Knowledge (XXG)

3D bioprinting

Source 📝

406:
constructing scaffolds, then layering the scaffolds with cells from the patients and allowing them to grow. The trials were a success as the patients remained in good health 7 years after implantation, which led a research fellow named Anthony Atala, MD, to search or ways to automate the process. Patients with end-stage bladder disease can now be treated by using bio-engineered bladder tissues to rebuild the damaged organ. This technology can also potentially be applied to bone, skin, cartilage and muscle tissue. Though one long-term goal of 3D bioprinting technology is to reconstruct an entire organ as well as minimize the problem of the lack of organs for transplantation. There has been little success in bioprinting of fully functional organs e.g. liver, skin, meniscus or pancreas. Unlike implantable stents, organs have complex shapes and are significantly harder to bioprint. A bioprinted heart, for example, must not only meet structural requirements, but also vascularization, mechanical load, and electrical signal propagation requirements. In 2022, the first success of a clinical trial for a 3D bioprinted transplant that is made from the patient's own cells, an
264:, and live cells suspended in the solution. In this manner, scaffolds can be cultured post-print and without the need for further treatment for cellular seeding. Some focus in the use of direct printing techniques is based upon the use of coaxial nozzle assemblies, or coaxial extrusion. The coaxial nozzle setup enables the simultaneous extrusion of multiple material bioinks, capable of making multi-layered scaffolds in a single extrusion step. The development of tubular structures has found the layered extrusion achieved via these techniques desirable for the radial variability in material characterization that it can offer, as the coaxial nozzle provides an inner and outer tube for bioink flow. Indirect extrusion techniques for bioprinting rather require the printing of a base material of cell-laden hydrogels, but unlike direct extrusion contains a sacrificial hydrogel that can be trivially removed post-printing through thermal or chemical extraction. The remaining resin solidifies and becomes the desired 3D-printed construct. 438: 251:
main types of extrusion. These are pneumatic driven, piston driven, screw driven and eccentric screw driven (also known as progressing cavity pump). Each extrusion method has their own advantages and disadvantages. Pneumatic extrusion uses pressurized air to force liquid bioink through a depositing agent. Air filters are commonly used to sterilize the air before it is used, to ensure air pushing the bioink is not contaminated. Piston driven extrusion uses a piston connected to a guide screw. The linear motion of the piston squeezes material out of the nozzle. Screw driven extrusion uses an auger screw to extrude material using rotational motion. Screw driven devices allow for the use of higher viscosity materials and provide more volumetric control.
238:
create the desired shape. To make bio-ink, scientists create a slurry of cells that can be loaded into a cartridge and inserted into a specially designed printer, along with another cartridge containing a gel known as bio-paper." In bioprinting, there are three major types of printers that have been used. These are inkjet, laser-assisted, and extrusion printers. Inkjet printers are mainly used in bioprinting for fast and large-scale products. One type of inkjet printer, called drop-on-demand inkjet printer, prints materials in exact amounts, minimizing cost and waste. Printers that use lasers provide high-resolution printing; however, these printers are often expensive. Extrusion printers print cells layer-by-layer, just like
212:
cell signaling, and independent arrangement and patterning to provide the required biological functions and micro-architecture. Autonomous self-assembly demands specific information about the developmental techniques of the tissues and organs of the embryo. There is a "scaffold-free" model that uses self-assembling spheroids that subjects to fusion and cell arrangement to resemble evolving tissues. Autonomous self-assembly depends on the cell as the fundamental driver of histogenesis, guiding the building blocks, structural and functional properties of these tissues. It demands a deeper understanding of how embryonic tissues mechanisms develop as well as the microenvironment surrounded to create the bioprinted tissues.
160:
to lack crucial elements that affect the body such as working blood vessels, tubules for collecting urine, and the growth of billions of cells required for these organs. Without these components the body has no way to get the essential nutrients and oxygen deep within their interiors. Given that every tissue in the body is naturally composed of different cell types, many technologies for printing these cells vary in their ability to ensure stability and viability of the cells during the manufacturing process. Some of the methods that are used for 3D bioprinting of cells are
276:. In cell transfer laser printing, a laser stimulates the connection between energy-absorbing material (e.g. gold, titanium, etc.) and the bioink. This 'donor layer' vaporizes under the laser's irradiation, forming a bubble from the bioink layer which gets deposited from a jet. Photo-polymerization techniques rather use photoinitiated reactions to solidify the ink, moving the beam path of a laser to induce the formation of a desired construct. Certain laser frequencies paired with photopolymerization reactions can be carried out without damaging cells in the material. 203:
microenvironment of the organs and tissues. The application of biomimicry in bioprinting involves creating both identical cellular and extracellular parts of organs. For this approach to be successful, the tissues must be replicated on a micro scale. Therefore, it is necessary to understand the microenvironment, the nature of the biological forces in this microenvironment, the precise organization of functional and supporting cell types, solubility factors, and the composition of extracellular matrix.
230: 106: 3583: 392:
adult form. Cell-encapsualting hydrogels are used in extrusion based bioprinting methods, while gelatin MethacryloylGelatin methacrylon (GelMA) and acellular comprised bioinks are most often used in tissue engineering techniques that require cross-linkage and precise structural integrity. It is essential for bioinks to help replicate the external cellular matrix environment that the cell would naturally occur in.
33: 488:, to biochemically degrade contaminants into harmless substances, making it an environmentally friendly and cost-effective alternative; 3D bioprinting facilitates the fabrication of functional structures using these materials that enhance bioremediation processes leading to a significant interest in the application of 3D bioprinted constructs in improving bioremediation. 294:
differentiate. A drawback of this printing method is the ability of the bioinks such as hydrogels to clog the printing nozzle, due to their high viscosity. Ideal inkjet bioprinting involves using a low polymer viscosity (ideally below 10 centipoise), low cell density (<10 million cells/mL), and low structural heights (<10 million cells/mL).
517:. Microbes are able to degrade a large range of chemicals and metals and providing a structure for these microbes to flourish such as in biofilm structures is beneficial. Artificial biofilms protect the microbes from the dangers of the environment while promoting signaling and overall microbial interactions. 3D bioprinting allows functional 109: 113: 112: 108: 107: 114: 307:, which induces a mechanical vibration capable of ejecting a small globule of bioink through the nozzle. A significant aspect of the study of droplet-based approaches to bioprinting is accounting for mechanical and thermal stress cells within the bioink experience near the nozzle-tip as they are extruded. 505:
can also be used to assist in the formation of functional biofilms. Biofilms are difficult to analyze in a laboratory setting due to the complex structure and the time it takes for a functional biofilm to form. 3D bioprinting biofilms allows us to skip certain processes and makes it easier to analyze
211:
The second approach of bioprinting is autonomous self-assembly. This approach relies on the physical process of embryonic organ development as a model to replicate the tissues of interest. When cells are in their early development, they create their own extracellular matrix building block, the proper
111: 92:
deposited layer by layer to produce the desired tissue. In addition, 3D bioprinting has begun to incorporate the printing of scaffolds which can be used to regenerate joints and ligaments. Apart from these, 3D bioprinting has recently been used in environmental remediation applications, including the
255:
driven systems allow for a much more precise deposition of low to high viscosity materials due to the self-sealing chambers in the extruder. Once printed, many materials require a crosslinking step to achieve the desired mechanical properties for the construct, which can be achieved for example with
159:
3D bioprinting for fabricating biological constructs typically involves dispensing cells onto a biocompatible scaffold using a successive layer-by-layer approach to generate tissue-like three-dimensional structures. Artificial organs such as livers and kidneys made by 3D bioprinting have been shown
237:
Akin to ordinary ink printers, bioprinters have three major components to them. These are the hardware used, the type of bio-ink, and the material it is printed on (biomaterials). Bio-ink is a material made from living cells that behaves much like a liquid, allowing people to 'print' it in order to
180:
The post-bioprinting process is necessary to create a stable structure from the biological material. If this process is not well-maintained, the mechanical integrity and function of the 3D printed object is at risk. To maintain the object, both mechanical and chemical stimulations are needed. These
143:
is done on the images. The now-2D images are then sent to the printer to be made. Once the image is created, certain cells are isolated and multiplied. These cells are then mixed with a special liquefied material that provides oxygen and other nutrients to keep them alive. This aggregation of cells
87:
to create tissue-like structures that are later used in various medical and tissue engineering fields. 3D bioprinting covers a broad range of bioprinting techniques and biomaterials. Currently, bioprinting can be used to print tissue and organ models to help research drugs and potential treatments.
