Knowledge (XXG)

Animal echolocation

Source πŸ“

261:
they home in on a target. This allows the bat to get new information regarding the target's location at a faster rate when it needs it most. Secondly, the pulse interval determines the maximum range that bats can detect objects. This is because bats can only keep track of the echoes from one call at a time; as soon as they make another call they stop listening for echoes from the previously made call. For example, a pulse interval of 100 ms (typical of a bat searching for insects) allows sound to travel in air roughly 34 meters so a bat can only detect objects as far away as 17 meters (the sound has to travel out and back). With a pulse interval of 5 ms (typical of a bat in the final moments of a capture attempt), the bat can only detect objects up to 85 cm away. Therefore, the bat constantly has to make a choice between getting new information updated quickly and detecting objects far away.
257:, and a series of calls comprising a sequence or pass) can last anywhere from less than 3 to over 50 milliseconds in duration. Pulse duration is around 3 milliseconds in FM bats such as Phyllostomidae and some Vespertilionidae; between 7 and 16 milliseconds in Quasi-constant-frequency (QCF) bats such as other Vespertilionidae, Emballonuridae, and Molossidae; and between 11 milliseconds (Hipposideridae) and 52 milliseconds (Rhinolophidae) in CF bats. Duration depends also on the stage of prey-catching behavior that the bat is engaged in, usually decreasing when the bat is in the final stages of prey capture – this enables the bat to call more rapidly without overlap of call and echo. Reducing duration comes at the cost of having less total sound available for reflecting off objects and being heard by the bat. 329:
cluttered environment, the bats must be able to resolve their prey from large amounts of background noise. The 3D localization abilities of the broadband signal enable the bat to do exactly that, providing it with what Simmons and Stein (1980) call a "clutter rejection strategy". This strategy is further improved by the use of harmonics, which, as previously stated, enhance the localization properties of the call. The short duration of the FM call is also best in close, cluttered environments because it enables the bat to emit many calls extremely rapidly without overlap. This means that the bat can get an almost continuous stream of information – essential when objects are close, because they will pass by quickly – without confusing which echo corresponds to which call.
250:. Certain bat species can modify their call intensity mid-call, lowering the intensity as they approach objects that reflect sound strongly. This prevents the returning echo from deafening the bat. High-intensity calls such as those from aerial-hawking bats (133 dB) are adaptive to hunting in open skies. Their high intensity calls are necessary to even have moderate detection of surroundings because air has a high absorption of ultrasound and because insects' size only provide a small target for sound reflection. Additionally, the so-called "whispering bats" have adapted low-amplitude echolocation so that their prey, moths, which are able to hear echolocation calls, are less able to detect and avoid an oncoming bat. 2201: 1409:. This short duration of response allows their action potentials to give a specific indication of the moment when the stimulus arrived, and to respond accurately to stimuli that occur close in time to one another. The neurons have a very low threshold of activation – they respond quickly even to weak stimuli. Finally, for FM signals, each interneuron is tuned to a specific frequency within the sweep, as well as to that same frequency in the following echo. There is specialization for the CF component of the call at this level as well. The high proportion of neurons responding to the frequency of the acoustic fovea actually increases at this level. 2180:. These sounds are reflected by the dense concave bone of the cranium and an air sac at its base. The focused beam is modulated by a large fatty organ known as the melon. This acts like an acoustic lens because it is composed of lipids of differing densities. Most toothed whales use clicks in a series, or click train, for echolocation, while the sperm whale may produce clicks individually. Toothed whale whistles do not appear to be used in echolocation. Different rates of click production in a click train give rise to the familiar barks, squeals and growls of the 1308:, and hunting for food sources as different as insects, frogs, nectar, fruit, and blood. The characteristics of an echolocation call are adapted to the particular environment, hunting behavior, and food source of the particular bat. The adaptation of echolocation calls to ecological factors is constrained by the phylogenetic relationship of the bats, leading to a process known as descent with modification, and resulting in the diversity of the Chiroptera today. Bats can inadvertently jam each other, and in some situations they may stop calling to avoid jamming. 1502:: This region of the cortex contains FM-FM combination-sensitive neurons. These cells respond only to the combination of two FM sweeps: a call and its echo. The neurons in the FM-FM region are often referred to as "delay-tuned", since each responds to a specific time delay between the original call and the echo, in order to find the distance from the target object (the range). Each neuron also shows specificity for one harmonic in the original call and a different harmonic in the echo. The neurons within the FM-FM area of the cortex of 299:, of the target. J. A. Simmons demonstrated this effect with a series of experiments that showed how bats using FM signals could distinguish between two separate targets even when the targets were less than half a millimeter apart. This ability is due to the broadband sweep of the signal, which allows for better resolution of the time delay between the call and the returning echo, thereby improving the cross correlation of the two. If harmonic frequencies are added to the FM signal, then this localization becomes even more precise. 333:
greater working range of the call allows bats to detect targets present at great distances – a common situation in open environments. Second, the length of the call is also suited for targets at great distances: in this case, there is a decreased chance that the long call will overlap with the returning echo. The latter strategy is made possible by the fact that the long, narrowband call allows the bat to detect Doppler shifts, which would be produced by an insect moving either towards or away from a perched bat.
209:), animal echolocation has only one transmitter and two receivers (the ears) positioned slightly apart. The echoes returning to the ears arrive at different times and at different intensities, depending on the position of the object generating the echoes. The time and loudness differences are used by the animals to perceive distance and direction. With echolocation, the bat or other animal can tell, not only where it is going, but also how big another animal is, what kind of animal it is, and other features. 1542: 696: 7617: 33: 1451: 7456: 2267: 202:, using sounds made by the animal itself. Ranging is achieved by measuring the time delay between the animal's own sound emission and any echoes that return from the environment. The relative intensity of sound received at each ear, as well as the time delay between arrival at the two ears, provide information about the horizontal angle (azimuth) from which the reflected sound waves arrive. 665: 2254:. Shrew sounds, unlike those of bats, are low amplitude, broadband, multi-harmonic and frequency modulated. They contain no echolocation clicks with reverberations, and appear to be used for simple, close range spatial orientation. In contrast to bats, shrews use echolocation only to investigate their habitat rather than to pinpoint food. There is evidence that blinded 7468: 1358:) with a constant frequency (CF) component to their call (known as high duty cycle bats) do have a few additional adaptations for detecting the predominant frequency (and harmonics) of the CF vocalization. These include a narrow frequency "tuning" of the inner ear organs, with an especially large area responding to the frequency of the bat's returning echoes. 316:
to echoes of elevated frequency – this ensures that the returning echo remains at the frequency to which the ears of the bat are most finely tuned. The oscillation of a target's wings also produces amplitude shifts, which gives a CF-bat additional help in distinguishing a flying target from a stationary one. The horseshoe bats hunt in this way.
2163:(absorption and spreading) and the received noise. Animals will adapt either to maximize range under noise-limited conditions (increase source level) or to reduce noise clutter in a shallow and/or littered habitat (decrease source level). In cluttered habitats, such as coastal areas, prey ranges are smaller, and species such as 243:(FM) sweeps, and constant frequency (CF) tones. A particular call can consist of one, the other, or both structures. An FM sweep is a broadband signal – that is, it contains a downward sweep through a range of frequencies. A CF tone is a narrowband signal: the sound stays constant at one frequency throughout its duration. 781:
are not always species specific and some bats overlap in the type of calls they use so recordings of echolocation calls cannot be used to identify all bats. Researchers in several countries have developed "bat call libraries" that contain "reference call" recordings of local bat species to assist with identification.
1528:: This large section of the cortex is a map of the acoustic fovea, organized by frequency and by amplitude. Neurons in this region respond to CF signals that have been Doppler shifted (in other words, echoes only) and are within the same narrow frequency range to which the acoustic fovea responds. For 780:
Individual bat species echolocate within specific frequency ranges that suit their environment and prey types. This has sometimes been used by researchers to identify bats flying in an area simply by recording their calls with ultrasonic recorders known as "bat detectors". However, echolocation calls
332:
A CF component is often used by bats hunting for prey while flying in open, clutter-free environments, or by bats that wait on perches for their prey to appear. The success of the former strategy is due to two aspects of the CF call, both of which confer excellent prey-detection abilities. First, the
315:
is an alteration in sound wave frequency, and is produced in two relevant situations: when the bat and its target are moving relative to each other, and when the target's wings are oscillating back and forth. CF-bats must compensate for Doppler shifts, lowering the frequency of their call in response
217:
Describing the diversity of echolocation calls requires examination of the frequency and temporal features of the calls. It is the variations in these aspects that produce echolocation calls suited for different acoustic environments and hunting behaviors. The calls of bats have been most intensively
2191:
Echoes are received using complex fatty structures around the lower jaw as the primary reception path, from where they are transmitted to the middle ear via a continuous fat body. Lateral sound may be received through fatty lobes surrounding the ears with a similar density to water. Some researchers
1521:
can be compared to the frequency of the original call to calculate the bat's velocity relative to its target object. As in the FM-FM area, information is encoded by its location within the map-like organization of the region. The CF-CF area is first split into the distinct CF1-CF2 and CF1-CF3 areas.
