 7236: 7234: 7231: 7229: 7226: 7224: 7223: 7219: 7217: 7214: 7212: 7211: 7207: 7206: 7204: 7202: 7196: 7190: 7187: 7185: 7182: 7180: 7177: 7175: 7172: 7170: 7167: 7165: 7162: 7160: 7159: 7155: 7153: 7150: 7148: 7145: 7143: 7140: 7138: 7135: 7133: 7130: 7128: 7125: 7123: 7120: 7118: 7115: 7113: 7110: 7108: 7105: 7103: 7102: 7098: 7097: 7095: 7093: 7087: 7081: 7078: 7076: 7073: 7071: 7068: 7064: 7061: 7060: 7059: 7056: 7054: 7051: 7047: 7044: 7042: 7039: 7038: 7037: 7034: 7030: 7029:vegetable oil 7027: 7026: 7025: 7022: 7020: 7017: 7015: 7012: 7010: 7007: 7005: 7002: 7000: 6997: 6995: 6992: 6990: 6987: 6985: 6982: 6980: 6977: 6975: 6972: 6971: 6969: 6967: 6963: 6959: 6952: 6947: 6945: 6940: 6938: 6933: 6932: 6929: 6923: 6920: 6918: 6915: 6913: 6910: 6908: 6905: 6904: 6900: 6891: 6890: 6884: 6880: 6874: 6870: 6869: 6868:Algae biofuel 6863: 6851: 6846: 6842: 6836: 6832: 6831: 6825: 6821: 6815: 6812:. Earthscan. 6811: 6810: 6805: 6801: 6800: 6796: 6788: 6784: 6781: 6776: 6773: 6769: 6765: 6762: 6756: 6753: 6748: 6744: 6739: 6734: 6730: 6726: 6722: 6715: 6712: 6700: 6696: 6689: 6686: 6675: 6671: 6667: 6661: 6657: 6653: 6649: 6645: 6638: 6635: 6630: 6626: 6622: 6618: 6614: 6610: 6603: 6600: 6595: 6591: 6587: 6583: 6578: 6573: 6569: 6565: 6561: 6554: 6552: 6548: 6543: 6539: 6535: 6531: 6527: 6523: 6516: 6514: 6512: 6510: 6506: 6500: 6497: 6492: 6488: 6484: 6480: 6473: 6470: 6466: 6460: 6457: 6452: 6448: 6444: 6440: 6436: 6432: 6428: 6424: 6417: 6414: 6409: 6405: 6401: 6397: 6393: 6389: 6385: 6381: 6374: 6371: 6366: 6362: 6358: 6354: 6350: 6346: 6339: 6336: 6320: 6313: 6306: 6303: 6298: 6294: 6290: 6286: 6282: 6278: 6271: 6268: 6259: 6256: 6251: 6247: 6240: 6237: 6229: 6222: 6219: 6214: 6210: 6206: 6202: 6198: 6194: 6190: 6186: 6179: 6176: 6164: 6163:IEA Bioenergy 6157: 6150: 6147: 6143: 6142:Basket Prices 6137: 6134: 6128: 6125: 6119: 6116: 6111: 6107: 6103: 6099: 6095: 6091: 6087: 6083: 6076: 6073: 6068: 6064: 6060: 6056: 6052: 6048: 6044: 6040: 6036: 6032: 6025: 6017: 6014: 6009: 6005: 6001: 5997: 5993: 5989: 5985: 5981: 5978:(5): 838–47. 5977: 5973: 5965: 5962: 5957: 5953: 5949: 5945: 5941: 5937: 5930: 5927: 5922: 5918: 5914: 5910: 5906: 5902: 5895: 5892: 5887: 5883: 5879: 5878:10.1038/37348 5875: 5871: 5867: 5863: 5859: 5852: 5849: 5844: 5840: 5836: 5835:10.1038/36561 5832: 5828: 5824: 5820: 5816: 5809: 5806: 5801: 5797: 5792: 5787: 5782: 5777: 5773: 5769: 5765: 5761: 5757: 5750: 5747: 5742: 5738: 5734: 5730: 5726: 5722: 5718: 5714: 5706: 5703: 5698: 5694: 5690: 5686: 5682: 5678: 5674: 5670: 5663: 5660: 5655: 5651: 5647: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5612: 5609: 5604: 5600: 5596: 5592: 5588: 5584: 5580: 5576: 5572: 5568: 5561: 5558: 5542: 5535: 5528: 5525: 5509: 5502: 5495: 5492: 5487: 5483: 5479: 5475: 5471: 5467: 5459: 5456: 5451: 5447: 5443: 5439: 5435: 5431: 5427: 5423: 5416: 5414: 5410: 5405: 5401: 5397: 5393: 5389: 5385: 5381: 5377: 5369: 5366: 5350: 5344: 5341: 5328: 5324: 5318: 5315: 5299: 5292: 5286: 5283: 5278: 5272: 5261: 5254: 5251: 5246: 5242: 5238: 5234: 5230: 5226: 5222: 5218: 5214: 5210: 5203: 5201: 5197: 5185: 5179: 5176: 5163: 5156: 5154: 5150: 5145: 5141: 5137: 5133: 5129: 5125: 5121: 5117: 5110: 5108: 5104: 5099: 5095: 5091: 5087: 5083: 5079: 5075: 5071: 5064: 5061: 5056: 5052: 5048: 5044: 5040: 5036: 5032: 5028: 5021: 5018: 5013: 5009: 5004: 4999: 4995: 4991: 4988:(1): 97–106. 