534:
and in corrosion control. When humans come in contact with environmental biofilms, it is possible for infections and long-term health hazards to occur. Antibiotic penetration and expansion within a biofilm is an area of research which can benefit from bioprinting techniques, to further explore the
391:
are essential components of the bioprinting process. They are composed of living cells and enzymatic supplements to nurture an environment that supports the biological needs of the printed tissue. The environment created by the bioink allows for the cell to attach, grow, and differentiate into its
303:
techniques. This method of bioprinting is often used experimentally with lung and ovarian cancer models. Thermal technologies use short duration signals to heat the bioink, inducing the formation of small bubbles which are ejected. Piezoelectric bioprinting has short duration current applied to a
250:
Extrusion-based printing is a very common technique within the field of 3D printing which entails extruding, or forcing, a continuous stream of melted solid material or viscous liquid through a sort of orifice, often a nozzle or syringe. When it comes to extrusion based bioprinting, there are four
184:
Bioreactors work in either providing convective nutrient transport, creating microgravity environments, changing the pressure causing solution to flow through the cells, or adding compression for dynamic or static loading. Each type of bioreactor is ideal for different types of tissue, for example
405:
3D bioprinting can be used to reconstruct tissue from various regions of the body. The precursor to the adoption of 3D printing in healthcare was a series of trials conducted by researchers at Boston Children's Hospital. The team built replacement urinary bladders by hand for seven patients by
259:
Direct extrusion is one of the most common extrusion-based bioprinting techniques, wherein the pressurized force directs the bioink to flow out of the nozzle, and directly print the scaffold without any necessary casting. The bioink itself for this approach can be a blend of polymer hydrogels,
302:
There are several other bioprinting techniques which are less commonly used. Droplet-based bioprinting is a technique in which the bioink blend of cells and/or hydrogels are placed in droplets in precise positions. Most common amongst this approach are thermal and piezoelectric-drop-on-demand
202:
The first approach of bioprinting is called biomimicry. The main goal of this approach is to create fabricated structures that are identical to the natural structure that are found in the tissues and organs in the human body. Biomimicry requires duplication of the shape, framework, and the
293:
Another form of bioprinting involves an inkjet printer, which is primarily used in biomedical settings. This method prints detailed proteins and nucleic acids. Hydrogels are commonly selected as the bioink. Cells can be printed on to a selected surface media to proliferate and ultimately
461:-like beef has a structure similar to original meat. This technology provides an alternative to natural meat harvesting methods if the livestock industry is plagued by disease. In addition, it provides a possible solution to reducing the environmental impact of the livestock industry. 284:
In this form of printing, plastic residues are melted down and individual layered in sections to create a desired shape. Nylon and PVA are examples of biomaterials used in this method. This technique is most often used to design prototypes for prosthetics and cartilage construction.
88:
Nonetheless, translation of bioprinted living cellular constructs into clinical application is met with several issues due to the complexity and cell number necessary to create functional organs. However, innovations span from bioprinting of extracellular matrix to mixing cells with
220:
The third approach of bioprinting is a combination of both the biomimicry and self-assembly approaches, called mini tissues. Organs and tissues are built from very small functional components. The mini-tissue approach takes these small pieces and arrange them into larger framework.
193:
Researchers in the field have developed approaches to produce living organs that are constructed with the appropriate biological and mechanical properties. 3D bioprinting is based on three main approaches: biomimicry, autonomous self-assembly and mini-tissue building blocks.
181:
stimulations send signals to the cells to control the remodeling and growth of tissues. In addition, in recent development, bioreactor technologies have allowed the rapid maturation of tissues, vascularization of tissues and the ability to survive transplants.
521:
to be placed in structures that provide mechanical stability and protects them from environmental conditions. The larger contact area provided by 3D printed structures compared to normal environmental structures provides more efficient removal of pollutants.
425:. Some of the most notable bioengineered substances are usually stronger than the average bodily materials, including soft tissue and bone. These constituents can act as future substitutes, even improvements, for the original body materials. In addition, the 130:
Pre-bioprinting is the process of creating a model that the printer will later create and choosing the materials that will be used. One of the first steps is to obtain a biopsy of the organ, to sample cells. Common technologies used for bioprinting are
496:
The bioprinting of biofilms uses the same methods as other bioprinting. Oftentimes, the biofilm begins with an extrusion of a polysaccharide to provide structure for biofilm growth. An example of one of these
110: 156:
are placed in a printer cartridge and deposited using the patients' medical scans. When a bioprinted pre-tissue is transferred to an incubator, this cell-based pre-tissue matures into a tissue.
2566:"A Multicenter, Single Arm, Prospective, Open-Label, Staged Study of the Safety and Efficacy of the AuriNovo Construct for Auricular Reconstruction in Subjects With Unilateral Microtia" 2191: 1317: 2168: 429:
aims to print mini organs such as hearts, livers, and lungs as the potential to test new drugs more accurately and perhaps eliminate the need for testing in animals.
3542: 1033: 510:
being printed with change the functionality due to nutrient and oxygen diffusion. Thicker 3D printed biofilms will naturally select for anaerobes for example.
2389: 819: 437: 513:
Biofilms are capable of remediation in the natural environment which suggests there is potential in regards to the use of 3D bioprinted biofilm use in
1029:"Printability, durability, contractility and vascular network formation in 3D bioprinted cardiac endothelial cells using alginate–gelatin hydrogels" 535:
effect of environmental biofilms on human health. Biofilm printing requires further research due to limited published data and complex protocols.
442: 3182: 1525: 3467: 3408: 3122: 1959: 1348: 773: 1373:
Singh D, Thomas D (April 2019). "Advances in medical polymer technology towards the panacea of complex 3D tissue and organ manufacture".
3370: 1940:
Devillard R, Pagès E, Correa MM, Kériquel V, Rémy M, Kalisky J, et al. (2014), "Cell Patterning by Laser-Assisted Bioprinting",
1116:"Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges" 3090: 2703:"Emergent Biological Endurance Depends on Extracellular Matrix Composition of Three-Dimensionally Printed Escherichia coli Biofilms" 1509: 1267: 1560:"Towards preserving post-printing cell viability and improving the resolution: Past, present, and future of 3D bioprinting theory" 1287: 3549: 3022: 868: 3569: 3537: 426: 3278: 144:
does not require a scaffold, and is required for placing in the tubular-like tissue fusion for processes such as extrusion.
3515: 3500: 3238: 976: 866:
Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016). "Advanced Bioinks for 3D Printing: A Materials Science Perspective".
1080:
Nakashima Y, Okazak K, Nakayama K, Okada S, Mizu-uchi H (January 2017). "Bone and Joint Diseases in Present and Future".
3490: 3617: 3520: 3365: 1877:"Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels" 913:"Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels" 3622: 140: 136: 242:
to create 3D constructs. In addition to just cells, extrusion printers may also use hydrogels infused with cells.