260:
The time interval between subsequent echolocation calls (or pulses) determines two aspects of a bat's perception. First, it establishes how quickly the bat's auditory scene information is updated. For example, bats increase the repetition rate of their calls (that is, decrease the pulse interval) as
1404:
in this region have a very high level of sensitivity to time differences, since the time delay between a call and the returning echo tells the bat its distance from the target object. While most neurons respond more quickly to stronger stimuli, collicular neurons maintain their timing accuracy even
1332:
Because bats use echolocation to orient themselves and to locate objects, their auditory systems are adapted for this purpose, highly specialized for sensing and interpreting the stereotyped echolocation calls characteristic of their own species. This specialization is evident from the inner ear up
302:
One possible disadvantage of the FM signal is a decreased operational range of the call. Because the energy of the call is spread out among many frequencies, the distance at which the FM-bat can detect targets is limited. This is in part because any echo returning at a particular frequency can only
2187:
It has been suggested that the arrangement of the teeth of some smaller toothed whales may be an adaptation for echolocation. The teeth of a bottlenose dolphin, for example, are not arranged symmetrically when seen from a vertical plane. This asymmetry could possibly be an aid in sensing if echoes
1446:
The systematically organized maps in the auditory cortex respond to various aspects of the echo signal, such as its delay and its velocity. These regions are composed of "combination sensitive" neurons that require at least two specific stimuli to elicit a response. The neurons vary systematically
1421:
in bats is quite large in comparison with other mammals. Various characteristics of sound are processed by different regions of the cortex, each providing different information about the location or movement of a target object. Most of the existing studies on information processing in the auditory
784:
When searching for prey they produce sounds at a low rate (10–20 clicks/second). During the search phase the sound emission is coupled to respiration, which is again coupled to the wingbeat. This coupling appears to dramatically conserve energy as there is little to no additional energetic cost of
319:
Additionally, because the signal energy of a CF call is concentrated into a narrow frequency band, the operational range of the call is much greater than that of an FM signal. This relies on the fact that echoes returning within the narrow frequency band can be summed over the entire length of the
745:
and forage, often in total darkness. They generally emerge from their roosts in caves, attics, or trees at dusk and hunt for insects into the night. Using echolocation, bats can determine how far away an object is, the object's size, shape and density, and the direction (if any) that an object is
1383:
Echolocating bats have cochlear hairs that are especially resistant to intense noise. Cochlear hair cells are essential for hearing sensitivity, and can be damaged by intense noise. As bats are regularly exposed to intense noise through echolocation, resistance to degradation by intense noise is
4179: 1387:
Further along the auditory pathway, the movement of the basilar membrane results in the stimulation of primary auditory neurons. Many of these neurons are specifically "tuned" (respond most strongly) to the narrow frequency range of returning echoes of CF calls. Because of the large size of the
1369:
contains the first of these specializations for echo information processing. In bats that use CF signals, the section of the membrane that responds to the frequency of returning echoes is much larger than the region of response for any other frequency. For example, in the greater horseshoe bat,
225:
aerial-hawking bats, those that chase prey in the open air, have a call frequency between 20 kHz and 60 kHz, because it is the frequency that gives the best range and image acuity and makes them less conspicuous to insects. However, low frequencies are adaptive for some species with
328:
An FM component is excellent for hunting prey while flying in close, cluttered environments. Two aspects of the FM signal account for this fact: the precise target localization conferred by the broadband signal, and the short duration of the call. The first of these is essential because in a
2162:
Another reason for variation in echolocation is habitat. For all sonar systems, the limiting factor deciding whether a returning echo is detected is the echo-to-noise ratio (ENR). The ENR is given by the emitted source level (SL) plus the target strength, minus the two-way transmission loss
2155:. However, because three of the groups developed NBHF prior to the emergence of the orca, predation by other ancient raptorial odontocetes must have been the driving force for the development of NBHF, not predation by the orca. Orcas, and, presumably ancient raptorial odontocetes such as 677:
bat vocalizations during prey approach. The recording covers a total of 1.1 seconds; lower main frequency c. 45 kHz (as typical for a common pipistrelle). About 150 milliseconds before final contact time between and duration of calls are becoming much shorter ("feeding
2595:
From p. 140: From these experiments the author concludes: … that the organ of hearing appears to supply that of sight in the discovery of bodies, and to furnish these animals with different sensations to direct their flight, and enable them to avoid those obstacles which may present
4722:
Kawahara, Akito Y.; Plotkin, David; Espeland, Marianne; Meusemann, Karen; Toussaint, Emmanuel F. A.; Donath, Alexander; Gimnich, France; Frandsen, Paul B.; Zwick, Andreas; dos Reis, Mario; Barber, Jesse R.; Peters, Ralph S.; Liu, Shanlin; Zhou, Xin; Mayer, Christoph (2019-11-05).
2328:) takes predator avoidance actions such as dropping, looping, and freezing when it detects ultrasound waves, indicating that it can both detect and differentiate between ultrasound frequencies used by predators and signals from other members of their species. Some members of the 2052:, is associated with hearing sensitivity. It has undergone two clear episodes of accelerated evolution in cetaceans. The first is connected to odontocete divergence, when echolocation first developed, and the second with the increase in echolocation frequency among dolphins. 769:). Bat echolocation calls range in frequency from 14,000 to well over 100,000 Hz, mostly beyond the range of the human ear (typical human hearing range is considered to be from 20 Hz to 20,000 Hz). Bats may estimate the elevation of targets by interpreting the 1376:, there is a disproportionately lengthened and thickened section of the membrane that responds to sounds around 83 kHz, the constant frequency of the echo produced by the bat's call. This area of high sensitivity to a specific, narrow range of frequency is known as an " 1532:, this is around 61 kHz. This area is organized into columns, which are arranged radially based on frequency. Within a column, each neuron responds to a specific combination of frequency and amplitude. This brain region is necessary for frequency discrimination. 291:" – multiplied by a constant frequency to produce frequency subtraction, and thus an audible sound – by a bat detector. A key feature of the recording is the increase in the repetition rate of the call as the bat nears its target – this is called the "terminal buzz". 1341:
Both CF and FM bats have specialized inner ears which allow them to hear sounds in the ultrasonic range, far outside the range of human hearing. Although in most other aspects, the bat's auditory organs are similar to those of most other mammals, certain bats
2064:, a member of the tight junction proteins which form barriers between inner ear cells, shows the same evolutionary pattern as Prestin. The two events of protein evolution, for Prestin and Cldn14, occurred at the same times as the tectonic opening of the 78:(FM, varying in pitch during the call) or constant frequency (CF). FM offers precise range discrimination to localize the prey, at the cost of reduced operational range. CF allows both the prey's velocity and its movements to be detected by means of the 6036:
Galatius, Anders; Olsen, Morten Tange; Steeman, Mette Elstrup; Racicot, Rachel A.; Bradshaw, Catherine D.; Kyhn, Line A.; Miller, Lee A. (2019). "Raising your voice: evolution of narrow-band high-frequency signals in toothed whales (Odontoceti)".
2184:. A click train with a repetition rate over 600 per second is called a burst pulse. In bottlenose dolphins, the auditory brain response resolves individual clicks up to 600 per second, but yields a graded response for higher repetition rates. 1652:, primitive toothed Cetacea that arose from terrestrial mammals, were the only cetaceans. They did not echolocate, but had slightly adapted underwater hearing. By the late middle Eocene, acoustically isolated ear bones had evolved to give 1447:
across the maps, which are organized by acoustic features of the sound and can be two dimensional. The different features of the call and its echo are used by the bat to determine important characteristics of their prey. The maps include:
2192:
believe that when they approach the object of interest, they protect themselves against the louder echo by quietening the emitted sound. In bats this is known to happen, but here the hearing sensitivity is also reduced close to a target.
2096:) has cranial asymmetry, and shows other indicators of echolocation. However, basal xenorophids lack cranial asymmetry, indicating that this likely evolved twice. Extant odontocetes have asymmetric nasofacial regions; generally, the 2303:
has been shown to jam bat echolocation: when pit against naΓ―ve big brown bats, ultrasound was immediately and consistently effective at preventing bat attack. Bats came in contact with silent control moths 400% more often than with
1522:
Within each area, the CF1 frequency is organized on an axis, perpendicular to the CF2 or CF3 frequency axis. In the resulting grid, each neuron codes for a certain combination of frequencies that is indicative of a specific velocity
1506:
are organized into columns, in which the delay time is constant vertically but increases across the horizontal plane. The result is that range is encoded by location on the cortex, and increases systematically across the FM-FM
140:
had, by means of a series of elaborate experiments, concluded that when bats fly at night, they rely on some sense besides vision, but he did not discover that the other sense was hearing. The Swiss physician and naturalist
2091:
for echolocation. This change occurred after the divergence of the neocetes from the basilosaurids. The first shift towards cranial asymmetry occurred in the Early Oligocene, prior to the xenorophids. A xenorophid fossil
1315:
in moths predates the origins of bats, so while many moths do listen for approaching bat echolocation their ears did not originally evolve in response to selective pressures from bats. These moth adaptations provide
1400:, a structure in the bat's midbrain, information from lower in the auditory processing pathway is integrated and sent on to the auditory cortex. As George Pollak and others showed in a series of papers in 1977, the 3067:
Hiryu, Shizuko; Hagino, Tomotaka; Riquimaroux, Hiroshi; Watanabe, Yoshiaki (March 2007). "Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone".
2219:
are known to use a relatively crude form of echolocation compared to that of bats and dolphins. These nocturnal birds emit calls while flying and use the calls to navigate through trees and caves where they live.
145:
repeated Spallanzani's experiments (using different species of bat), and concluded that when bats hunt at night, they rely on hearing. In 1908, Walter Louis Hahn confirmed Spallanzani's and Jurine's findings.
1513:: Another kind of combination-sensitive neuron is the CF-CF neuron. These respond best to the combination of a CF call containing two given frequencies – a call at 30 kHz (CF1) and one of its additional 4244:
Teeling, Emma C.; Scally, Mark; Kao, Diana J.; Romagnoli, Michael L.; Springer, Mark S.; Stanhope, Michael J. (January 2000). "Molecular evidence regarding the origin of echolocation and flight in bats".