4987: 4983: 4979: 4972: 4969: 4964: 4960: 4956: 4952: 4948: 4944: 4940: 4936: 4929: 4926: 4921: 4914: 4911: 4898: 4894: 4888: 4885: 4872: 4868: 4861: 4858: 4852: 4847: 4843: 4839: 4835: 4828: 4825: 4820: 4816: 4812: 4808: 4804: 4800: 4799: 4794: 4787: 4784: 4781: 4777: 4770: 4767: 4761: 4759: 4755: 4750: 4746: 4742: 4738: 4734: 4730: 4726: 4722: 4718: 4711: 4708: 4703: 4699: 4695: 4691: 4687: 4683: 4679: 4675: 4671: 4667: 4659: 4656: 4651: 4647: 4641: 4638: 4622: 4615: 4612: 4596: 4589: 4586: 4580: 4575: 4571: 4567: 4563: 4556: 4554: 4552: 4550: 4546: 4530: 4529: 4521: 4518: 4513: 4509: 4503: 4500: 4495: 4491: 4484: 4481: 4476: 4472: 4468: 4464: 4457: 4454: 4449: 4445: 4441: 4437: 4432: 4427: 4423: 4419: 4415: 4411: 4407: 4400: 4398: 4394: 4389: 4385: 4380: 4375: 4371: 4367: 4363: 4356: 4353: 4340: 4336: 4332: 4325: 4323: 4319: 4303: 4299: 4295: 4288: 4282: 4279: 4266: 4262: 4261: 4256: 4249: 4246: 4233: 4229: 4222: 4219: 4214: 4210: 4205: 4200: 4196: 4192: 4188: 4184: 4180: 4176: 4169: 4162: 4160: 4158: 4156: 4154: 4152: 4148: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4107: 4105: 4101: 4089: 4085: 4079: 4077: 4075: 4071: 4066: 4062: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4022: 4014: 4012: 4008: 3996: 3992: 3986: 3983: 3971: 3967: 3961: 3959: 3957: 3953: 3948: 3944: 3938: 3935: 3930: 3929:cfpub.epa.gov 3926: 3920: 3917: 3913: 3909: 3906: 3901: 3898: 3894: 3890: 3887: 3882: 3879: 3866: 3860: 3857: 3844: 3840: 3836: 3830: 3827: 3823: 3818: 3815: 3810: 3797: 3789: 3783: 3780: 3764: 3757: 3751: 3748: 3743: 3739: 3733: 3730: 3726: 3721: 3718: 3706:on 8 May 2009 3705: 3701: 3697: 3690: 3687: 3675: 3671: 3664: 3661: 3649: 3642: 3639: 3626: 3622: 3618: 3612: 3609: 3604: 3600: 3596: 3592: 3588: 3581: 3578: 3573: 3569: 3565: 3561: 3554: 3551: 3538: 3534: 3530: 3524: 3521: 3516: 3512: 3508: 3504: 3497: 3494: 3488: 3483: 3479: 3475: 3471: 3460: 3457: 3442: 3435: 3432: 3419: 3413: 3411: 3407: 3402: 3398: 3394: 3390: 3386: 3382: 3378: 3371: 3369: 3367: 3363: 3357: 3352: 3348: 3344: 3340: 3333: 3330: 3327: 3323: 3320: 3314: 3311: 3306: 3302: 3298: 3294: 3290: 3286: 3282: 3278: 3271: 3268: 3263: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3228: 3225: 3220: 3216: 3212: 3208: 3201: 3198: 3193: 3189: 3184: 3179: 3174: 3169: 3165: 3161: 3157: 3150: 3147: 3140: 3137: 3133: 3128: 3125: 3112: 3106: 3103: 3098: 3094: 3090: 3086: 3082: 3078: 3071: 3068: 3063: 3059: 3055: 3051: 3047: 3043: 3036: 3033: 3028: 3024: 3020: 3016: 3012: 3008: 3001: 2998: 2993: 2989: 2985: 2981: 2977: 2973: 2966: 2963: 2958: 2954: 2950: 2946: 2942: 2938: 2931: 2928: 2916:on 5 May 2018 2915: 2911: 2907: 2901: 2898: 2893: 2892:The Ecologist 2889: 2883: 2880: 2874: 2869: 2865: 2861: 2857: 2850: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2818: 2814: 2807: 2804: 2796: 2789: 2783: 2780: 2775: 2771: 2767: 2763: 2759: 2755: 2748: 2745: 2729: 2725: 2718: 2712: 2709: 2704: 2700: 2696: 2692: 2688: 2684: 2676: 2674: 2670: 2654: 2650: 2643: 2637: 2634: 2630:. March 2019. 2629: 2623: 2620: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2576: 2573: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2533: 2531: 2529: 2527: 2525: 2523: 2521: 2519: 2515: 2512: 2506: 2504: 2500: 2487: 2483: 2477: 2474: 2469: 2465: 2460: 2455: 2450: 2445: 2441: 2437: 2433: 2426: 2423: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2380: 2377: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2334: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2298: 2296: 2294: 2290: 2285: 2281: 2277: 2273: 2269: 2261: 2258: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2222: 2219: 2214: 2210: 2206: 2202: 