3627: 3564: 3510: 3293: 3233: 3115: 514: 80: 3559: 3423: 3162: 2390:"90-OR: 3D Bioprinting of a Bionic Pancreas with a Vascular System—Results of Transplantation in Large Animals" 2641:"Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting" 2793: 713:"3D bioprinting in bioremediation: a comprehensive review of principles, applications, and future directions" 3458: 252: 165: 2588: 3495: 304: 272:
Laser-based bioprinting can be split into two major classes: those based on cell transfer technologies or
3612: 3484: 3385: 1480: 564: 559: 2613: 2342:"Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future?" 2053:
Hansen CJ, Saksena R, Kolesky DB, Vericella JJ, Kranz SJ, Muldowney GP, et al. (January 4, 2013).
457:. In 2021, a steak-like cultured meat, composed of three types of bovine cell fibers was produced. The 1659:"3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances" 1115: 3607: 3586: 3554: 3478: 3172: 3157: 3108: 2908: 2845: 2770: 2652: 2066: 1888: 1875:
Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. (October 30, 2015).
1710:"Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion" 1332: 926: 531: 273: 1941: 1559: 229: 3462: 1533: 132: 122:
3D bioprinting generally follows three steps: pre-bioprinting, bioprinting, and post-bioprinting.
3448: 3223: 3187: 2998: 2940: 2877: 2814: 2457:
Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, et al. (June 30, 2020).
2439: 2371: 2281: 2098: 1857: 1755: 1590: 1450: 1398: 1151: 1009: 911:
Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. (October 2015).
893: 754: 626: 418: 72: 2834:"Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants" 2757:
Ning E, Turnbull G, Clarke J, Picard F, Riches P, Vendrell M, et al. (September 13, 2019).
1216:
Ozbolat IT (July 2015). "Bioprinting scale-up tissue and organ constructs for transplantation".
3395: 3380: 3375: 3282: 3152: 3147: 3086: 3071: 3067: 3038: 3034: 2990: 2982: 2932: 2924: 2869: 2861: 2806: 2798: 2732: 2678: 2547: 2498: 2480: 2431: 2414:
Sommer AC, Blumenthal EZ (September 2019). "Implementations of 3D printing in ophthalmology".
2363: 2322: 2273: 2232: 2149: 2090: 2082: 2035: 2017: 1965: 1955: 1922: 1904: 1849: 1807: 1799: 1747: 1739: 1709: 1690: 1639: 1582: 1505: 1499: 1442: 1390: 1263: 1233: 1195: 1143: 1135: 1089: 1062: 1001: 993: 952: 885: 848: 746: 686: 668: 618: 610: 407: 169: 3472: 3413: 3319: 3142: 2974: 2916: 2853: 2788: 2778: 2722: 2714: 2668: 2660: 2537: 2529: 2488: 2470: 2423: 2353: 2312: 2263: 2222: 2139: 2129: 2074: 2025: 2007: 1947: 1912: 1896: 1841: 1789: 1729: 1721: 1680: 1670: 1629: 1621: 1574: 1434: 1382: 1340: 1225: 1187: 1127: 1052: 1042: 985: 942: 934: 917: 877: 838: 828: 793: 785: 736: 726: 676: 660: 602: 161: 75:
applications but in recent times have seen increased interest in other applications such as
774:"Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation" 3334: 3329: 3288: 3254: 2912: 2849: 2774: 2656: 2070: 1892: 1336: 930: 741: 712: 3418: 3274: 2833: 2759:"3D bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing" 2727: 2673: 2640: 2542: 2517: 2493: 2458: 2030: 1995: 1951: 1917: 1876: 1685: 1658: 1634: 1609: 1057: 1028: 947: 912: 843: 815:"Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery" 814: 798: 681: 549: 498: 469: 446: 83:. Generally, 3D bioprinting uses a layer-by-layer method to deposit materials known as 56: 3042: 2857: 2639:
Kang DH, Louis F, Liu H, Shimoda H, Nishiyama Y, Nozawa H, et al. (August 2021).
2268: 2251: 1344: 3601: 3192: 3177: 3167: 3002: 2963:"The Next Frontier of 3D Bioprinting: Bioactive Materials Functionalized by Bacteria" 2944: 2896: 2881: 2818: 2443: 2375: 2227: 2210: 1861: 1759: 1155: 1131: 1013: 758: 554: 518: 501:
is alginate. The alginate structure can have microbes embedded within the structure.
454: 60: 2920: 2702: 2285: 1675: 1594: 1454: 1402: 971: 630: 3505: 3438: 3433: 3339: 3314: 3269: 2718: 2459:"Novel Strategies in Artificial Organ Development: What Is the Future of Medicine?" 2102: 1178:
Shafiee A, Atala A (March 2016). "Printing Technologies for Medical Applications".
897: 485: 477: 422: 32: 2897:"Microbial biofilms: Recent advances and progress in environmental bioremediation" 2565: 1386: 1229: 3080: 1794: 1777: 1610:"Development of 3D bioprinting: From printing methods to biomedical applications" 1578: 1484: 1257: 1191: 472:
uses microorganisms or in recent times, materials of biological origin, such as
152:
In the second step, the liquid mixtures of cells, matrix, and nutrients known as
3131: 2134: 2117: 544: 239: 68: 52: 2783: 2758: 2664: 2533: 2427: 2358: 2341: 1734: 1725: 1625: 648: 3349: 3309: 1047: 989: 881: 664: 481: 2986: 2928: 2865: 2802: 2484: 2367: 2236: 2153: 2116:
Munaz A, Vadivelu RK, St John J, Barton M, Kamble H, Nguyen NT (March 2016).
2086: 2021: 1908: 1853: 1803: 1743: 1586: 1139: 997: 672: 614: 355:
Requires a removeable 'sacrificial material' to support structural formation
3344: 3228: 2962: 2701:
Balasubramanian S, Yu K, Vasquez Cardenas D, Aubin-Tam ME, Meyer AS (2021).
2054: 1994:
Sachdev A, Acharya S, Gadodia T, Shukla S, J H, Akre C, et al. (2022).
1829: 833: 76: 2994: 2978: 2936: 2873: 2810: 2736: 2682: 2551: 2516:
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, et al. (July 2018).
2502: 2435: 2326: 2277: 2094: 2078: 2039: 1969: 1926: 1900: 1845: 1811: 1751: 1694: 1643: 1446: 1394: 1237: 1199: 1147: 1093: 1066: 1005: 956: 938: 889: 852: 750: 690: 622: 590: 417:
3D bioprinting contributes to significant advances in the medical field of
97:
that host functional microorganisms that can facilitate pollutant removal.
17: 1425:
Murphy SV, Atala A (August 2014). "3D bioprinting of tissues and organs".
3264: 3218: 3208: 2012: 502: 411: 261: 89: 2317: 2300: 2252:"Tissue-engineered autologous bladders for patients needing cystoplasty" 2144: 1657:
Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (June 2018).
731: 3428: 3324: 3213: 2475: 569: 507: 388: 153: 118:
Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips
94: 84: 64: 1946:, Methods in Cell Biology, vol. 119, Elsevier, pp. 159–174, 789: 3259: 2614:"Japanese scientists produce first 3D-bioprinted, marbled Wagyu beef" 2305:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
1830:"Tissue-Engineered Vascular Grafts: Emerging Trends and Technologies" 1438: 606: 473: 71:
to fabricate functional structures that were traditionally used for
1027:
Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C (2021).
421:
by allowing for research to be done on innovative materials called
2832:
Mishra S, Huang Y, Li J, Wu X, Zhou Z, Lei Q, et al. (2022).
1475:
Atala A, Yoo J (2015). "Bio-printing: 3D printing comes to life".