276: 1660:(33.9–23 million years ago), two new lineages evolved in a second radiation. Early mysticetes (baleen whales) and odontocetes appeared in the middle Oligocene in New Zealand. Extant odontocetes are 2840: 182: 6957:
Shows evidence for the sensory integration of shape information between echolocation and vision, and presents the hypothesis of the existence of the mental representation of an "echoic image".
1435:
Suga and his colleagues have shown that the cortex contains a series of "maps" of auditory information, each of which is organized systematically based on characteristics of sound such as
311:
The structure of a CF signal is adaptive in that it allows the CF-bat to detect both the velocity of a target, and the fluttering of a target's wings as Doppler shifted frequencies. A
2151:. NBHF is thought to have evolved as a means of predator evasion; NBHF-producing species are small relative to other odontocetes, making them viable prey to large species such as the 5159:
Suga, N.; Simmons, J. A.; Jen, P. H. (1975). "Peripheral specialization for fine analysis of doppler-shifted echoes in the auditory system of the "CF-FM" bat Pteronotus parnellii".
2087:. It evolved further in stem odontocetes, arriving at full cranial telescoping in the crown odontocetes. Movement of the nostrils may have allowed for a larger nasal apparatus and 6923:
Pack, A. A.; Herman, L. M. (August 1995). "Sensory integration in the bottlenosed dolphin: immediate recognition of complex shapes across the senses of echolocation and vision".
2111: 3973: 2176:
Toothed whales emit a focused beam of high-frequency clicks in the direction that their head is pointing. Sounds are generated by passing air from the bony nares through the
2022:. These events encouraged selection for the ability to locate and capture prey in turbid river waters, which enabled the odontocetes to invade and feed at depths below the 684: 5754:
Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J.; Zhang, Shuyi (November 2013). "Adaptive evolution of tight junction protein claudin-14 in echolocating whales".
5056:
Pollak, George; Marsh, David; Bodenhamer, Robert; Souther, Arthur (May 1977). "Echo-detecting characteristics of neurons in inferior colliculus of unanesthetized bats".
2399: 1405:
as signal intensity changes. These interneurons are specialized for time sensitivity in several ways. First, when activated, they generally respond with only one or two
7698: 1311:
Flying insects are a common source of food for echolocating bats and some insects (moths in particular) can hear the calls of predatory bats. However the evolution of
2297:) of different species (two thirds of the species tested) respond to simulated attack by echolocating bats by producing an accelerating series of clicks. The species 277: 2056:
and Pjvk are proteins related to hearing sensitivity: Tmc1 is associated with hair cell development and high-frequency hearing, and Pjvk with hair cell function.
789:, at rates as high as 200 clicks/second. During approach to a detected target, the duration of the sounds is gradually decreased, as is the energy of the sound. 2915:"Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost-benefit ratio of interactions" 1443:. The neurons in these areas respond only to a specific combination of frequency and timing (sound-echo delay), and are known as combination-sensitive neurons. 4030:"Acoustic identification of eight species of bat (mammalia: chiroptera) inhabiting forests of southern hokkaido, Japan: potential for conservation monitoring" 5607:
McGowen, Michael R.; Spaulding, Michelle; Gatesy, John (December 2009). "Divergence date estimation and a comprehensive molecular tree of extant cetaceans".
4289: 2072:
climate transition (14 Ma), with the divergence of odontocetes and mysticetes occurring with the former, and the speciation of Delphinidae with the latter.
5447:
Fordyce, R. E. (2003). "Cetacean Evolution and Eocene-Oligocene oceans revisited". In Prothero, Donald R.; Ivany, Linda C.; Nesbitt, Elizabeth A. (eds.).
2100:
is shifted to the left and structures on the right are larger. Both cranial telescoping and asymmetry likely relate to sound production for echolocation.
7673: 3171:
Fenton, M. B.; Portfors, C. V.; Rautenbach, I. L.; Waterman, J. M. (1998). "Compromises: Sound frequencies used in echolocation by aerial-feeding bats".
5203:
Suga, N.; Niwa, H.; Taniguchi, I.; Margoliash, D. (October 1987). "The personalized auditory cortex of the mustached bat: adaptation for echolocation".
2110: 7663: 7506: 4939:"Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: Evidence of an acoustic fovea" 7160: 6236:
Ketten, D. R. (1992). "The Marine Mammal Ear: Specializations for aquatic audition and echolocation". In Webster, D.; Fay, R.; Popper, A. (eds.).
3237: 2200: 750:(that come out at night since there are fewer predators then), less competition for food, and fewer species that may prey on the bats themselves. 1517:
around 60 or 90 kHz (CF2 or CF3) – and the corresponding echoes. Thus, within the CF-CF region, the changes in echo frequency caused by the
2338:
subgroups. The tails oscillate in flight, creating echoes which deflect the hunting bat's attack from the moth's body to the tails. The species
275: 7713: 7591: 6808: 59:
of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for
7188: 6312: 6285: 6143: 5460: 5361: 5037: 3490: 2319:), or mimic chemically defended species. Both aposematism and mimicry have been shown to confer a survival advantage against bat attack. 1545:
Diagram illustrating sound generation, propagation and reception in a toothed whale. Outgoing sounds are cyan and incoming ones are green.
714: 303:
be evaluated for a brief fraction of a millisecond, as the fast downward sweep of the call does not remain at any one frequency for long.
6302: 6275: 2109: 116:
clicks, which have evolved multiple functions including aposematism, mimicry of chemically defended species, and echolocation jamming.
7205: 3981: 2389: 7708: 7643: 6834:"Acoustic Aposematism and Evasive Action in Select Chemically Defended Arctiine (Lepidoptera: Erebidae) Species: Nonchalant or Not?" 713: 785:
echolocation to flying bats. After detecting a potential prey item, echolocating bats increase the rate of pulses, ending with the
5699:"Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence" 3684:
Schnitzler, H. U.; Flieger, E. (1983). "Detection of oscillating target movements by echolocation in the Greater Horseshoe bat".
3201:
Fullard, J.; Dawson, J. (1997). "The echolocation calls of the spotted bat Euderma maculatum are relatively inaudible to moths".
7104: 1656:
archaeocetes directional underwater hearing at low to mid frequencies. With the extinction of archaeocetes at the onset of the
3579:
Simmons, J. A.; Stein, R. A. (1980). "Acoustic Imaging in bat sonar: echolocation signals and the evolution of echolocation".
3052:
Bats and dolphins are known for their ability to use echolocation. ... some blind people have learned to do the same thing ...
82:. FM may be best for close, cluttered environments, while CF may be better in open environments or for hunting while perched. 7648: 7404: 6126:
Cranford, T. W. (2000). "In Search of Impulse Sound Sources in Odontocetes". In Au, W. W.; Popper, A. N.; Fay, R. R. (eds.).
5246:
Suga, N.; O'Neill, W. E. (October 1979). "Neural axis representing target range in the auditory cortex of the mustache bat".
6160: 3403:"Intense echolocation calls from two 'whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae)" 2286:, including predator avoidance, attack deflection, and ultrasonic clicks which appear to function as warnings rather than 7863: 4178:
Teeling, Emma C.; Springer, Mark S.; Madsen, Ole; Bates, Paul; O'Brien, Stephen J.; Murphy, William J. (28 January 2005).
2019: 2011: 1300:
Echolocating bats occupy a diverse set of ecological conditions; they can be found living in environments as different as
5485:(2007). "Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary". 2505:
Dijkgraaf, Sven (March 1960). "Spallanzani's unpublished experiments on the sensory basis of object perception in bats".
7499: 4139:"The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths" 7122: 746:
moving. Their use of echolocation, along with powered flight, allows them to occupy a niche where there are often many
7153: 5359:
Gatesy, John; Geisler, Jonathan H.; Chang, Joseph; et al. (2012). "A phylogenetic blueprint for a modern whale".
4790:
Goerlitz, Holger R.; ter Hofstede, Hannah M.; Zeale, Matt R. K.; Jones, Gareth; Holderied, Marc W. (September 2010).
2334:
moth family, which includes giant silk moths, have long tails on the hindwings, especially those in the Attacini and
1388:
acoustic fovea, the number of neurons responding to this region, and thus to the echo frequency, is especially high.
2278:, oscillate in flight, deflecting the hunting bat's attack to the tails and thus enabling the moth to evade capture. 7731: 7409: 7394: 6221:): modeling the receive directivity from tooth and lower jaw geometry". In Thomas, J. A.; Kastelein, R. A. (eds.). 5314:"Hearing from the ocean and into the river: the evolution of the inner ear of Platanistoidea (Cetacea: Odontoceti)" 4293: 136:, first demonstrated the phenomenon in bats. As Griffin described in his book, the 18th century Italian scientist 7668: 7210: 5452: 2007: 1372: 673: 283: 4029: 205:
Unlike some human-made sonars that rely on many extremely narrow beams and many receivers to localize a target (
7771: 7596: 7472: 7414: 2283: 2006:
Physical restructuring of the oceans has played a role in the evolution of echolocation. Global cooling at the
761:
and emit the sound through the open mouth or, much more rarely, the nose. The latter is most pronounced in the
341:
Echolocation occurs in a variety of mammals and birds as described below. It evolved repeatedly, an example of
109: 6277:
Birds of the High Andes: a manual to the birds of the temperate zone of the Andes and Patagonia, South America
685: 7091: 3871:
Teeling, E. C.; Madsen, O.; Van Den Bussche, R. A.; de Jong, W. W.; Stanhope, M. J.; Springer, M. S. (2002).