2195: 2192: 2185: 2183: 2181: 2179: 2177: 2175: 2173: 2169: 2153: 2147: 2145: 2143: 2141: 2137: 2132: 2126: 2122: 2118: 2114: 2113: 2105: 2103: 2099: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2059: 2057: 2053: 2049: 2044: 2041: 2035: 2032: 2025: 2022: 2015: 2012: 2006: 2003: 1997: 1994: 1988: 1985: 1980: 1976: 1969: 1966: 1961: 1957: 1950: 1947: 1935: 1931: 1925: 1922: 1910: 1906: 1902: 1898: 1894: 1888: 1886: 1882: 1874: 1873: 1865: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1830: 1828: 1826: 1822: 1815: 1809: 1806: 1800: 1797: 1794: 1791: 1789: 1786: 1783: 1782:Phytoplankton 1780: 1777: 1774: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1750: 1747: 1744: 1741: 1738: 1735: 1729: 1726: 1720: 1717: 1714: 1711: 1708: 1705: 1704: 1699: 1698:Energy portal 1693: 1688: 1685: 1679: 1674: 1669: 1667: 1661: 1659: 1656: 1648:United States 1647: 1645: 1638: 1630: 1627: 1619: 1609: 1603: 1600:This section 1598: 1589: 1588: 1582: 1580: 1573: 1571: 1567: 1560: 1558: 1556: 1552: 1543: 1538: 1536: 1529: 1527: 1520: 1518: 1511: 1506: 1504: 1502: 1501: 1491: 1489: 1486: 1481: 1478: 1472: 1468: 1450:= 25.9 × 10 C 1445: 1444: 1443: 1442: 1441: 1438: 1431: 1429: 1422: 1420: 1404: 1328: 1326: 1317: 1315: 1311: 1309: 1305: 1301: 1296: 1290: 1282: 1280: 1273: 1271: 1269: 1265: 1261: 1245: 1231: 1227: 1197: 1195: 1193: 1189: 1185: 1181: 1175: 1167: 1165: 1161: 1159: 1151: 1149: 1147: 1142: 1141:triglycerides 1134: 1132: 1125: 1119: 1115: 1111: 1109: 1104: 1095: 1089:Turf scrubber 1088: 1086: 1079: 1077: 1073: 1071: 1067: 1063: 1055: 1053: 1050: 1048: 1019: 1012: 1010: 1008: 1004: 996: 991: 983: 978: 970: 968: 960: 957: 951: 946: 938: 936: 934: 933: 928: 927: 922: 918: 914: 913: 907: 905: 901: 900: 891: 890: 886: 883: 882: 878: 876:: 33(9–59)%dw 875: 874: 870: 867: 866: 862: 859: 858: 854: 851: 850: 846: 843: 842: 838: 835: 834: 830: 826: 823: 822: 820: 819: 815: 813:: 31(6–63)%dw 812: 811: 807: 805:DI-160: 66%dw 804: 803: 799: 796: 795: 791: 789:DI- 35: 42%dw 788: 787: 783: 780: 779: 775: 772: 771:heterotrophic 768: 764: 763: 759: 756: 755: 751: 748: 747: 743: 740: 739: 735: 734: 733: 727: 723: 722: 718: 715: 714: 710: 708: 707: 703: 701: 700: 696: 694: 693: 689: 687: 686: 682: 681: 680: 677: 675: 671: 670:cyanobacteria 667: 663: 655: 653: 651: 647: 643: 639: 631: 629: 627: 623: 619: 615: 611: 607: 601: 593: 591: 589: 585: 580: 576: 572: 566: 558: 556: 554: 550: 546: 542: 538: 530: 528: 525: 521: 517: 513: 509: 505: 501: 497: 490: 488: 485: 481: 477: 473: 465: 454: 448: 440: 438: 436: 432: 428: 424: 420: 413: 409: 408: 404: 402: 401: 397: 395: 394: 390: 389: 388: 386: 382: 377: 375: 374: 369: 368: 363: 362: 357: 356: 351: 347: 346: 340: 338: 334: 330: 326: 322: 318: 314: 308: 300: 298: 295: 291: 287: 283: 281: 277: 258: 250: 248: 246: 242: 238: 234: 226: 224: 222: 218: 214: 210: 206: 202: 199: 191: 189: 185: 183: 179: 175: 171: 167: 162: 133: 130: 126: 121: 116: 113: 112: 107: 104:. Meanwhile, 103: 102: 96: 88: 86: 83: 81: 76: 74: 70: 66: 62: 58: 54: 50: 49:algal biofuel 46: 39: 34: 30: 19: 7255: 7249: 7245: 7237: 7220: 7216:Big bluestem 7208: 7201:energy crops 7156: 7099: 6978: 6888: 6867: 6854:. Retrieved 6829: 6808: 6775: 6755: 6728: 6724: 6714: 6702:. Retrieved 6698: 6688: 6677:, retrieved 6647: 6637: 6612: 6608: 6602: 6567: 6563: 6525: 6521: 6499: 6482: 6478: 6472: 6464: 6459: 6429:(3): 73–95. 