717: 458: 436: 228: 104: 2518:"3D bioprinting for cardiovascular regeneration and pharmacology" 1778:"Bioprinting for vascular and vascularized tissue biofabrication" 530:
Bioprinting also has possible uses in the future in assisting in
1996:"A Review on Techniques and Biomaterials Used in 3D Bioprinting" 3104: 2169:"Three-Dimensional Bioprinting for Tissue and Disease Modeling" 2055:"High-throughput printing via microvascular multinozzle arrays" 1288:"How 3D Printing Could End The Deadly Shortage Of Donor Organs" 813:
Roche CD, Brereton RJ, Ashton AW, Jackson C, Gentile C (2020).
3100: 972:"Opportunities and challenges of translational 3D bioprinting" 2895:
Sonawane JM, Rai AK, Sharma M, Tripathi M, Prasad R (2022).
2589:"Doctors Transplant Ear of Human Cells, Made by 3-D Printer" 2416:
Graefe's Archive for Clinical and Experimental Ophthalmology
3082:
Stem Cell Biology and Tissue Engineering in Dental Sciences
2250:
Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (April 2006).
772:
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM (2021).
2215:
The Bulletin of the Royal College of Surgeons of England
1114:
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y (December 1, 2023).
256:
the treatment of chemical agents or photo-crosslinkers.
185:
compression bioreactors are ideal for cartilage tissue.
2696: 2694: 2692: 2186: 2184: 2182: 649:"A Straightforward Approach for 3D Bacterial Printing" 377:
Precise control over flow & formation of scaffold
3531: 3447: 3394: 3358: 3302: 3247: 3201: 1708:Fisch P, Holub M, Zenobi-Wong M (January 1, 2021). 647:Lehner BA, Schmieden DT, Meyer AS (March 1, 2017). 2122:Journal of Science: Advanced Materials and Devices 2118:"Three-dimensional printing of biological matters" 344:Single step formation of multi-layered constructs 36:Different models of 3D printing tissue and organs. 2961:Liu Y, Xia X, Liu Z, Dong M (December 22, 2022). 2794:20.500.11820/2eea6c80-c261-4609-a889-e0e441f63bad 1526:"3D Printing Technology At The Service Of Health" 1553: 1551: 139:(MRI). To print with a layer-by-layer approach, 27:Use of 3D printing to fabricate biomedical parts 3058:Tran J (May 7, 2015). "Patenting Bioprinting". 1989: 1987: 1985: 1211: 1209: 1173: 1171: 1169: 1167: 1165: 2299:Hong N, Yang GH, Lee J, Kim G (January 2018). 441:Such steak-like meat could mitigate issues of 3116: 2301:"3D bioprinting and its in vivo applications" 1823: 1821: 1771: 1769: 1311: 1309: 1262:. Singapore: World Scientific Publishing Co. 1034:Frontiers in Bioengineering and Biotechnology 970:Murphy SV, De Coppi P, Atala A (April 2020). 642: 640: 8: 3060:Harvard Journal of Law and Technology Digest 3027:North Carolina Journal of Law and Technology 1251: 1249: 1247: 1109: 1107: 1105: 1103: 366:No shear stress upon cells suspended in ink 2956: 2954: 1558:Lepowsky E, Muradoglu M, Tasoglu S (2018). 820:European Journal of Cardio-Thoracic Surgery 3123: 3109: 3101: 2211:"The history of 3D printing in healthcare" 2059:Advanced Materials (Deerfield Beach, Fla.) 1776:Datta P, Ayan B, Ozbolat IT (March 2017). 1608:Gu Z, Fu J, Lin H, He Y (September 2020). 1082:Fukuoka Igaku Zasshi = Hukuoka Acta Medica 2792: 2782: 2726: 2672: 2541: 2492: 2474: 2357: 2316: 2267: 2226: 2167:Maharjan DS, Bonilla M, Zhang PY (2019). 2143: 2133: 2029: 2011: 1916: 1793: 1733: 1684: 1674: 1633: 1420: 1418: 1416: 1414: 1412: 1281: 1279: 1056: 1046: 946: 842: 832: 797: 740: 730: 680: 2192:"3D Bioprinting: Bioink Selection Guide" 1614:Asian Journal of Pharmaceutical Sciences 1259:Bioprinting: Principles and Applications 309: 31: 1318:"A sweet solution for replacing organs" 581: 443:environmental impact of meat production 2568:. clinicaltrials.gov. October 15, 2021 1943:Micropatterning in Cell Biology Part A 1470: 1468: 1466: 1464: 591:"3D bioprinting of tissues and organs" 506:functional biofilms. Thickness of the 3468:Artificial intelligence in healthcare 2340:Shinkar K, Rhode K (August 1, 2022). 7: 1828:Gupta P, Mandal BB (June 12, 2021). 1597:– via Elsevier Science Direct. 706: 704: 702: 700: 260:naturally derived materials such as 3079:Vishwakarma A (November 27, 2014). 3543:reform debate in the United States 1952:10.1016/b978-0-12-416742-1.00009-3 589:Murphy SV, Atala A (August 2014). 25: 3570:(Category Health care by country) 2858:10.1016/j.chemosphere.2022.133609 1345:10.1038/scientificamerican0413-54 453:Bioprinting can also be used for 3582: 3581: 3023:"To Bioprint or Not to Bioprint" 2901:Science of the Total Environment 2228:10.1308/147363514X13990346756481 1286:Cooper-White M (March 1, 2015). 1132:10.1016/j.biotechadv.2023.108243 869:Annals of Biomedical Engineering 384:Significance of bioink selection 2921:10.1016/j.scitotenv.2022.153843 1676:10.1016/j.bioactmat.2017.11.008 1477:Manufacturing Engineering Suppl 427:Defense Threat Reduction Agency 3279:Academic health science centre 2719:10.1021/acssynbio.1c00290.s002 2522:Advanced Drug Delivery Reviews 1: 3516:Health information management 3501:health information technology 3239:Health information management 2346:Annals of 3D Printed Medicine 2269:10.1016/S0140-6736(06)68438-9 1834:Advanced Functional Materials 1387:10.1016/j.amjsurg.2018.05.012 1230:10.1016/j.tibtech.2015.04.005 977:Nature Biomedical Engineering 711:Finny AS (February 8, 2024). 333:Simple execution, no casting 225:Classification of bioprinters 172:, and direct cell extrusion. 3491:Translational bioinformatics 1795:10.1016/j.actbio.2017.01.035 1579:10.1016/j.bprint.2018.e00034 1294:. TheHuffingtonPost.com, Inc 1192:10.1016/j.molmed.2016.01.003 1180:Trends in Molecular Medicine 55:–like techniques to combine 3521:Consumer health informatics 2135:10.1016/j.jsamd.2016.04.001 1375:American Journal of Surgery 298:Additional printing methods 3644: 2665:10.1038/s41467-021-25236-9 2534:10.1016/j.addr.2018.07.014 2428:10.1007/s00417-019-04312-3 2359:10.1016/j.stlm.2022.100066 1626:10.1016/j.ajps.2019.11.003 1256:Chua CK, Yeong WY (2015). 