2695: 2644: 7653: 7625: 7492: 7267: 2718: 2075:
The evolution of two cranial structures may be linked to echolocation. Cranial telescoping (overlap between
2027: 1060:
in the Pteropodidae family evolved a different mechanism of echolocation using a system of tongue-clicking:
2972:"Echolocating bats perceive natural-size targets as a unitary class using micro-spectral ripples in echoes" 2549: 2127:
narrow-band high-frequency (NBHF) echolocation in four separate events. These species include the families
7848: 7571: 7460: 7424: 7183: 7146: 2577: 2247: 2164: 1641: 1321: 396: 3873:"Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats" 7751: 7561: 7556: 7240: 2913:
Lewanzik, Daniel; Sundaramurthy, Arun K.; Goerlitz, Holger (October 2019). Derryberry, Elizabeth (ed.).
2836: 1317: 1047: 705: 177: 6217:
Goodson, A. D.; Klinowska, M. A. (1990). "A proposed echolocation receptor for the bottlenose dolphin (
2188:
from its biosonar are coming from one side or the other; but this has not been tested experimentally.
7703: 7693: 7688: 7606: 7551: 7317: 7250: 7230: 7225: 7029: 6932: 6845: 6758: 6620: 6245: 6175: 6130:. Springer Handbook of Auditory Research series. Vol. 12. New York: Springer. pp. 109–155. 6059: 5986: 5658: 5581: 5494: 5414: 5325: 5255: 5065: 4803: 4736: 4676: 4614: 4567: 4509: 4453: 4395: 4320: 4254: 4194: 4095: 3939: 3884: 3306: 3077: 2926: 2869: 2810: 2696:"The sixth sense of the bat. Sir Hiram Maxim's contention. The possible prevention of sea collisions" 2425: 2287: 2124: 1428: 770: 342: 75: 6919:
Provides a variety of findings on signal strength, directionality, discrimination, biology and more.
1605:, because they live in an underwater habitat that has favourable acoustic characteristics and where 1046:
The second proposes that laryngeal echolocation had a single origin in Chiroptera, i.e. that it was
7812: 7761: 7536: 7322: 7307: 7272: 3619:
Fenton, M. B. (1995). "Natural History and Biosonar Signals". In Popper, A. N.; Fay, R. R. (eds.).
2481: 2324: 2057: 1397: 240: 173: 172:(toothed whales) was not properly described until two decades after Griffin and Galambos' work, by 137: 1541: 7807: 7792: 7347: 7277: 7245: 7220: 6995: 6790: 6727: 6684: 6524: 6469: 6388: 6368: 6349: 6199: 6018: 5911:
Coombs, Ellen J.; Clavel, Julien; Park, Travis; Churchill, Morgan; Goswami, Anjali (2020-07-10).
5888: 5572:
Fordyce, R. Ewan; Barnes, Lawrence G. (1994). "The evolutionary history of whales and dolphins".
5341: 5279: 5228: 5005: 4977: 4958: 4919: 4555: 4485: 4364: 4278: 4226: 4119: 4068: 3853: 3804: 3744: 3736: 3701: 3666: 3596: 3275: 3101: 2895: 2783: 2676: 2625: 2530: 2394: 2358: 2312: 2299: 2181: 2177: 1965: 1594: 296: 158: 5101:"Auditory cortex of bats and primates: managing species-specific calls for social communication" 3930:
MΓΌller, R. (December 2004). "A numerical study of the role of the tragus in the big brown bat".
3765:
Racicot, Rachel A.; Boessenecker, Robert W.; Darroch, Simon A. F.; Geisler, Jonathan H. (2019).
2344:(the African moon moth), which has especially long tails, was the most likely to evade capture. 6077:
Kyhn, L. A.; Jensen, F. H.; Beedholm, K.; Tougaard, J.; Hansen, M.; Madsen, P. T. (June 2010).
7843: 7601: 7566: 7368: 7057: 6987: 6948: 6881: 6863: 6782: 6774: 6719: 6646: 6584: 6516: 6508: 6442: 6308: 6281: 6191: 6139: 6108: 6010: 6002: 5952: 5934: 5880: 5872: 5828: 5810: 5771: 5736: 5718: 5676: 5624: 5554: 5456: 5378: 5271: 5220: 5176: 5130: 5081: 5033: 4997: 4911: 4870: 4821: 4772: 4754: 4704: 4642: 4583: 4543: 4525: 4477: 4469: 4429: 4411: 4356: 4348: 4270: 4218: 4210: 4160: 4111: 4060: 3955: 3912: 3845: 3796: 3658: 3557:
Grinnell, A. D. (1995). "Hearing in Bats: An Overview.". In Popper, A. N.; Fay, R. R. (eds.).
3534: 3486: 3463: 3424: 3383: 3334: 3267: 3259: 3218: 3153: 3093: 3043: 3035: 2993: 2952: 2887: 2748: 2522: 2441: 2353: 2026:. In particular, echolocation below the photic zone could have been a predation adaptation to 1606: 808:
There are two hypotheses about the evolution of echolocation in bats. The first suggests that
742: 228: 60: 56: 6809:"NaΓ―ve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning" 6607:
Rubin, Juliette J.; Hamilton, Chris A.; McClure, Christopher J. W.; et al. (July 2018).
5645:
Liu, Yang; Rossiter, Stephen J.; Han, Xiuqun; Cotton, James A.; Zhang, Shuyi (October 2010).
2608:
Dijkgraaf, Sven (1949). "Spallanzani und die FledermΓ€use" [Spallanzani and the bat].
7723: 7638: 7633: 7531: 7434: 7429: 7342: 7047: 7037: 6979: 6940: 6871: 6853: 6766: 6711: 6676: 6636: 6628: 6576: 6500: 6432: 6424: 6380: 6341: 6238: 6183: 6131: 6098: 6054: 6046: 5994: 5942: 5924: 5864: 5852: 5818: 5802: 5763: 5726: 5710: 5697:
Davies, K. T. J.; Cotton, J. A.; Kirwan, J. D.; Teeling, E. C.; Rossiter, S. J. (May 2012).
5666: 5616: 5589: 5544: 5536: 5502: 5482: 5422: 5370: 5333: 5263: 5212: 5168: 5120: 5112: 5073: 4989: 4950: 4901: 4860: 4852: 4839:
Ratcliffe, John M.; Elemans, Coen P. H.; Jakobsen, Lasse; Surlykke, Annemarie (April 2013).
4811: 4762: 4744: 4694: 4684: 4632: 4622: 4575: 4533: 4517: 4461: 4419: 4403: 4338: 4328: 4262: 4202: 4150: 4103: 4052: 4044: 3947: 3902: 3892: 3835: 3786: 3778: 3728: 3693: 3650: 3588: 3526: 3455: 3414: 3373: 3365: 3324: 3314: 3249: 3210: 3180: 3143: 3135: 3085: 3027: 2983: 2942: 2934: 2877: 2818: 2775: 2738: 2730: 2666: 2656: 2617: 2586: 2514: 2485: 2433: 2363: 2148: 2088: 1406: 1362: 295:
The major advantage conferred by an FM signal is extremely precise range discrimination, or
3481:
Wilson, W.; Moss, Cynthia (2004). Thomas, Jeanette; Moss, Cynthia; Vater, Marianne (eds.).
2315:
the bat (a bluffing tactic), warn the bat that the moth is distasteful (honest signalling,
7853: 7576: 7399: 7302: 7297: 7126: 7108: 7095: 4498:"Auditory opportunity and visual constraint enabled the evolution of echolocation in bats" 4086:
Speakman, J. R.; Racey, P. A. (April 1991). "No cost of echolocation for bats in flight".
2255: 2143: 1418: 1320:
for bats to improve their insect-hunting systems and this cycle culminates in a moth-bat "
1087: 843: 813: 206: 133: 55:
groups, both in the air and underwater. Echolocating animals emit calls and listen to the
7076: 6411:
Siemers, BjΓΆrn M.; Schauermann, Grit; Turni, Hendrik; von Merten, Sophie (October 2009).
4496:
Thiagavel, Jeneni; Cechetto, ClΓ©ment; Santana, Sharlene E.; et al. (December 2018).
4003: 3719:
Fenton, M. Brock (1984). "Echolocation: Implications for Ecology and Evolution of Bats".
246:
Echolocation calls in bats have been measured at intensities anywhere between 60 and 140
36:
A depiction of the ultrasound signals emitted by a bat, and the echo from a nearby object
7033: 6970:
Moss, Cynthia F.; Sinha, S. R. (December 2003). "Neurobiology of echolocation in bats".
6936: 6849: 6762: 6624: 6179: 5990: 5662: 5593: 5585: 5523:
Steeman, Mette E.; Hebsgaard, Martin B.; Fordyce, R. Ewan; et al. (December 2009).
5498: 5418: 5329: 5259: 5069: 4807: 4740: 4680: 4618: 4571: 4513: 4457: 4399: 4324: 4258: 4198: 4099: 3943: 3888: 3310: 3081: 2930: 2873: 2814: 2429: 7858: 7616: 7541: 7515: 7419: 7292: 7287: 7235: 7052: 7017: 6876: 6833: 6641: 6608: 6437: 6412: 6259:
Ketten, D. R. (2000). "Cetacean Ears". In Au, W. W.; Popper, A. N.; Fay, R. R. (eds.).