6426: 6422: 6416: 6383: 6379: 6373: 6348: 6344: 6338: 6326:. Retrieved 6319:the original 6305: 6280: 6276: 6270: 6258: 6250:the original 6239: 6221: 6188: 6184: 6178: 6166:. Retrieved 6162: 6149: 6136: 6127: 6118: 6085: 6081: 6075: 6034: 6030: 6016: 5975: 5971: 5964: 5939: 5935: 5929: 5904: 5900: 5894: 5861: 5857: 5851: 5818: 5814: 5808: 5763: 5759: 5749: 5716: 5712: 5705: 5672: 5668: 5662: 5621: 5617: 5611: 5570: 5566: 5560: 5548:. Retrieved 5541:the original 5527: 5515:. Retrieved 5508:the original 5494: 5469: 5465: 5458: 5425: 5421: 5379: 5375: 5368: 5356:. Retrieved 5343: 5331:. Retrieved 5327:the original 5317: 5305:. Retrieved 5298:the original 5285: 5253: 5215:(3): 602–9. 5212: 5208: 5187:. Retrieved 5178: 5166:. Retrieved 5119: 5115: 5073: 5069: 5063: 5033:(1): 17–25. 5030: 5026: 5020: 4985: 4981: 4971: 4938: 4934: 4928: 4913: 4901:. Retrieved 4897:the original 4887: 4875:. Retrieved 4860: 4841: 4837: 4827: 4802: 4796: 4786: 4769: 4724: 4720: 4710: 4669: 4665: 4658: 4649: 4640: 4628:. Retrieved 4614: 4602:. Retrieved 4588: 4569: 4565: 4536:. Retrieved 4527: 4520: 4511: 4502: 4493: 4483: 4469:(2): 68–78. 4466: 4462: 4456: 4413: 4409: 4369: 4365: 4355: 4343:. Retrieved 4339:the original 4309:. Retrieved 4302:the original 4281: 4269:. Retrieved 4258: 4248: 4236:. Retrieved 4232:the original 4221: 4178: 4174: 4120:(1): 20–43. 4117: 4113: 4091:. Retrieved 4087: 4024: 4020: 3998:. Retrieved 3994: 3985: 3973:. Retrieved 3969: 3946: 3937: 3928: 3919: 3900: 3881: 3869:. Retrieved 3859: 3847:. Retrieved 3838: 3829: 3817: 3796:cite journal 3782: 3770:. Retrieved 3763:the original 3750: 3742:the original 3732: 3720: 3708:. Retrieved 3704:the original 3699: 3689: 3677:. Retrieved 3673: 3663: 3651:. Retrieved 3641: 3629:. Retrieved 3620: 3611: 3594: 3590: 3580: 3563: 3559: 3553: 3541:. Retrieved 3537:the original 3532: 3523: 3506: 3502: 3496: 3477: 3473: 3459: 3447:. Retrieved 3434: 3422:. Retrieved 3384: 3380: 3346: 3342: 3332: 3313: 3280: 3276: 3270: 3237: 3233: 3227: 3210: 3206: 3200: 3166:(1): 47–55. 3163: 3159: 3149: 3139: 3127: 3115:. Retrieved 3105: 3080: 3076: 3070: 3045: 3041: 3035: 3010: 3006: 3000: 2975: 2971: 2965: 2940: 2936: 2930: 2918:. Retrieved 2914:the original 2909: 2900: 2891: 2882: 2863: 2859: 2849: 2819:(1): 29–36. 2816: 2812: 2806: 2795:the original 2782: 2760:(10): 3773. 2757: 2753: 2747: 2735:. Retrieved 2728:the original 2711: 2686: 2682: 2660:. Retrieved 2653:the original 2636: 2622: 2589: 2585: 2581: 2575: 2542: 2538: 2490:. Retrieved 2486:the original 2476: 2439: 2435: 2425: 2413:. Retrieved 2393: 2389: 2379: 2346: 2342: 2336: 2311: 2307: 2267: 2260: 2227: 2221: 2204: 2200: 2194: 2159:. Retrieved 2111: 2068: 2064: 2043: 2034: 2024: 2014: 2005: 1996: 1987: 1978: 1974: 1968: 1959: 1955: 1949: 1937:. Retrieved 1933: 1924: 1912:. Retrieved 1901:The Guardian 1900: 1871: 1864: 1839: 1835: 1665: 1651: 1642: 1622: 1613: 1601: 1577: 1568: 1564: 1547: 1539:Disadvantage 1533: 1524: 1515: 1499: 1495: 1473: 1469: 1458: 1439: 1435: 1426: 1423:Polycultures 1405: 1329: 1325:fossil fuels 1321: 1312: 1292: 1277: 1201: 1177: 1162: 1155: 1138: 1129: 1112: 1100: 1083: 1074: 1059: 1051: 1047:cogeneration 1020: 1016: 1000: 993:Design of a 961: 955: 952: 948: 930: 924: 920: 916: 910: 908: 903: 897: 895: 892:: (21–31)%dw 887: 879: 873:Stichococcus 871: 863: 860:TR-84: 45%dw 855: 847: 839: 831: 816: 810:Nannochloris 808: 800: 792: 784: 776: 773:): 15–55% dw 760: 752: 744: 736: 731: 725: 719: 711: 704: 697: 690: 683: 678: 659: 635: 621: 603: 571:green diesel 568: 559:Green diesel 534: 524:methanogenic 504:gasification 494: 450: 417: 405: 398: 391: 378: 371: 365: 361:Ulva lactuca 359: 353: 343: 341: 310: 307:Butanol fuel 288: 284: 260: 245:butanol fuel 237:carbohydrate 230: 195: 186: 163: 134: 117: 109: 108:showed that 99: 92: 84: 77: 72: 69:seaweed fuel 68: 52: 48: 44: 43: 29: 7441:Bioreactors 7372:Energy crop 7319:Pellet fuel 7304:Biorefinery 7268:Switchgrass 7112:Coconut oil 7090:Energy from 7024:Cooking oil 7009:Biogasoline 6984:Babassu oil 6704:28 February 6328:14 November 6168:28 February 5354:. July 2011 5333:22 February 5168:29 November 5070:Chemosphere 4941:: 246–249. 