545:3D printing § Bio-printing 280:Fixed deposition modelling 141:tomographic reconstruction 137:magnetic resonance imaging 93:fabrication of functional 3577: 3511:Public health informatics 3424:Electronic health records 3294:Supervised injection site 3234:Allied health professions 3138: 2587:Rabin RC (June 2, 2022). 1048:10.3389/fbioe.2021.636257 990:10.1038/s41551-019-0471-7 882:10.1007/s10439-016-1638-y 665:10.1021/acssynbio.6b00395 515:environmental remediation 81:environmental remediation 2784:10.1088/1758-5090/ab37a0 2209:Whitaker M (July 2014). 1726:10.1088/1758-5090/abc39b 207:Autonomous self-assembly 3459:Medical image computing 3409:Artificial intelligence 1498:Manappallil JJ (2015). 1218:Trends in Biotechnology 166:magnetic 3D bioprinting 3496:Translational medicine 2979:10.1002/smll.202205949 2079:10.1002/adma.201203321 1901:10.1126/sciadv.1500758 1846:10.1002/adfm.202100027 1501:Basic Dental Materials 1120:Biotechnology Advances 939:10.1126/sciadv.1500758 450: 316:Method of bioprinting 305:piezoelectric actuator 234: 119: 37: 3485:Computational biology 3386:Universal precautions 2707:ACS Synthetic Biology 2645:Nature Communications 1536:on September 14, 2016 834:10.1093/ejcts/ezaa093 653:ACS Synthetic Biology 565:Regenerative medicine 560:Ethics of bioprinting 440: 311:Types of bioprinters 232: 117: 35: 3479:Behavior informatics 2394:diabetesjournals.org 2013:10.7759/cureus.28463 1427:Nature Biotechnology 1354:on February 17, 2016 595:Nature Biotechnology 532:wastewater treatment 274:photo-polymerization 189:Bioprinting approach 3463:imaging informatics 3371:Cultural competence 2913:2022ScTEn.824o3843S 2850:2022Chmsp.29433609M 2775:2019BioFa..11d5018N 2657:2021NatCo..12.5059K 2318:10.1002/jbm.b.33826 2071:2013AdM....25...96H 1893:2015SciA....1E0758H 1735:20.500.11850/458795 1663:Bioactive Materials 1337:2013SciAm.308d..54H 1325:Scientific American 931:2015SciA....1E0758H 732:10.7717/peerj.16897 312: 133:computed tomography 3618:Tissue engineering 3449:Health informatics 3224:Healthcare science 3085:. Elsevier, 2014. 2593:The New York Times 2476:10.3390/mi11070646 1782:Acta Biomaterialia 1504:. JP Medical Ltd. 778:APL Bioengineering 451: 419:tissue engineering 401:Tissue engineering 338:Coaxial extrusion 310: 235: 120: 73:tissue engineering 38: 3623:Synthetic biology 3595: 3594: 3359:Skills / training 3283:Teaching hospital 3045:on March 10, 2019 2713:(11): 2997–3008. 2620:. August 25, 2021 1961:978-0-12-416742-1 1316:Harmon K (2013). 790:10.1063/5.0032196 381: 380: 319:Mode of printing 170:stereolithography 115: 41:Three dimensional 16:(Redirected from 3635: 3628:Self-replication 3585: 3584: 3473:Neuroinformatics 3414:Connected health 3125: 3118: 3111: 3102: 3096: 3075: 3054: 3052: 3050: 3041:. Archived from 3007: 3006: 2973:(10): e2205949. 2958: 2949: 2948: 2892: 2886: 2885: 2829: 2823: 2822: 2796: 2786: 2754: 2748: 2747: 2745: 2743: 2730: 2698: 2687: 2686: 2676: 2636: 2630: 2629: 2627: 2625: 2610: 2604: 2603: 2601: 2599: 2584: 2578: 2577: 2575: 2573: 2562: 2556: 2555: 2545: 2513: 2507: 2506: 2496: 2478: 2454: 2448: 2447: 2422:(9): 1815–1822. 2411: 2405: 2404: 2402: 2400: 2386: 2380: 2379: 2361: 2337: 2331: 2330: 2320: 2296: 2290: 2289: 2271: 2262:(9518): 1241–6. 2247: 2241: 2240: 2230: 2206: 2200: 2199: 2188: 2177: 2176: 2164: 2158: 2157: 2147: 2137: 2113: 2107: 2106: 2050: 2044: 2043: 2033: 2015: 1991: 1980: 1979: 1978: 1976: 1937: 1931: 1930: 1920: 1881:Science Advances 1872: 1866: 1865: 1825: 1816: 1815: 1797: 1773: 1764: 1763: 1737: 1705: 1699: 1698: 1688: 1678: 1654: 1648: 1647: 1637: 1605: 1599: 1598: 1564: 1555: 1546: 1545: 1543: 1541: 1532:. Archived from 1522: 1516: 1515: 1495: 1489: 1488: 1472: 1459: 1458: 1439:10.1038/nbt.2958 1422: 1407: 1406: 1370: 1364: 1363: 1361: 1359: 1353: 1347:. Archived from 1322: 1313: 1304: 1303: 1301: 1299: 1292:Huffpost Science 1283: 1274: 1273: 1253: 1242: 1241: 1213: 1204: 1203: 1175: 1160: 1159: 1111: 1098: 1097: 1077: 1071: 1070: 1060: 1050: 1024: 1018: 1017: 967: 961: 960: 950: 918:Science Advances 908: 902: 901: 876:(6): 2090–2102. 863: 857: 856: 846: 836: 810: 804: 803: 801: 769: 763: 762: 744: 734: 708: 695: 694: 684: 659:(7): 1124–1130. 644: 635: 634: 607:10.1038/nbt.2958 586: 414:, was reported. 352:Extrusion-based 341:Extrusion-based 330:Extrusion-based 327:Direct printing 313: 176:Post-bioprinting 162:photolithography 116: 21: 3643: 3642: 3638: 3637: 3636: 3634: 3633: 3632: 3598: 3597: 3596: 3591: 3573: 3527: 3526: 3525: 3443: 3390: 3354: 3330:Overutilization 3298: 3289:Pharmacy school 3255:Assisted living 3243: 3197: 3134: 3129: 3099: 3093: 3078: 3057: 3048: 3046: 3021:Tran J (2015). 3020: 3016: 3014:Further reading 3011: 3010: 2960: 2959: 2952: 2894: 2893: 2889: 2831: 2830: 2826: 2756: 2755: 2751: 2741: 2739: 2700: 2699: 2690: 2638: 2637: 2633: 2623: 2621: 2612: 2611: 2607: 2597: 2595: 2586: 2585: 2581: 2571: 2569: 2564: 2563: 2559: 2515: 2514: 2510: 2456: 2455: 2451: 2413: 2412: 2408: 2398: 2396: 2388: 2387: 2383: 2339: 2338: 2334: 2298: 2297: 2293: 2249: 2248: 2244: 2208: 2207: 2203: 2196:Millapore Sigma 2190: 2189: 2180: 2173:Millipore Sigma 2166: 2165: 2161: 2115: 2114: 2110: 2052: 2051: 2047: 1993: 1992: 1983: 1974: 1972: 1962: 1939: 1938: 1934: 1887:(9): e1500758. 1874: 1873: 1869: 1840:(33): 2100027. 