5947: 5912: 5823: 5790: 5731: 5698: 5549: 5524: 5125: 5100: 4865: 4840: 4767: 4724: 4699: 4664: 4538: 4497: 4424: 4383: 3791: 3766: 3378: 3353: 3329: 3294: 3148: 3123: 2947: 2914: 2743: 2459: 2413: 2340: 2271: 2137: 2015: 1896: 1653: 1590: 1550: 1377: 1351: 1343: 1312: 1203: 1190: 964: 951: 762: 129: 79: 6746: 6488: 6384: 3907: 3872: 112:
to avoid capture. These include predator avoidance, attack deflection, and the use of
7837: 7766: 7746: 7683: 7546: 7282: 7215: 7169: 6794: 6528: 5506: 5427: 5402: 5345: 5009: 4923: 4637: 4602: 4368: 4282: 3808: 2899: 2822: 2552:[Extracts of Jurine's experiments on bats that have been deprived of sight]. 2464: 2065: 1763: 1664:(a single evolutionary group), but echolocation evolved twice, convergently: once in 1578: 1566: 1518: 372: 312: 98: 7101: 6731: 6392: 6203: 6187: 5283: 5232: 4725:"Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths" 4489: 4307:
Nojiri, Taro; Wilson, Laura A. B.; LΓ³pez-Aguirre, Camilo; et al. (2021-04-12).
4230: 4072: 3857: 3748: 3705: 3600: 3443: 3105: 2534: 236:, uses a particularly low frequency of 12.7 kHz that cannot be heard by moths. 7797: 7736: 7439: 7389: 7327: 6999: 6022: 5892: 5851:
Churchill, Morgan; Geisler, Jonathan H.; Beatty, Brian L.; Goswami, Anjali (2018).
4962: 4123: 3670: 2734: 2671: 2266: 2116: 2097: 2084: 2076: 1804: 1661: 1586: 1570: 1450: 1401: 1113: 1051: 879: 774: 479: 142: 48: 32: 6460:
Gould, Edwin (1965). "Evidence for echolocation in the Tenrecidae of Madagascar".
4441: 4309:"Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats" 3279: 2801:
Schevill, W. E.; McBride, A. F. (1956). "Evidence for echolocation by cetaceans".
2629: 2550:"Extraits des expΓ©riences de Jurine sur les chauve-souris qu'on a privΓ© de la vue" 239:
Echolocation calls can be composed of two different types of frequency structure:
221:
Bat call frequencies range from as low as 11 kHz to as high as 212 kHz.
7042: 6858: 4442:"Prenatal development supports a single origin of laryngeal echolocation in bats" 3319: 2779: 2437: 712: 683: 7776: 7581: 7363: 7332: 7312: 6135: 6050: 5620: 5374: 2335: 2330: 2316: 2275: 2208:) flies in complete darkness inside the Puerto Princesa subterranean river cave. 2132: 2034: 2030: 2023: 1997: 1981: 1675: 1649: 1614: 1598: 1574: 805:. The Yangochiroptera appeared some 55 mya, and the Rhinolophoidea some 52 mya. 668: 664: 254: 222: 169: 150: 86: 6983: 5929: 5853:"Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti)" 5767: 4669:
Proceedings of the National Academy of Sciences of the United States of America
4607:
Proceedings of the National Academy of Sciences of the United States of America
4579: 4521: 4180:"A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record" 3530: 2060:
of Tmc1 and Pjvk indicates positive selection for echolocation in odontocetes.
7822: 7756: 7678: 7658: 7337: 5975:"A new fossil species supports an early origin for toothed whale echolocation" 5974: 5671: 5646: 4993: 4816: 4791: 4665:"Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming" 4407: 4333: 4308: 3654: 3517:
Jones, G.; Teeling, E. (March 2006). "The evolution of echolocation in bats".
2882: 2857: 2590: 2368: 2243: 1728: 1709: 1671: 1666: 1626: 1622: 1618: 1554: 1423: 1305: 1067: 823: 754: 733: 550: 426: 288: 253:
A single echolocation call (a call being a single continuous trace on a sound
162: 154: 113: 6867: 6778: 6723: 6567:
Riley, Donald A.; Rosenzweig, Mark R. (August 1957). "Echolocation in Rats".
6512: 6006: 5938: 5876: 5814: 5722: 5216: 4758: 4529: 4473: 4415: 4352: 4214: 4193:(5709). American Association for the Advancement of Science (AAAS): 580–584. 3263: 3039: 7817: 7119: 6770: 6548: 6504: 5540: 4749: 4689: 4465: 4206: 3459: 2938: 2294: 2251: 2048:, a motor protein of the outer hair cells of the inner ear of the mammalian 1973: 1871: 1861: 1845: 1785: 1740: 1657: 1610: 1582: 1514: 1440: 1436: 1148: 1056: 914: 510: 352: 68: 7132: 7061: 6991: 6885: 6786: 6650: 6632: 6588: 6520: 6446: 6428: 6195: 6112: 6014: 5956: 5884: 5832: 5791:"Cetacean Skull Telescoping Brings Evolution of Cranial Sutures into Focus" 5775: 5740: 5680: 5628: 5558: 5382: 5267: 5134: 5077: 5001: 4915: 4874: 4856: 4825: 4776: 4708: 4646: 4627: 4587: 4547: 4481: 4433: 4360: 4274: 4222: 4164: 4064: 3959: 3916: 3897: 3849: 3800: 3782: 3767:"Evidence for convergent evolution of ultrasonic hearing in toothed whales" 3662: 3538: 3467: 3428: 3387: 3369: 3338: 3271: 3157: 3139: 3097: 3047: 2997: 2956: 2891: 2752: 2526: 2445: 2234:
Terrestrial mammals other than bats known or thought to echolocate include
6952: 5224: 5180: 4601:
Springer, Mark S.; Teeling, Emma C.; Madsen, Ole; et al. (May 2001).
4115: 3222: 3214: 3184: 3012: 7802: 7586: 7200: 6667:
Spangler, Hayward G. (1988). "Sound and the Moths That Infest Beehives".
5973:
Geisler, Jonathan H.; Colbert, Matthew W.; Carew, James L. (April 2014).
5714: 5275: 5172: 5085: 4890:"Auditory communication processing in bats: What we know and where to go" 4792:"An aerial-hawking bat uses stealth echolocation to counter moth hearing" 3236:
Fenton, M. Brock; Faure, Paul A.; Ratcliffe, John M. (1 September 2012).
2216: 2128: 2041:(23–2.6 million years ago), evolving extremely specialized echolocation. 1602: 1562: 812:
echolocation evolved twice, or more, in Chiroptera, at least once in the
626: 247: 97:. A few bird species in two cave-dwelling bird groups echolocate, namely 64: 5998: 5337: 5312:
Viglino, M.; GaetΓ‘n, M.; Buono, M. R.; Fordyce, R. E.; Park, T. (2021).
4938: 1333:
to the highest levels of information processing in the auditory cortex.
17: 7113: 6745:
Corcoran, Aaron J.; Barber, Jesse R.; Conner, William E. (2009-07-17).
6688: 6413:"Why do shrews twitter? Communication or simple echo-based orientation" 6353: 6225:. NATO ASI Series A. Vol. 196. New York: Plenum. pp. 255–267. 6103: 6078: 4954: 4906: 4889: 4343: 4155: 4138: 4048: 3740: 3697: 3592: 3419: 3402: 3254: 2988: 2971: 2787: 2680: 2621: 2212: 2080: 2069: 2049: 2045: 2038: 1954: 1813: 1692: 1637: 1558: 1366: 609: 457: 320:
call, which maintains a constant frequency for up to 100 milliseconds.
102: 29:
Method used by several animal species to determine location using sound
6715: 6473: 5868: 5030:
Behavioral Neurobiology: The Cellular Organization of Natural Behavior
4978:"Cochlear hair cells of echolocating bats are immune to intense noise" 4056: 3951: 3840: 3823: 3089: 2083:
bones, and rearwards displacement of the nostrils) developed first in
7194: 6944: 6580: 5806: 5525:"Radiation of extant cetaceans driven by restructuring of the oceans" 4266: 4107: 3354:"Echolocation range and wingbeat period match in aerial-hawking bats" 3031: 2239: 2229: 2061: 1989: 1907: 1645: 1301: 1284: 1238: 999: 856: 809: 798: 758: 747: 564: 389: 362: 52: 6680: 6345: 5313: 4382:
Jebb, David; Huang, Zixia; Pippel, Martin; et al. (July 2020).
2661: 2572: 6702:
Phillips, Kathryn (15 July 2006). "Are Moths Jamming or Warning?".
5449:
From Greenhouse to Icehouse: the Marine Eocene-Oligocene Transition
4976:
Liu, Zhen; Chen, Peng; Li, Yuan-Yuan; et al. (November 2021).
4603:"Integrated fossil and molecular data reconstruct bat echolocation" 4384:"Six reference-quality genomes reveal evolution of bat adaptations" 3732: 2518: 93:
species, and, using simpler forms, species in other groups such as
7523: 7088: 6546:
in Captivity with Comments on the Behavior of other Insectivora".
6328:
Tomasi, Thomas E. (1979). "Echolocation by the Short-Tailed Shrew
4440:
Wang, Zhe; Zhu, Tengteng; Xue, Huiling; et al. (2017-01-09).
3641:
Neuweiler, G. (2003). "Evolutionary aspects of bat echolocation".
2265: 2235: 2199: 2107: 1540: 1449: 663: 493: 273: 199: 187: 94: 31: 7484: 5116: 4888:
Salles, Angeles; Bohn, Kirsten M.; Moss, Cynthia F. (June 2019).
7138: 6369:"The use of echolocation by the wandering shrew (Sorex vagrans)" 5846: 5844: 5842: 3401:
Brinklov, S.; Kalko, E. K. V.; Surlykke, A. (16 December 2008).
2152: 2053: 595: 233: 218:
researched, but the principles apply to all echolocation calls.