4903:25 February 4727:: 429–437. 4672:: 353–361. 4650:Hydromentia 4311:15 December 4093:16 November 4088:www.fao.org 4000:16 November 3975:16 November 3756:"Bioenergy" 3738:"Algae FAQ" 3710:11 February 3631:24 February 3566:: 262–272. 3083:: 295–307. 3048:: 909–941. 3013:: 216–245. 1799:Sea6 Energy 1477:GreenFuel's 1465:(petroleum) 1461:(algal oil) 1452:(petroleum) 1448:(algal oil) 1135:Dehydration 1066:bioreactors 971:Cultivation 945:Algaculture 857:Scenedesmus 767:autotrophic 749:: 29–75% dw 575:hydrocarbon 516:fatty acids 500:natural gas 419:Biogasoline 414:Biogasoline 321:biorefinery 73:seaweed oil 7430:Categories 7282:Technology 7263:Salicornia 7246:Miscanthus 7169:Sugar beet 7041:cellulosic 7014:Bioliquids 6994:Biobutanol 6679:12 January 5550:4 November 5517:4 November 5358:4 November 5307:4 November 4630:4 November 4604:4 November 4566:BioScience 4538:4 November 4296:(APS) and 3772:22 October 3387:(3): 364. 2662:3 November 2415:20 January 2048:Evenari M. 1981:: 146–152. 1962:: 270–275. 1816:References 1743:Cyanotoxin 1616:April 2023 1551:wastewater 1507:Advantages 1295:wastewater 1283:Wastewater 1232:percolate 1230:Perthshire 1184:phosphorus 975:See also: 921:Gracilaria 904:SOFT cycle 884:: 15–32%dw 836:: 35–54%dw 802:Hantzschia 786:Cyclotella 757:sp.: 29%dw 726:Gracilaria 706:Gracilaria 662:microalgae 646:AA battery 622:Isochrysis 482:through a 429:) and 12 ( 345:Clostridia 301:Biobutanol 241:bioethanol 198:fatty acid 106:H. G. Aach 95:microalgae 80:ExxonMobil 59:that uses 45:Algae fuel 7357:Agflation 7250:giganteus 7179:Sunflower 7174:Sugarcane 7092:foodstock 6999:Biodiesel 6958:Bioenergy 6747:2296-7745 6674:230592922 6264:Germany". 6008:206146808 5942:: 45–54. 4694:0960-8524 4440:2211-9264 4416:: 39–46. 4049:1873-2976 3674:New Atlas 3480:: 41–53. 3117:29 August 2774:111077361 2737:29 August 2436:Nutrients 1909:0261-3077 1776:Phycology 1574:Stability 1500:Spirulina 1260:fisheries 1202:Bubbling 1188:potassium 1186:(P), and 1168:Nutrients 1080:Open pond 1072:or PBR). 917:Sargassum 841:Nitzschia 754:Chlorella 721:Sargassum 692:Chlorella 626:feedstock 618:alkenones 606:Lufthansa 584:petroleum 541:BioFields 508:pyrolysis 294:biodiesel 280:biodiesel 257:Biodiesel 251:Biodiesel 101:Chlorella 53:algal oil 7415:Category 7350:Concepts 7233:Duckweed 7222:Camelina 7199:Non-food 7147:Rapeseed 7137:Palm oil 7080:Wood gas 7053:Methanol 7046:mixtures 6966:Biofuels 6856:21 April 6806:(2007). 6783:Archived 6764:Archived 6629:97324232 6586:18205018 6451:11613501 6443:16294828 6408:42079864 6400:15300417 6365:96149136 6213:11148888 6205:22586908 6110:20655798 6059:22678280 6000:27007310 5956:17272043 5800:18375765 5733:10550043 5646:17066035 5595:11976680 5486:20541270 5450:14763431 5442:23070650 5404:18169368 5396:22923096 5271:cite web 5245:26350558 5237:18261147 5144:20022660 5098:10819208 5055:20594826 5012:19915074 4963:23353039 4871:Archived 4838:Energies 4749:24140355 4702:25795450 4496:: 1–178. 