1827: 1826: 1819: 1775: 1774: 1767: 1707: 1706: 1702: 1656: 1655: 1651: 1607: 1606: 1602: 1562: 1557: 1556: 1549: 1539: 1537: 1524: 1523: 1519: 1512: 1497: 1496: 1492: 1474: 1473: 1462: 1424: 1423: 1410: 1372: 1371: 1367: 1357: 1355: 1351: 1320: 1315: 1314: 1307: 1297: 1295: 1285: 1284: 1277: 1270: 1255: 1254: 1245: 1215: 1214: 1207: 1177: 1176: 1163: 1113: 1112: 1101: 1079: 1078: 1074: 1026: 1025: 1021: 969: 968: 964: 925:(9): e1500758. 910: 909: 905: 865: 864: 860: 812: 811: 807: 771: 770: 766: 710: 709: 698: 646: 645: 638: 588: 587: 583: 578: 541: 528: 499:polysaccharides 494: 467: 435: 403: 398: 386: 300: 291: 282: 270: 253:Eccentric screw 248: 246:Extrusion-based 233:A 3D bioprinter 227: 218: 209: 200: 191: 178: 150: 128: 126:Pre-bioprinting 105: 103: 28: 23: 22: 15: 12: 11: 5: 3641: 3639: 3631: 3630: 3625: 3620: 3615: 3610: 3600: 3599: 3593: 3592: 3590: 3589: 3578: 3575: 3574: 3572: 3567: 3562: 3557: 3552: 3550:United Kingdom 3547: 3546: 3545: 3535: 3533: 3529: 3528: 3524: 3523: 3518: 3513: 3508: 3503: 3498: 3493: 3488: 3482: 3476: 3470: 3465: 3455: 3454: 3453: 3451: 3445: 3444: 3442: 3441: 3436: 3431: 3426: 3421: 3419:Digital health 3416: 3411: 3406: 3404:3D bioprinting 3400: 3398: 3392: 3391: 3389: 3388: 3383: 3378: 3373: 3368: 3366:Bedside manner 3362: 3360: 3356: 3355: 3353: 3352: 3347: 3342: 3337: 3332: 3327: 3322: 3317: 3312: 3306: 3304: 3300: 3299: 3297: 3296: 3291: 3286: 3275:Medical school 3272: 3267: 3262: 3257: 3251: 3249: 3245: 3244: 3242: 3241: 3236: 3231: 3226: 3221: 3216: 3211: 3205: 3203: 3199: 3198: 3196: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3145: 3139: 3136: 3135: 3130: 3128: 3127: 3120: 3113: 3105: 3098: 3097: 3091: 3076: 3055: 3017: 3015: 3012: 3009: 3008: 2950: 2887: 2824: 2763:Biofabrication 2749: 2688: 2631: 2605: 2579: 2557: 2508: 2449: 2406: 2381: 2332: 2311:(1): 444–459. 2291: 2242: 2221:(7): 228–229. 2201: 2178: 2159: 2108: 2045: 1981: 1960: 1932: 1867: 1817: 1765: 1714:Biofabrication 1700: 1669:(2): 144–156. 1649: 1620:(5): 529–557. 1600: 1547: 1517: 1510: 1490: 1460: 1408: 1381:(4): 807–808. 1365: 1305: 1275: 1268: 1243: 1224:(7): 395–400. 1205: 1186:(3): 254–265. 1161: 1099: 1072: 1019: 984:(4): 370–380. 962: 903: 858: 827:(3): 500–510. 805: 764: 696: 636: 601:(8): 773–785. 580: 579: 577: 574: 573: 572: 567: 562: 557: 552: 550:Biofabrication 547: 540: 537: 527: 524: 519:microorganisms 493: 490: 470:Bioremediation 466: 465:Bioremediation 463: 447:animal welfare 434: 431: 402: 399: 397: 394: 385: 382: 379: 378: 375: 374:Droplet-based 372: 368: 367: 364: 361: 357: 356: 353: 350: 346: 345: 342: 339: 335: 334: 331: 328: 324: 323: 320: 317: 299: 296: 290: 287: 281: 278: 269: 266: 247: 244: 226: 223: 217: 214: 208: 205: 199: 196: 190: 187: 177: 174: 149: 146: 127: 124: 102: 99: 61:growth factors 51:is the use of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3640: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3605: 3603: 3588: 3580: 3579: 3576: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3544: 3541: 3540: 3539: 3538:United States 3536: 3534: 3530: 3522: 3519: 3517: 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3497: 3494: 3492: 3489: 3487:in healthcare 3486: 3483: 3481:in healthcare 3480: 3477: 3475:in healthcare 3474: 3471: 3469: 3466: 3464: 3460: 3457: 3456: 3452: 3450: 3446: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3401: 3399: 3397: 3393: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3363: 3361: 3357: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3307: 3305: 3301: 3295: 3292: 3290: 3287: 3284: 3280: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3252: 3250: 3246: 3240: 3237: 3235: 3232: 3230: 3227: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3206: 3204: 3200: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3140: 3137: 3133: 3126: 3121: 3119: 3114: 3112: 3107: 3106: 3103: 3094: 3092:9780123971579 3088: 3084: 3083: 3077: 3073: 3069: 3065: 3061: 3056: 3044: 3040: 3036: 3032: 3028: 3024: 3019: 3018: 3013: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2957: 2955: 2951: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2891: 2888: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2828: 2825: 2820: 2816: 2812: 2808: 2804: 2800: 2795: 2790: 2785: 2780: 2776: 2772: 2769:(4): 045018. 2768: 2764: 2760: 2753: 2750: 2742:September 30, 2738: 2734: 2729: 2724: 2720: 2716: 2712: 2708: 2704: 2697: 2695: 2693: 2689: 2684: 2680: 2675: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2635: 2632: 2624:September 21, 2619: 2615: 2609: 2606: 2594: 2590: 2583: 2580: 2567: 2561: 2558: 2553: 2549: 2544: 2539: 2535: 2531: 2527: 2523: 2519: 2512: 2509: 2504: 2500: 2495: 2490: 2486: 2482: 2477: 2472: 2468: 2464: 2463:Micromachines 2460: 2453: 2450: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2410: 2407: 2395: 2391: 2385: 2382: 2377: 2373: 2369: 2365: 2360: 2355: 2351: 2347: 2343: 2336: 2333: 2328: 2324: 2319: 2314: 2310: 2306: 2302: 2295: 2292: 2287: 2283: 2279: 2275: 2270: 2265: 2261: 2257: 2253: 2246: 2243: 2238: 2234: 2229: 2224: 2220: 2216: 2212: 2205: 2202: 2197: 2193: 2187: 2185: 2183: 2179: 2174: 2170: 2163: 2160: 2155: 2151: 2146: 2141: 2136: 2131: 2127: 2123: 2119: 2112: 2109: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2065:(1): 96–102. 2064: 2060: 2056: 2049: 2046: 2041: 2037: 2032: 2027: 2023: 2019: 2014: 2009: 2006:(8): e28463. 2005: 2001: 1997: 1990: 1988: 1986: 1982: 1971: 1967: 1963: 1957: 1953: 1949: 1945: 1944: 1936: 1933: 1928: 1924: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1871: 1868: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1824: 1822: 1818: 1813: 1809: 1805: 1801: 1796: 1791: 1787: 1783: 1779: 1772: 1770: 1766: 1761: 1757: 1753: 1749: 1745: 1741: 1736: 1731: 1727: 1723: 1720:(1): 015012. 