7488: 7142: 6263:. SHAR Series for Auditory Research. Springer. pp. 43–108. 5913:"Wonky whales: the evolution of cranial asymmetry in cetaceans" 4556:"Hear, hear: the convergent evolution of echolocation in bats?" 2171:) have lowered source levels to better suit their environment. 2044:
Four proteins play a major role in toothed whale echolocation.
4028:
Fukui, Dai; Agetsuma, Naoki; Hill, David A. (September 2004).
2416:(December 1944). "Echolocation by Blind Men, Bats and Radar". 1960: 802: 440: 90: 5968: 5966: 3124:"Bat echolocation calls: adaptation and convergent evolution" 2645:"Some habits and sensory adaptations of cave-inhabiting bats" 5692: 5690: 1432:. This bat's call has both CF tone and FM sweep components. 694: 108:
Some prey animals that are hunted by echolocating bats take
6487:
He, Kai; Liu, Qi; Xu, Dong-Ming; et al. (2021-06-18).
5647:"Cetaceans on a molecular fast track to ultrasonic hearing" 5640: 5638: 5403:"Whale evolution and oligocene southern-ocean environments" 2487:
Lettere sopra il sospetto di un nuovo senso nei pipistrelli
5906: 5904: 5902: 4663:
Chiu, Chen; Xian, Wei; Moss, Cynthia F. (September 2008).
816:
and at least once in the horseshoe bats (Rhinolophidae):
3828:
Biological Reviews of the Cambridge Philosophical Society
1609:
is often extremely limited in range due to absorption or
7082: 4137:
Gordon, Shira D.; ter Hofstede, Hannah M. (March 2018).
2390:"Donald R. Griffin, 88, Dies; Argued Animals Can Think" 6609:"The evolution of anti-bat sensory illusions in moths" 6602: 6600: 6598: 1050:
to the group, and was subsequently lost in the family
157:
to avoid obstacles. In 1920, the English physiologist
7018:"Echolocating bats cry out loud to detect their prey" 6542:
Eisenberg, J. F.; Gould, E. (1966). "The Behavior of
3352:
Holderied, M. W.; von Helversen, O. (November 2003).
3295:"Echolocating bats cry out loud to detect their prey" 2159:, are unable to hear frequencies above 100 kHz. 5051: 5049: 2554:
Journal de physique, de chimie, d'histoire naturelle
7785: 7722: 7624: 7522: 7377: 7356: 7260: 7176: 6569:
Journal of Comparative and Physiological Psychology
5789:Roston, Rachel A.; Roth, V. Louise (8 March 2019). 5099:Kanwal, Jagmeet S.; Rauschecker, J. P. (May 2007). 3238:"Evolution of high duty cycle echolocation in bats" 3011:Thaler, Lore; Goodale, Melvyn A. (19 August 2016). 6237: 6072: 6070: 2719:"The avoidance of objects by bats in their flight" 2494:] (in Italian). Turin, Italy: Stamperia Reale. 2463: 2270:The especially long tails on the hindwings of the 2135:(porpoises), as well as some species of the genus 2068:(34–31 Ma) and Antarctic ice growth at the Middle 6462:Proceedings of the American Philosophical Society 6161:"Dolphin sonar--modelling a new receiver concept" 5407:Palaeogeography, Palaeoclimatology, Palaeoecology 4658: 4656: 3636: 3634: 3632: 3630: 3444:"Scaling of Echolocation Call Parameters in Bats" 3117: 3115: 85:Echolocating animals include mammals, especially 7699:Ultra-short baseline acoustic positioning system 6963:BioNB 424 Neuroethology Powerpoint presentation. 6925:The Journal of the Acoustical Society of America 6662: 6660: 5476: 5474: 5472: 5299:Sensory Exotica: A World Beyond Human Experience 3932:The Journal of the Acoustical Society of America 3552: 3550: 3548: 3070:The Journal of the Acoustical Society of America 7089:British Library Sound Archive: Listen to Nature 7079:- analysis of several kinds of bat echolocation 5518: 5516: 5442: 5440: 5438: 5396: 5394: 5392: 4729:Proceedings of the National Academy of Sciences 3824:"Do predators influence the behaviour of bats?" 3760: 3758: 3574: 3572: 3570: 3568: 3196: 3194: 2492:Letters on the suspicion of a new sense in bats 6832:Dowdy, Nicolas J.; Conner, William E. (2016). 6087:) producing narrow-band high-frequency clicks" 3614: 3612: 3610: 2970:Shriram, Uday; Simmons, James A. (June 2019). 1526:Doppler shifted constant frequency (DSCF) area 724:; echolocation call followed by a social call. 7500: 7154: 6079:"Echolocation in sympatric Peale's dolphins ( 5574:Annual Review of Earth and Planetary Sciences 5023: 5021: 5019: 3822:Lima, Steven L.; O'Keefe, Joy (August 2013). 3512: 3510: 3508: 3506: 3504: 3502: 3062: 3060: 128:was coined by 1944 by the American zoologist 8: 5301:. Cambridge, Massachusetts: A Bradford Book. 5198: 5196: 5194: 5192: 5190: 5154: 5152: 5150: 5148: 5146: 5144: 3623:. New York: Springer Verlag. pp. 37–86. 2282:Some insects that are predated by bats have 163:frequencies above the range of human hearing 5028:Carew, T. (2004) . "Echolocation in Bats". 3561:. New York: Springer Verlag. pp. 1–36. 3485:. University of Chicago Press. p. 22. 287:, an FM bat. The ultrasonic call has been " 190:, judging by their navigational abilities. 7674:Short baseline acoustic positioning system 7507: 7493: 7485: 7161: 7147: 7139: 6406: 6404: 6402: 3122:Jones, G.; Holderied, M. W. (April 2007). 324:Acoustic environments of FM and CF signals 161:correctly proposed instead that bats used 7664:Long baseline acoustic positioning system 7135:Program for Biodiversity Research (PPBio) 7051: 7041: 7016:Surlykke, A.; Kalko, E. K. (April 2008). 6875: 6857: 6640: 6436: 6102: 6060:1983/dc8d8192-b8b6-4ec3-abd5-2ef84fddbee8 6058: 6039:Biological Journal of the Linnean Society 5946: 5928: 5822: 5730: 5670: 5548: 5426: 5124: 4905: 4864: 4815: 4766: 4748: 4698: 4688: 4636: 4626: 4537: 4423: 4342: 4332: 4154: 3906: 3896: 3839: 3790: 3418: 3377: 3328: 3318: 3293:Surlykke, A.; Kalko, E. K. (April 2008). 3253: 3147: 2987: 2946: 2881: 2742: 2670: 2660: 773:caused by the echoes reflecting from the 2845:. Harper and Brothers. pp. 206–207. 2258:can use echolocation to navigate mazes. 7114:University of Maryland Bat Research Lab 7007:Reynolds, J. E.; Rommel, S. A. (1999). 6961:Hopkins, C. (2007), "Echolocation II", 6489:"Echolocation in soft-furred tree mice" 2573:"Experiments on bats deprived of sight" 2402:from the original on 15 September 2012. 2388:Yoon, Carol Kaesuk (14 November 2003). 2380: 2123:Thirteen species of extant odontocetes 176:and McBride in 1956. However, in 1953, 7714:Underwater acoustic positioning system 7592:Surveillance Towed Array Sensor System 7085:- links to many bioacoustics resources 6965:, Ithaca, New York: Cornell University 4292:. Animal Diversity Web. Archived from 2655:(3): 135–198, especially pp. 165–178. 777:, a flap of skin in the external ear. 741:Echolocating bats use echolocation to 731: 153:independently proposed that bats used 5609:Molecular Phylogenetics and Evolution 5362:Molecular Phylogenetics and Evolution 3013:"Echolocation in humans: an overview" 2766:"Review of 'Listening in the Dark'". 2311:Moth ultrasound can also function to 1890:directional u/water hearing 1648:periods (49-31.5 million years ago), 1617:are generally able to hear sounds at 1337:Inner ear and primary sensory neurons 7: 7467: 7098:- has bat and swiftlet sonar signals 6710:(14). The Company of Biologists: i. 6274:FjeldsΓ₯, Jon; Krabbe, Niels (1990). 4004:"Pacific Northwest Bat Call Library" 1422:cortex of the bat have been done by 186:, that porpoises had something like 155:sound below the human auditory range 6307:. Marshall Cavendish. p. 547. 