4388:29516646 4265:Archived 4213:15481966 4065:33867819 4057:20947341 3908:Archived 3889:Archived 3871:13 March 3867:. Oilgae 3843:Archived 3653:26 March 3625:Archived 3621:BBC News 3449:15 March 3322:Archived 3305:16386894 3262:21903205 3254:18555423 3192:13403639 2957:24474249 2860:Energies 2841:96613555 2614:20396446 2606:12405558 2567:18234512 2559:17350212 2468:23598439 2410:18589030 2371:29591060 2363:18220672 2328:10323847 2284:96744279 2252:22607146 2029:273–281. 2019:166–176. 1939:30 March 1914:21 March 1856:20399634 1670:See also 1555:seawater 1459:where: C 1274:Nitrogen 1266:through 1180:nitrogen 1062:nutrient 1003:jatropha 868:50–77%dw 594:Jet fuel 520:microbes 476:hydrogen 431:dodecane 333:methanol 38:jet fuel 7164:Soybean 7158:Sorghum 7107:Cassava 7036:Ethanol 7019:Biomass 6989:Bagasse 6974:Alcohol 6594:2860212 6530:Bibcode 6285:Bibcode 6090:Bibcode 6067:4333166 6039:Bibcode 5980:Bibcode 5909:Bibcode 5886:4420940 5866:Bibcode 5843:4302617 5823:Bibcode 5791:2278227 5768:Bibcode 5741:1899020 5713:Science 5697:4347014 5677:Bibcode 5654:4426751 5626:Bibcode 5603:4374059 5575:Bibcode 5217:Bibcode 5124:Bibcode 5078:Bibcode 5035:Bibcode 5003:2805299 4943:Bibcode 4877:18 June 4807:Bibcode 4780:YouTube 4729:Bibcode 4674:Bibcode 4448:1581797 4418:Bibcode 4345:10 June 4271:10 June 4238:10 June 4183:Bibcode 4142:3357265 4122:Bibcode 4029:Bibcode 3849:10 June 3424:7 March 3389:Bibcode 3285:Bibcode 3207:Biomass 3183:1057253 3085:Bibcode 3050:Bibcode 3015:Bibcode 2980:Bibcode 2821:Bibcode 2691:Bibcode 2492:11 June 2459:3705349 2244:1929389 2161:3 April 2093:7813967 2073:Bibcode 1553:and/or 1308:methane 852:: 31%dw 781:: 20%dw 674:seaweed 666:diatoms 656:Species 537:Algenol 531:Ethanol 496:Methane 491:Methane 453:methane 423:biomass 385:butanol 383:and/or 381:ethanol 329:ethanol 317:diatoms 136:to fix 89:History 65:seaweed 7210:Arundo 7142:Potato 7058:Stover 7004:Biogas 6875:  6837:  6816:  6745:  6672:  6662:  6627:  6592:  6584:  6449:  6441:  6406:  6398:  6363:  6211:  6203:  6108:  6065:  6057:  6031:Nature 6006:  5998:  5954:  5884:  5858:Nature 5841:  5815:Nature 5798:  5788:  5739:  5731:  5695:  5669:Nature 5652:  5644:  5618:Nature 5601:  5593:  5567:Nature 5484:  5448:  5440:  5402:  5394:  5243:  5235:  5142:  5096:  5053:  5010:  5000:  4961:  4747:  4700:  4692:  4446:  4438:  4386:  4211:  4140:  4063:  4055:  4047:  3679:14 May 3543:2 June 3303:  3260:  3252:  3190:  3180:  2972:Energy 2955:  2839:  2788:"Wolf" 2772:  2612:  2604:  2565:  2557:  2466:  2456:  2408:  2369:  2361:  2326:  2282:  2250:  2242:  2189:1–328. 2127:  2091:  1907:  1854:  1639:Canada 1304:biogas 1192:Silica 929:, and 579:diesel 549:Sonora 518:using 480:syngas 462:) and 447:Biogas 441:Biogas 427:hexane 364:, and 221:salmon 55:is an 7329:stove 7184:Wheat 7127:Maize 7117:Grape 7070:Straw 6979:Algae 6893:(PDF) 6759:G20. 6670:S2CID 6625:S2CID 6590:S2CID 6447:S2CID 6404:S2CID 6361:S2CID 6322:(PDF) 6315:(PDF) 6231:(PDF) 6209:S2CID 6159:(PDF) 6063:S2CID 6027:(PDF) 6004:S2CID 5952:S2CID 5882:S2CID 5839:S2CID 5737:S2CID 5693:S2CID 5650:S2CID 5599:S2CID 5544:(PDF) 5537:(PDF) 5511:(PDF) 5504:(PDF) 5446:S2CID 5400:S2CID 5352:(PDF) 5301:(PDF) 5294:(PDF) 5263:(PDF) 5241:S2CID 5189:8 May 4624:(PDF) 4598:(PDF) 4532:(PDF) 4305:(PDF) 4290:(PDF) 4209:S2CID 4171:(PDF) 4138:S2CID 4061:S2CID 3766:(PDF) 3759:(PDF) 3444:(PDF) 3258:S2CID 2920:4 May 2837:S2CID 2798:(PDF) 2791:(PDF) 2770:S2CID 2731:(PDF) 2720:(PDF) 2656:(PDF) 2645:(PDF) 2610:S2CID 2563:S2CID 2367:S2CID 2324:S2CID 2280:S2CID 2248:S2CID 2155:(PDF) 2089:S2CID 1876:(PDF) 1662:Other 