1719: 1715: 1711: 1704: 1701: 1696: 1692: 1687: 1682: 1677: 1672: 1668: 1664: 1660: 1653: 1650: 1645: 1641: 1636: 1631: 1627: 1623: 1619: 1615: 1611: 1604: 1601: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1568: 1561: 1554: 1552: 1548: 1535: 1531: 1527: 1521: 1518: 1513: 1511:9789352500482 1507: 1503: 1502: 1494: 1491: 1486: 1482: 1478: 1471: 1469: 1467: 1465: 1461: 1456: 1452: 1448: 1444: 1440: 1436: 1433:(8): 773–85. 1432: 1428: 1421: 1419: 1417: 1415: 1413: 1409: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1369: 1366: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1319: 1312: 1310: 1306: 1293: 1289: 1282: 1280: 1276: 1271: 1269:9789814612104 1265: 1261: 1260: 1252: 1250: 1248: 1244: 1239: 1235: 1231: 1227: 1223: 1219: 1212: 1210: 1206: 1201: 1197: 1193: 1189: 1185: 1181: 1174: 1172: 1170: 1168: 1166: 1162: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1110: 1108: 1106: 1104: 1100: 1095: 1091: 1087: 1083: 1076: 1073: 1068: 1064: 1059: 1054: 1049: 1044: 1040: 1036: 1035: 1030: 1023: 1020: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 978: 973: 966: 963: 958: 954: 949: 944: 940: 936: 932: 928: 924: 920: 919: 914: 907: 904: 899: 895: 891: 887: 883: 879: 875: 871: 870: 862: 859: 854: 850: 845: 840: 835: 830: 826: 822: 821: 816: 809: 806: 800: 795: 791: 787: 783: 779: 775: 768: 765: 760: 756: 752: 748: 743: 738: 733: 728: 724: 720: 719: 714: 707: 705: 703: 701: 697: 692: 688: 683: 678: 674: 670: 666: 662: 658: 654: 650: 643: 641: 637: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 592: 585: 582: 575: 571: 568: 566: 563: 561: 558: 556: 555:Cultured meat 553: 551: 548: 546: 543: 542: 538: 536: 533: 525: 523: 520: 516: 511: 509: 504: 500: 491: 489: 487: 486:nanoparticles 483: 479: 478:biocomposites 475: 471: 464: 462: 460: 456: 455:cultured meat 448: 444: 439: 433:Cultured meat 432: 430: 428: 424: 420: 415: 413: 409: 400: 395: 393: 390: 383: 376: 373: 370: 369: 365: 362: 359: 358: 354: 351: 348: 347: 343: 340: 337: 336: 332: 329: 326: 325: 321: 318: 315: 314: 308: 306: 297: 295: 288: 286: 279: 277: 275: 267: 265: 263: 257: 254: 245: 243: 241: 231: 224: 222: 215: 213: 206: 204: 197: 195: 188: 186: 182: 175: 173: 171: 167: 163: 157: 155: 147: 145: 142: 138: 134: 125: 123: 100: 98: 96: 91: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 34: 30: 19: 3613:Biomaterials 3506:Telemedicine 3439:Telemedicine 3434:Nanomedicine 3403: 3270:Nursing home 3081: 3063: 3059: 3047:. Retrieved 3043:the original 3030: 3026: 2970: 2966: 2904: 2900: 2890: 2841: 2837: 2827: 2766: 2762: 2752: 2740:. Retrieved 2710: 2706: 2648: 2644: 2634: 2622:. Retrieved 2617: 2608: 2596:. Retrieved 2592: 2582: 2570:. Retrieved 2560: 2525: 2521: 2511: 2466: 2462: 2452: 2419: 2415: 2409: 2397:. Retrieved 2393: 2384: 2349: 2345: 2335: 2308: 2304: 2294: 2259: 2255: 2245: 2218: 2214: 2204: 2195: 2172: 2162: 2145:10072/100959 2125: 2121: 2111: 2062: 2058: 2048: 2003: 1999: 1973:, retrieved 1942: 1935: 1884: 1880: 1870: 1837: 1833: 1785: 1781: 1717: 1713: 1703: 1666: 1662: 1652: 1617: 1613: 1603: 1570: 1566: 1538:. Retrieved 1534:the original 1529: 1520: 1500: 1493: 1476: 1430: 1426: 1378: 1374: 1368: 1358:February 17, 1356:. Retrieved 1349:the original 1331:(4): 54–55. 1328: 1324: 1298:February 17, 1296:. Retrieved 1291: 1258: 1221: 1217: 1183: 1179: 1123: 1119: 1085: 1081: 1075: 1038: 1032: 1022: 981: 975: 965: 922: 916: 906: 873: 867: 861: 824: 818: 808: 781: 777: 767: 722: 716: 656: 652: 598: 594: 584: 529: 512: 495: 468: 452: 423:biomaterials 416: 408:external ear 404: 396:Applications 387: 363:Laser-based 301: 292: 283: 271: 258: 249: 236: 219: 210: 201: 192: 183: 179: 158: 151: 129: 121: 69:biomaterials 48: 44: 40: 39: 29: 3608:3D printing 3565:New Zealand 3320:End-of-life 3202:Professions 3132:Health care 3049:January 12, 2838:Chemosphere 2651:(1): 5059. 2528:: 252–269. 2399:October 26, 2128:(1): 1–17. 1975:October 27, 1567:Bioprinting 526:Future uses 482:biopolymers 322:Advantages 268:Laser-based 240:3D printing 216:Mini-tissue 148:Bioprinting 53:3D printing 49:bioprinting 18:Bioprinting 3602:Categories 3532:By country 3396:Technology 3335:Palliative 3163:Philosophy 3153:Guidelines 3033:: 123–78. 2907:: 153843. 2844:: 133609. 2469:(7): 646. 2352:: 100066. 1573:: e00034. 1530:healthyeve 1485:1678889578 1126:: 108243. 1088:(1): 1–7. 725:: e16897. 576:References 198:Biomimicry 77:biosensing 3560:Australia 3381:Education 3376:Diagnosis 3229:Dentistry 3173:Providers 3148:Equipment 3143:Economics 3003:255078417 2987:1613-6810 2945:246858899 2929:0048-9697 2882:246025478 2866:0045-6535 2819:199379938 2803:1758-5090 2618:New Atlas 2485:2072-666X 2444:116884575 2376:249083907 2368:2666-9641 2237:1473-6357 2154:2468-2179 2087:1521-4095 2022:2168-8184 1909:2375-2548 1862:236235572 1854:1616-301X 1804:1742-7061 1760:212778036 1744:1758-5082 1587:2405-8866 1540:August 4, 1156:261383630 1140:0734-9750 1014:207912104 998:2157-846X 759:267586847 673:2161-5063 615:1546-1696 503:Hydrogels 410:to treat 349:Indirect 135:(CT) and 90:hydrogels 3587:Category 3265:Hospital 3248:Settings 3219:Pharmacy 3209:Medicine 3158:Industry 2995:36549677 2937:35176385 2874:35051518 2811:31370051 2737:34652130 2683:34429413 2598:July 19, 2572:July 19, 2552:30053441 2503:32629779 2436:30993457 2327:28106947 2286:17892321 2278:16631879 2095:23109104 2040:36176831 1970:24439284 1927:26601312 1812:28087487 1788:: 1–20. 1752:33086207 1695:29744452 1644:33193859 1595:69929012 1481:ProQuest 1455:22826340 1447:25093879 1403:44091616 1395:29803500 1238:25978871 1200:26856235 1148:37647974 1094:29226660 1067:33748085 1006:31695178 957:26601312 890:27184494 853:32391914 751:38344299 742:10859081 691:28225616 631:22826340 623:25093879 539:See also 492:Biofilms 412:microtia 371:Droplet 262:collagen 95:biofilms 85:bio-inks 65:bio-inks 3429:mHealth 3340:Primary 3325:Hospice 3315:Chronic 3214:Nursing 3183:Ranking 3072:2603693 3039:2562952 2909:Bibcode 2846:Bibcode 2771:Bibcode 2728:8609572 2674:8385070 2653:Bibcode 2543:6226324 2494:7408042 2198:. 