6240:The Evolutionary Biology of Hearing 6091:The Journal of Experimental Biology 5594:10.1146/annurev.ea.22.050194.002223 4943:Journal of Comparative Physiology A 4143:The Journal of Experimental Biology 3643:Journal of Comparative Physiology A 3581:Journal of Comparative Physiology A 3203:The Journal of Experimental Biology 1778: 1756: 1715: 1705: 1698: 1688: 1681: 1196: 1126: 1119: 1109: 1102: 1080: 1073: 1063: 957: 892: 885: 875: 868: 836: 829: 819: 601: 556: 485: 432: 422: 385: 378: 368: 358: 348: 7102:Bat Ecology & Bioacoustics Lab 7083:International Bioacoustics Council 6906:An Introduction to Neural Networks 4937:Schuller, G.; Pollack, G. (1979). 1640:evolution consisted of three main 25: 7709:Underwater acoustic communication 7644:Acoustic Doppler current profiler 4560:Trends in Ecology & Evolution 3686:Journal of Comparative Physiology 3519:Trends in Ecology & Evolution 3483:Echolocation in Bats and Dolphins 2694:Maxim, Hiram (7 September 1912). 1644:. Throughout the middle and late 797:Bats evolved at the start of the 226:different prey and environments. 7615: 7466: 7455: 7454: 7011:. Smithsonian Institution Press. 6367:Buchler, E. R. (November 1976). 6168:Bioinspiration & Biomimetics 5507:10.1111/j.1502-3931.2007.00032.x 4982:Journal of Genetics and Genomics 3358:Proceedings. Biological Sciences 3128:Proceedings. Biological Sciences 2014:. Tectonic openings created the 732:Problems playing this file? See 710: 681: 7767:Hearing range of marine mammals 7211:Central pattern generator (CPG) 7077:The DSP Behind Bat Echolocation 6972:Current Opinion in Neurobiology 6704:Journal of Experimental Biology 5161:Journal of Experimental Biology 3721:The Quarterly Review of Biology 3448:Journal of Experimental Biology 3407:Journal of Experimental Biology 3242:Journal of Experimental Biology 2012:greenhouse to an icehouse world 1485: Frequency-sensitive area 1477: Amplitude-sensitive area 7649:Acoustic seabed classification 7405:Frog hearing and communication 6261:Hearing by Whales and Dolphins 6223:Sensory Abilities of Cetaceans 6128:Hearing by Whales and Dolphins 4554:Teeling, Emma C. (July 2009). 4446:Nature Ecology & Evolution 2735:10.1113/jphysiol.1920.sp001908 2700:Scientific American Supplement 2037:(dolphins) diversified in the 281:Echolocation call produced by 232:, a bat species that feeds on 1: 6385:10.1016/S0003-3472(76)80016-4 6280:. Apollo Books. p. 232. 2919:The Journal of Animal Ecology 2020:Antarctic Circumpolar Current 1549:Biosonar is valuable to both 180:suggested in his first book, 7043:10.1371/journal.pone.0002036 6917:. New York: Springer-Verlag. 6859:10.1371/journal.pone.0152981 6244:. Springer-Verlag. pp.  6083:) and Commerson's dolphins ( 5428:10.1016/0031-0182(80)90024-3 3320:10.1371/journal.pone.0002036 2823:10.1016/0146-6313(56)90096-x 2780:10.1126/science.128.3327.766 2438:10.1126/science.100.2609.589 1674:odontocete, and once in the 6747:"Tiger Moth Jams Bat Sonar" 6301:Marshall Cavendish (2000). 6136:10.1007/978-1-4612-1150-1_3 6085:Cephalorhynchus commersonii 5621:10.1016/j.ympev.2009.08.018 5375:10.1016/j.ympev.2012.10.012 5032:. Oxford University Press. 3173:Canadian Journal of Zoology 2643:Hahn, Walter Louis (1908). 2169:Cephalorhynchus commersonii 1937:Cetacean evolution timeline 753:Echolocating bats generate 7880: 7732:Acoustic survey in fishing 7410:Infrared sensing in snakes 7395:Jamming avoidance response 7120:Batlab at Brown University 6984:10.1016/j.conb.2003.10.016 6159:Dobbins, P. (March 2007). 5930:10.1186/s12915-020-00805-4 5768:10.1016/j.gene.2013.08.034 5205:Journal of Neurophysiology 4841:"How the bat got its buzz" 4580:10.1016/j.tree.2009.02.012 4522:10.1038/s41467-017-02532-x 3974:"Wyoming Bat Call Library" 3531:10.1016/j.tree.2006.01.001 2230:Shrews Β§ Echolocation 2227: 2115:Southern Alaskan resident 680:Corresponding audio file: 265:Tradeoff between FM and CF 89:(toothed whales) and some 74:Echolocation calls can be 7669:Ocean acoustic tomography 7613: 7450: 7116:- website of Cynthia Moss 7009:Biology of Marine Mammals 6188:10.1088/1748-3182/2/1/003 6051:10.1093/biolinnean/bly194 5672:10.1016/j.cub.2010.09.008 5453:Columbia University Press 4994:10.1016/j.jgg.2021.06.007 4817:10.1016/j.cub.2010.07.046 4408:10.1038/s41586-020-2486-3 4334:10.1016/j.cub.2020.12.043 4290:"Order Chiroptera (Bats)" 3655:10.1007/s00359-003-0406-2 2883:10.1016/j.cub.2005.06.051 2591:10.1080/14786447808676811 2284:anti-predator adaptations 2131:(pygmy sperm whales) and 2008:Eocene-Oligocene boundary 1948: 1945: 1942: 1894: 1859: 1802: 1783: 1776: 1761: 1754: 1725: 1713: 1703: 1696: 1686: 1454:Auditory cortex of a bat 1373:Rhinolophus ferrumequinum 1216: 1201: 1194: 1144: 1131: 1124: 1117: 1107: 1100: 1085: 1078: 1071: 977: 962: 955: 910: 897: 890: 883: 873: 866: 841: 834: 827: 674:Pipistrellus pipistrellus 623: 606: 599: 561: 554: 507: 490: 483: 454: 437: 430: 420: 393: 383: 376: 366: 356: 284:Pipistrellus pipistrellus 7772:Marine mammals and sonar 7597:Synthetic aperture sonar 7415:Caridoid escape reaction 7129:- JA Simmons Lab website 6904:Anderson, J. A. (1995). 6669:The Florida Entomologist 6081:Lagenorhynchus australis 5217:10.1152/jn.1987.58.4.643 4008:University of Washington 2470:. Yale University Press. 7654:Acoustical oceanography 7268:Theodore Holmes Bullock 6813:journals.biologists.com 6771:10.1126/science.1174096 6505:10.1126/science.aay1513 5801:(7). Wiley: 1055–1073. 5401:Fordyce, R. E. (1980). 5105:Frontiers in Bioscience 4894:Behavioral Neuroscience 4750:10.1073/pnas.1907847116 4690:10.1073/pnas.0804408105 4466:10.1038/s41559-016-0021 4207:10.1126/science.1105113 3460:10.1242/jeb.202.23.3359 3020:WIREs Cognitive Science 2976:Behavioral Neuroscience 2939:10.1111/1365-2656.12989 2856:Jones, G. (July 2005). 2672:2027/hvd.32044107327314 2206:Aerodramus palawanensis 2010:caused a change from a 1799:adaptive radiation 1625:hear sounds within the 198:Echolocation is active 7572:Scientific echosounder 7425:Surface wave detection 6633:10.1126/sciadv.aar7428 6429:10.1098/rsbl.2009.0378 6304:Exploring Life Biology 5297:Hughes, H. C. (1999). 5268:10.1126/science.482944 5078:10.1126/science.857318 4857:10.1098/rsbl.2012.1031 4628:10.1073/pnas.111551998 3898:10.1073/pnas.022477199 3783:10.1098/rsbl.2019.0083 3442:Jones, Gareth (1999). 3370:10.1098/rspb.2003.2487 3140:10.1098/rspb.2006.0200 2837:Cousteau, Jacques Yves 2717:Hartridge, H. (1920). 2578:Philosophical Magazine 2571:De Jurine, M. (1798). 2322:The greater wax moth ( 2279: 2209: 2196:Oilbirds and swiftlets 2120: 1546: 1495: 1426:on the mustached bat, 1322:evolutionary arms race 699: 689: 292: 149:In 1912, the inventor 110:active countermeasures 37: 7752:Deep scattering layer 7562:Multibeam echosounder 7557:GLORIA sidescan sonar 7241:Anti-Hebbian learning 6915:The Sonar of Dolphins 5795:The Anatomical Record 5541:10.1093/sysbio/syp060 4502:Nature Communications 3978:University of Wyoming 3215:10.1242/jeb.200.1.129 3185:10.1139/cjz-76-6-1174 3026:(6). Wiley: 382–393. 2723:Journal of Physiology 2466:Listening in the dark 2269: 2248:Chinese pygmy dormice 2228:Further information: 2203: 2114: 1544: 1453: 1283: (Earliest  1160:tongue‑clicking 926:tongue‑clicking 771:interference patterns 698: 667: 397:Chinese pygmy dormice 280: 178:Jacques Yves Cousteau 35: 7864:Animal communication 7704:Underwater acoustics 7694:Sound velocity probe 7689:Sound speed gradient 7607:Upward looking sonar 7552:Fessenden oscillator 7318:Bernhard Hassenstein 7251:Ultrasound avoidance 7226:Fixed action pattern 7189:Coincidence detector 6334:Journal of Mammalogy 5715:10.1038/hdy.2011.119 5483:Pyenson, Nicholas D. 5455:. pp. 154–170. 