1182:(N), 313:algae 233:lipid 227:Fuels 205:mono- 61:algae 51:, or 7324:mill 7273:Wood 7152:Rice 7122:Hemp 7063:corn 6873:ISBN 6858:2010 6835:ISBN 6814:ISBN 6743:ISSN 6706:2023 6699:NOAA 6681:2021 6660:ISBN 6582:PMID 6439:PMID 6396:PMID 6330:2008 6201:PMID 6170:2023 6106:PMID 6055:PMID 5996:PMID 5796:PMID 5729:PMID 5642:PMID 5591:PMID 5552:2016 5519:2016 5482:PMID 5438:PMID 5392:PMID 5360:2016 5335:2015 5309:2016 5277:link 5233:PMID 5191:2012 5170:2013 5140:PMID 5094:PMID 5051:PMID 5008:PMID 4959:PMID 4905:2012 4879:2008 4745:PMID 4698:PMID 4690:ISSN 4632:2016 4606:2016 4540:2016 4444:OSTI 4436:ISSN 4384:PMID 4347:2008 4313:2013 4273:2008 4240:2008 4095:2016 4053:PMID 4045:ISSN 4002:2016 3977:2016 3873:2012 3851:2008 3809:help 3774:2008 3712:2008 3681:2022 3655:2018 3633:2008 3545:2015 3451:2012 3426:2012 3301:PMID 3250:PMID 3188:PMID 3144:LTD. 3119:2006 2953:PMID 2922:2018 2739:2006 2664:2008 2602:PMID 2555:PMID 2494:2008 2464:PMID 2417:2017 2406:PMID 2359:PMID 2240:PMID 2163:2014 2125:ISBN 1941:2024 1916:2023 1905:ISSN 1852:PMID 1101:The 899:Ulva 668:and 616:and 608:and 535:The 510:and 373:Ulva 215:and 207:and 7189:Yam 7132:Oat 6733:doi 6652:doi 6617:doi 6572:doi 6538:doi 6487:doi 6431:doi 6388:doi 6353:doi 6293:doi 6193:doi 6098:doi 6047:doi 6035:486 5988:doi 5944:doi 5917:doi 5874:doi 5862:390 5831:doi 5819:390 5786:PMC 5776:doi 5764:105 5721:doi 5717:286 5685:doi 5673:379 5634:doi 5622:443 5583:doi 5571:416 5474:doi 5430:doi 5384:doi 5225:doi 5132:doi 5086:doi 5043:doi 5031:102 4998:PMC 4990:doi 4951:doi 4939:131 4846:doi 4815:doi 4778:on 4737:doi 4725:150 4682:doi 4670:185 4574:doi 4471:doi 4426:doi 4374:doi 4199:hdl 4191:doi 4130:doi 4037:doi 4025:102 3599:doi 3568:doi 3511:doi 3482:doi 3466:"CO 3397:doi 3351:doi 3293:doi 3242:doi 3215:doi 3178:PMC 3168:doi 3093:doi 3058:doi 3023:doi 2988:doi 2945:doi 2868:doi 2829:doi 2762:doi 2699:doi 2594:doi 2547:doi 2454:PMC 2444:doi 2398:doi 2394:108 2351:doi 2316:doi 2272:doi 2232:doi 2209:doi 2117:doi 2081:doi 1844:doi 543:in 466:(CO 376:). 337:E85 331:or 315:or 243:or 217:DHA 213:EPA 71:or 7432:: 7248:× 6741:. 6731:. 6727:. 6723:. 6697:. 6668:, 6658:, 6646:, 6623:. 6613:31 6611:. 6588:. 6580:. 6568:35 6566:. 6562:. 6550:^ 6536:. 6526:52 6524:. 6508:^ 6483:68 6481:. 6445:. 6437:. 6427:25 6425:. 6402:. 6394:. 6384:65 6382:. 6359:. 6349:14 6347:. 6291:. 6279:. 6207:. 6199:. 6189:48 6187:. 6161:. 6104:. 6096:. 6086:15 6084:. 6061:. 6053:. 6045:. 6029:. 6002:. 5994:. 5986:. 5976:49 5974:. 5950:. 5940:24 5938:. 5915:. 5903:. 5880:. 5872:. 5860:. 5837:. 5829:. 5817:. 5794:. 5784:. 5774:. 5762:. 5758:. 5735:. 5727:. 5715:. 5691:. 5683:. 5671:. 5648:. 5640:. 5632:. 5620:. 5597:. 5589:. 5581:. 5569:. 5480:. 5470:28 5468:. 5444:. 5436:. 5426:96 5424:. 5412:^ 5398:. 5390:. 5380:96 5378:. 5273:}} 5269:{{ 5239:. 5231:. 5223:. 5213:22 5211:. 5199:^ 5152:^ 5138:. 5130:. 5120:25 5118:. 5106:^ 5092:. 5084:. 5074:41 5072:. 5049:. 5041:. 5029:. 5006:. 4996:. 4984:. 4980:. 4957:. 4949:. 4937:. 4869:. 4840:. 4836:. 4813:. 4801:. 4795:. 4757:^ 4743:. 4735:. 4723:. 4719:. 4696:. 4688:. 4680:. 4668:. 4648:. 4570:61 4568:. 4564:. 4548:^ 4510:. 4492:. 4465:. 4442:. 4434:. 4424:. 4414:26 4412:. 4408:. 4396:^ 4382:. 4370:34 4368:. 4364:. 4333:. 4321:^ 4292:. 4263:. 4257:. 4207:. 4197:. 4189:. 4179:14 4173:. 4150:^ 4136:. 4128:. 4116:. 4103:^ 4086:. 4073:^ 4059:. 4051:. 4043:. 4035:. 4023:. 4010:^ 3993:. 3968:. 3955:^ 3945:. 3927:. 3837:. 3800:: 3798:}} 3794:{{ 3698:. 3672:. 3619:. 3593:. 3589:. 3564:29 3562:. 3531:. 