2023. 2103:8398732 2067:Bibcode 2031:9511817 1918:4646826 1889:Bibcode 1686:5935777 1635:7610207 1333:Bibcode 1058:7968457 1041:: 110. 948:4646826 927:Bibcode 898:1251998 844:8456486 799:8019355 682:5525104 570:Bioinks 508:biofilm 474:enzymes 389:Bioinks 154:bioinks 101:Process 3555:Canada 3260:Clinic 3193:System 3188:Reform 3178:Public 3168:Policy 3089:  3070:  3037:  3001:  2993:  2985:  2943:  2935:  2927:  2880:  2872:  2864:  2817:  2809:  2801:  2735:  2725:  2681:  2671:  2550:  2540:  2501:  2491:  2483:  2442:  2434:  2374:  2366:  2325:  2284:  2276:  2256:Lancet 2235:  2152:  2101:  2093:  2085:  2038:  2028:  2020:  2000:Cureus 1968:  1958:  1925:  1915:  1907:  1860:  1852:  1810:  1802:  1758:  1750:  1742:  1693:  1683:  1642:  1632:  1593:  1585:  1508:  1483:  1453:  1445:  1401:  1393:  1266:  1236:  1198:  1154:  1146:  1138:  1092:  1065:  1055:  1012:  1004:  996:  955:  945:  896:  888:  851:  841:  796:  757:  749:  739:  689:  679:  671:  629:  621:  613:  360:Laser 289:Inkjet 79:, and 67:, and 3350:Total 3310:Acute 2999:S2CID 2967:Small 2941:S2CID 2878:S2CID 2815:S2CID 2440:S2CID 2372:S2CID 2282:S2CID 2099:S2CID 1858:S2CID 1756:S2CID 1591:S2CID 1563:(PDF) 1451:S2CID 1399:S2CID 1352:(PDF) 1321:(PDF) 1152:S2CID 1010:S2CID 894:S2CID 784:(2). 755:S2CID 718:PeerJ 627:S2CID 484:, or 459:Wagyu 57:cells 3461:and 3345:Self 3303:Care 3087:ISBN 3068:SSRN 3051:2019 3035:SSRN 2991:PMID 2983:ISSN 2933:PMID 2925:ISSN 2870:PMID 2862:ISSN 2807:PMID 2799:ISSN 2744:2023 2733:PMID 2679:PMID 2626:2021 2600:2022 2574:2022 2548:PMID 2499:PMID 2481:ISSN 2432:PMID 2401:2023 2364:ISSN 2323:PMID 2274:PMID 2233:ISSN 2150:ISSN 2091:PMID 2083:ISSN 2036:PMID 2018:ISSN 1977:2021 1966:PMID 1956:ISBN 1923:PMID 1905:ISSN 1850:ISSN 1808:PMID 1800:ISSN 1748:PMID 1740:ISSN 1691:PMID 1640:PMID 1583:ISSN 1542:2016 1506:ISBN 1443:PMID 1391:PMID 1360:2016 1300:2016 1264:ISBN 1234:PMID 1196:PMID 1144:PMID 1136:ISSN 1090:PMID 1063:PMID 1002:PMID 994:ISSN 953:PMID 886:PMID 849:PMID 747:PMID 687:PMID 669:ISSN 619:PMID 611:ISSN 445:and 2975:doi 2917:doi 2905:824 2854:doi 2842:294 2789:hdl 2779:doi 2723:PMC 2715:doi 2669:PMC 2661:doi 2538:PMC 2530:doi 2526:132 2489:PMC 2471:doi 2424:doi 2420:257 2354:doi 2313:doi 2309:106 2264:doi 2260:367 2223:doi 2140:hdl 2130:doi 2075:doi 2026:PMC 2008:doi 1948:doi 1913:PMC 1897:doi 1842:doi 1790:doi 1730:hdl 1722:doi 1681:PMC 1671:doi 1630:PMC 1622:doi 1575:doi 1435:doi 1383:doi 1379:217 1341:doi 1329:308 1226:doi 1188:doi 1128:doi 1086:108 1053:PMC 1043:doi 986:doi 943:PMC 935:doi 878:doi 839:PMC 829:doi 794:PMC 786:doi 737:PMC 727:doi 677:PMC 661:doi 603:doi 3604:: 3281:, 3066:. 3064:29 3062:. 3031:17 3029:. 3025:. 2997:. 2989:. 2981:. 2971:19 2969:. 2965:. 2953:^ 2939:. 2931:. 2923:. 2915:. 2903:. 2899:. 2876:. 2868:. 2860:. 2852:. 2840:. 2836:. 2813:. 2805:. 2797:. 2787:. 2777:. 2767:11 2765:. 2761:. 2731:. 2721:. 2711:10 2709:. 2705:. 2691:^ 2677:. 2667:. 2659:. 2649:12 2647:. 2643:. 2616:. 2591:. 2546:. 2536:. 2524:. 2520:. 2497:. 2487:. 2479:. 2467:11 2465:. 2461:. 2438:. 2430:. 2418:. 2392:. 2370:. 2362:. 2348:. 2344:. 2321:. 2307:. 2303:. 2280:. 2272:. 2258:. 2254:. 2231:. 2219:96 2217:. 2213:. 2194:. 2181:^ 2171:. 2148:. 2138:. 2124:. 2120:. 2097:. 2089:. 2081:. 2073:. 2063:25 2061:. 2057:. 2034:. 2024:. 2016:. 2004:14 2002:. 1998:. 1984:^ 1964:, 1954:, 1921:. 1911:. 1903:. 1895:. 1883:. 1879:. 1856:. 1848:. 1838:31 1836:. 1832:. 1820:^ 1806:. 1798:. 1786:51 1784:. 1780:. 1768:^ 1754:. 1746:. 1738:. 1728:. 1718:13 1716:. 1712:. 1689:. 1679:. 1665:. 1661:. 1638:. 1628:. 1618:15 1616:. 1612:. 1589:. 1581:. 1571:11 1569:. 1565:. 1550:^ 1528:. 1479:. 1463:^ 1449:. 1441:. 1431:32 1429:. 1411:^ 1397:. 1389:. 1377:. 1339:. 1327:. 1323:. 1308:^ 1290:. 1278:^ 1246:^ 1232:. 1222:33 1220:. 1208:^ 1194:. 1184:22 1182:. 1164:^ 1150:. 1142:. 1134:. 1124:69 1122:. 1118:. 1102:^ 1084:. 1061:. 1051:. 1037:. 1031:. 1008:. 1000:. 992:. 980:. 974:. 951:. 941:. 933:. 921:. 915:. 892:. 884:. 874:44 872:. 847:. 837:. 825:58 823:. 817:. 792:. 780:. 776:. 753:. 745:. 735:. 723:12 721:. 715:. 699:^ 685:. 675:. 667:. 655:. 651:. 639:^ 625:. 617:. 609:. 599:32 597:. 593:. 480:, 476:, 168:, 164:, 63:, 59:, 47:) 45:3D 3285:) 3277:( 3124:e 3117:t 3110:v 3095:. 3074:. 3053:. 3005:. 2977:: 2947:. 2919:: 2911:: 2884:. 2856:: 2848:: 2821:. 2791:: 2781:: 2773:: 2746:. 2717:: 2685:. 2663:: 2655:: 2628:. 2602:. 2576:. 2554:. 2532:: 2505:. 2473:: 2446:. 2426:: 2403:. 2378:. 2356:: 2350:7 2329:. 2315:: 2288:. 2266:: 2239:. 2225:: 2175:. 2156:. 2142:: 2132:: 2126:1 2105:. 2077:: 2069:: 2042:. 2010:: 1950:: 1929:. 1899:: 1891:: 1885:1 1864:. 1844:: 1814:. 1792:: 1762:. 1732:: 1724:: 1697:. 1673:: 1667:3 1646:. 1624:: 1577:: 1544:. 1514:. 1487:. 1457:. 1437:: 1405:. 1385:: 1362:. 1343:: 1335:: 1302:. 1272:. 1240:. 1228:: 1202:. 1190:: 1158:. 1130:: 1096:. 1069:. 1045:: 1039:9 1016:. 988:: 982:4 959:. 937:: 929:: 923:1 900:. 880:: 855:. 831:: 802:. 788:: 782:5 761:. 729:: 693:. 663:: 657:6 633:. 605:: 449:. 43:( 20:)

Index

Bioprinting

3D printing
cells
growth factors
bio-inks
biomaterials
tissue engineering
biosensing
environmental remediation
bio-inks
hydrogels
biofilms
computed tomography
magnetic resonance imaging
tomographic reconstruction
bioinks
photolithography
magnetic 3D bioprinting
stereolithography

3D printing
Eccentric screw
collagen
photo-polymerization
piezoelectric actuator
Bioinks
external ear
microtia
tissue engineering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.