3507:15 3505:. 3476:. 3472:. 3409:^ 3395:. 3385:36 3383:. 3379:. 3365:^ 3345:. 3341:. 3299:. 3291:. 3281:98 3279:. 3256:. 3248:. 3238:28 3236:. 3211:23 3209:. 3186:. 3176:. 3162:. 3158:. 3091:. 3081:47 3079:. 3056:. 3046:55 3044:. 3021:. 3011:29 3009:. 2986:. 2976:44 2974:. 2951:. 2941:53 2939:. 2908:. 2890:. 2862:. 2858:. 2835:. 2827:. 2817:31 2815:. 2768:. 2756:. 2697:. 2687:16 2685:. 2672:^ 2647:. 2608:. 2600:. 2590:22 2588:. 2561:. 2553:. 2543:25 2541:. 2517:^ 2502:^ 2462:. 2452:. 2438:. 2434:. 2404:. 2392:. 2388:. 2365:. 2357:. 2345:. 2322:. 2310:. 2306:. 2292:^ 2278:. 2246:. 2238:. 2205:36 2203:. 2171:^ 2139:^ 2123:. 2101:^ 2087:. 2079:. 2069:17 2067:. 2055:^ 1979:60 1977:. 1960:16 1958:. 1932:. 1903:. 1899:. 1884:^ 1850:. 1840:21 1838:. 1824:^ 1408:CO 1392:CO 1380:CO 1368:CO 1356:CO 1344:CO 1332:CO 1270:. 1248:CO 1235:CO 1217:CO 1204:CO 1035:CO 1023:CO 935:. 923:, 919:, 915:, 628:. 547:, 506:, 457:CH 437:. 387:: 358:, 339:. 264:CO 247:. 180:, 176:, 172:, 168:, 150:CO 138:CO 75:. 47:, 6950:e 6943:t 6936:v 6881:. 6860:. 6843:. 6822:. 6749:. 6735:: 6729:8 6708:. 6654:: 6631:. 6619:: 6596:. 6574:: 6544:. 6540:: 6532:: 6493:. 6489:: 6453:. 6433:: 6410:. 6390:: 6367:. 6355:: 6332:. 6299:. 6295:: 6287:: 6281:6 6233:. 6215:. 6195:: 6172:. 6112:. 6100:: 6092:: 6069:. 6049:: 6041:: 6010:. 5990:: 5982:: 5958:. 5946:: 5923:. 5919:: 5911:: 5905:8 5888:. 5876:: 5868:: 5845:. 5833:: 5825:: 5802:. 5778:: 5770:: 5743:. 5723:: 5699:. 5687:: 5679:: 5656:. 5636:: 5628:: 5605:. 5585:: 5577:: 5554:. 5521:. 5488:. 5476:: 5452:. 5432:: 5406:. 5386:: 5362:. 5337:. 5311:. 5279:) 5265:. 5247:. 5227:: 5219:: 5193:. 5172:. 5146:. 5134:: 5126:: 5100:. 5088:: 5080:: 5057:. 5045:: 5037:: 5014:. 4992:: 4986:9 4965:. 4953:: 4945:: 4922:. 4907:. 4881:. 4854:. 4848:: 4842:8 4821:. 4817:: 4809:: 4803:2 4751:. 4739:: 4731:: 4704:. 4684:: 4676:: 4634:. 4608:. 4576:: 4542:. 4514:. 4477:. 4473:: 4467:1 4450:. 4428:: 4420:: 4390:. 4376:: 4349:. 4315:. 4275:. 4242:. 4215:. 4201:: 4193:: 4185:: 4144:. 4132:: 4124:: 4118:1 4097:. 4067:. 4039:: 4031:: 4004:. 3979:. 3949:. 3931:. 3875:. 3853:. 3811:) 3807:( 3790:. 3776:. 3714:. 3683:. 3657:. 3635:. 3605:. 3601:: 3595:6 3574:. 3570:: 3547:. 3517:. 3513:: 3490:. 3484:: 3478:4 3468:2 3453:. 3428:. 3403:. 3399:: 3391:: 3359:. 3353:: 3347:9 3307:. 3295:: 3287:: 3264:. 3244:: 3221:. 3217:: 3194:. 3170:: 3164:5 3121:. 3099:. 3095:: 3087:: 3064:. 3060:: 3052:: 3029:. 3025:: 3017:: 2994:. 2990:: 2982:: 2959:. 2947:: 2924:. 2876:. 2870:: 2864:7 2843:. 2831:: 2823:: 2776:. 2764:: 2758:4 2741:. 2705:. 2701:: 2693:: 2666:. 2616:. 2596:: 2569:. 2549:: 2496:. 2470:. 2446:: 2440:5 2419:. 2400:: 2373:. 2353:: 2347:3 2330:. 2318:: 2312:3 2286:. 2274:: 2254:. 2234:: 2215:. 2211:: 2165:. 2133:. 2119:: 2095:. 2083:: 2075:: 1943:. 1918:. 1858:. 1846:: 1629:) 1623:( 1618:) 1614:( 1610:. 1604:. 1446:C 1413:2 1397:2 1385:2 1373:2 1361:2 1349:2 1337:2 1253:2 1240:2 1222:2 1209:2 1040:2 1028:2 964:2 769:/ 765:( 728:. 468:2 459:4 455:( 370:( 269:2 155:2 143:2 20:)

Index

Biofuel from algae

jet fuel
alternative to liquid fossil fuels
algae
seaweed
ExxonMobil
microalgae
Chlorella
H. G. Aach
Chlorella pyrenoidosa
Aquatic Species Program
Solar Energy Research Institute
genetic engineering
Department of Energy
Department of Defense
National Science Foundation
Department of Agriculture
National Laboratories
fatty acid
supplementation
mono-
polyunsaturated fats
EPA
DHA
salmon
lipid
carbohydrate
bioethanol
butanol fuel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.