5173:10.1242/jeb.63.1.161 2482:Spallanzani, Lazzaro 2288:echolocation jamming 2215:and some species of 2204:A Palawan swiftlet ( 2125:convergently evolved 2018:with a free flowing 1429:Pteronotus parnellii 343:convergent evolution 307:CF signal advantages 270:FM signal advantages 7813:Hydrographic survey 7762:Fisheries acoustics 7742:Animal echolocation 7537:Baffles (submarine) 7385:Animal echolocation 7323:Werner E. Reichardt 7273:Walter Heiligenberg 7034:2008PLoSO...3.2036S 6937:1995ASAJ...98..722P 6931:(2 Pt 1): 722–733. 6850:2016PLoSO..1152981D 6763:2009Sci...325..325C 6625:2018SciA....4.7428R 6544:Solenodon paradoxus 6180:2007BiBi....2...19D 5999:10.1038/nature13086 5991:2014Natur.508..383G 5663:2010CBio...20.1834L 5586:1994AREPS..22..419F 5499:2007Letha..40..335L 5419:1980PPP....31..319F 5338:10.1017/pab.2021.11 5330:2021Pbio...47..591V 5260:1979Sci...206..351S 5111:(8–12): 4621–4640. 5070:1977Sci...196..675P 4808:2010CBio...20.1568G 4741:2019PNAS..11622657K 4735:(45): 22657–22663. 4681:2008PNAS..10513116C 4619:2001PNAS...98.6241S 4572:2009TEcoE..24..351T 4514:2018NatCo...9...98T 4458:2017NatEE...1...21W 4400:2020Natur.583..578J 4325:2021CBio...31E1353N 4319:(7): 1353–1365.e3. 4296:on 21 December 2007 4259:2000Natur.403..188T 4199:2005Sci...307..580T 4149:(Pt 6): jeb171561. 4100:1991Natur.350..421S 3944:2004ASAJ..116.3701M 3889:2002PNAS...99.1431T 3364:(1530): 2293–2299. 3311:2008PLoSO...3.2036S 3082:2007ASAJ..121.1749H 2931:2019JAnEc..88.1462L 2874:2005CBio...15.R484J 2815:1956DSR.....3..153S 2774:(3327): 766. 1958. 2649:Biological Bulletin 2430:1944Sci...100..589G 2325:Galleria mellonella 2224:Terrestrial mammals 2165:Commerson's dolphin 2058:Molecular evolution 2000:underwater hearing 1968:, esp. of dolphins 1939: 1398:Inferior colliculus 1392:Inferior colliculus 1356:Pteronotus parnelii 1054:. Later, the genus 241:frequency modulated 138:Lazzaro Spallanzani 76:frequency modulated 7808:Geophysical MASINT 7793:Acoustic signature 7348:Fernando Nottebohm 7246:Sound localization 7221:Lateral inhibition 7125:2016-07-23 at the 7107:2009-05-26 at the 7094:2016-09-22 at the 6913:Au, W. E. (1993). 6499:(6548): eaay1513. 6330:Blarina brevicauda 6219:Tursiops truncatus 6104:10.1242/jeb.042440 5529:Systematic Biology 4955:10.1007/bf00617731 4907:10.1037/bne0000308 4156:10.1242/jeb.171561 4049:10.2108/zsj.21.947 4037:Zoological Science 3984:on 16 January 2019 3698:10.1007/bf00612592 3593:10.1007/bf00660182 3420:10.1242/jeb.023226 3255:10.1242/jeb.073171 2989:10.1037/bne0000315 2622:10.1007/bf02153744 2460:Griffin, Donald R. 2414:Griffin, Donald R. 2395:The New York Times 2359:Human echolocation 2300:Bertholdia trigona 2280: 2210: 2182:bottlenose dolphin 2121: 2119:using echolocation 1966:Adaptive radiation 1935: 1629:frequency regime. 1621:frequencies while 1547: 1496: 1318:selective pressure 1237: (Early  998: (Early  855: (Early  706:Pipistrellus calls 700: 690: 293: 159:Hamilton Hartridge 47:, is a biological 38: 7831: 7830: 7602:Towed array sonar 7582:Sonar beamforming 7567:Passive acoustics 7482: 7481: 7369:Slice preparation 7231:Krogh's Principle 7206:Feature detection 6757:(5938): 325–327. 6716:10.1242/jeb.02391 6314:978-0-7614-7142-4 6287:978-87-88757-16-3 6145:978-1-4612-7024-9 6097:(11): 1940–1949. 5985:(7496): 383–386. 5869:10.1111/evo.13480 5657:(20): 1834–1839. 5481:Lindberg, D. R.; 5462:978-0-2311-2716-5 5254:(4416): 351–353. 5064:(4290): 675–678. 5039:978-0-8789-3084-5 4802:(17): 1568–1572. 4613:(11): 6241–6246. 4394:(7817): 578–584. 4253:(6766): 188–192. 4094:(6317): 421–423. 3952:10.1121/1.1815133 3841:10.1111/brv.12021 3492:978-0-2267-9598-0 3454:(23): 3359–3367. 3248:(17): 2935–2944. 3209:(Pt 1): 129–137. 3134:(1612): 905–912. 3090:10.1121/1.2431337 2925:(10): 1462–1473. 2868:(13): R484–R488. 2803:Deep-Sea Research 2548:Peschier (1798). 2424:(2609): 589–590. 2354:Animal navigation 2272:African moon moth 2112: 2004: 2003: 1932: 1931: 1923: 1922: 1914: 1913: 1878: 1877: 1838: 1837: 1829: 1828: 1820: 1819: 1469: CF-CF area 1461: FM-FM area 1407:action potentials 1328:Neural mechanisms 1296:Calls and ecology 1292: 1291: 1273: 1272: 1264: 1263: 1255: 1254: 1246: 1245: 1227: 1226: 1175: 1174: 1166: 1165: 1043: 1042: 1034: 1033: 1025: 1024: 1016: 1015: 1007: 1006: 988: 987: 941: 940: 932: 931: 801:epoch, around 64 715: 686: 656: 655: 647: 646: 638: 637: 585: 584: 576: 575: 540: 539: 531: 530: 522: 521: 469: 468: 408: 407: 278: 229:Euderma maculatum 213:Acoustic features 16:(Redirected from 7871: 7724:Acoustic ecology 7639:Acoustic release 7634:Acoustic network 7619: 7532:Active acoustics 7509: 7502: 7495: 7486: 7470: 7469: 7458: 7457: 7435:Mechanoreception 7430:Electroreception 7343:Masakazu Konishi 7308:JΓΆrg-Peter Ewert 7163: 7156: 7149: 7140: 7065: 7055: 7045: 7012: 7003: 6966: 6956: 6945:10.1121/1.413566 6918: 6909: 6890: 6889: 6879: 6861: 6829: 6823: 6822: 6820: 6819: 6805: 6799: 6798: 6742: 6736: 6735: 6699: 6693: 6692: 6664: 6655: 6654: 6644: 6613:Science Advances 6604: 6593: 6592: 6581:10.1037/h0047398 6564: 6558: 6557: 6539: 6533: 6532: 6484: 6478: 6477: 6457: 6451: 6450: 6440: 6408: 6397: 6396: 6373:Animal Behaviour 6364: 6358: 6357: 6325: 6319: 6318: 6298: 6292: 6291: 6271: 6265: 6264: 6256: 6250: 6249: 6243: 6233: 6227: 6226: 6214: 6208: 6207: 6165: 6156: 6150: 6149: 6123: 6117: 6116: 6106: 6074: 6065: 6064: 6062: 6033: 6027: 6026: 5970: 5961: 5960: 5950: 5932: 5908: 5897: 5896: 5863:(5): 1092–1108. 5848: 5837: 5836: 5826: 5807:10.1002/ar.24079 5786: 5780: 5779: 5751: 5745: 5744: 5734: 5694: 5685: 5684: 5674: 5642: 5633: 5632: 5604: 5598: 5597: 5569: 5563: 5562: 5552: 5520: 5511: 5510: 5478: 5467: 5466: 5444: 5433: 5432: 5430: 5398: 5387: 5386: 5356: 5350: 5349: 5309: 5303: 5302: 5294: 5288: 5287: 5243: 5237: 5236: 5200: 5185: 5184: 5156: 5139: 5138: 5128: 5096: 5090: 5089: 5053: 5044: 5043: 5025: 5014: 5013: 4973: 4967: 4966: 4934: 4928: 4927: 4909: 4885: 4879: 4878: 4868: 4836: 4830: 4829: 4819: 4787: 4781: 4780: 4770: 4752: 4719: 4713: 4712: 4702: 4692: 4675:(35): 13116–21. 4660: 4651: 4650: 4640: 4630: 4598: 4592: 4591: 4551: 4541: 4493: 4437: 4427: 4379: 4373: 4372: 4346: 4336: 4304: 4302: 4301: 4286: 4267:10.1038/35003188 4241: 4235: 4234: 4184: 4175: 4169: 4168: 4158: 4134: 4128: 4127: 4108:10.1038/350421a0 4083: 4077: 4076: 4034: 4025: 4019: 4018: 4016: 4014: 4000: 3994: 3993: 3991: 3989: 3980:. Archived from 3970: 3964: 3963: 3938:(6): 3701–3712. 3927: 3921: 3920: 3910: 3900: 3883:(3): 1431–1436. 3868: 3862: 3861: 3843: 3819: 3813: 3812: 3794: 3762: 3753: 3752: 3716: 3710: 3709: 3681: 3675: 3674: 3638: 3625: 3624: 3616: 3605: 3604: 3576: 3563: 3562: 3554: 3543: 3542: 3514: 3497: 3496: 3478: 3472: 3471: 3439: 3433: 3432: 3422: 3398: 3392: 3391: 3381: 3349: 3343: 3342: 3332: 3322: 3290: 3284: 3283: 3257: 3233: 3227: 3226: 3198: 3189: 3188: 3179:(6): 1174–1182. 3168: 3162: 3161: 3151: 3119: 3110: 3109: 3076:(3): 1749–1757. 3064: 3055: 3054: 3032:10.1002/wcs.1408 3017: 3008: 3002: 3001: 2991: 2967: 2961: 2960: 2950: 2910: 2904: 2903: 2885: 2853: 2847: 2846: 2842:The Silent World 2833: 2827: 2826: 2798: 2792: 2791: 2763: 2757: 2756: 2746: 2714: 2708: 2707: 2691: 2685: 2684: 2674: 2664: 2640: 2634: 2633: 2605: 2599: 2598: 2568: 2562: 2561: 2545: 2539: 2538: 2502: 2496: 2495: 2478: 2472: 2471: 2469: 2456: 2450: 2449: 2410: 2404: 2403: 2385: 2364:Magnetoreception 2149:La Plata dolphin 2113: 2094:Cotylocara macei 1940: 1934: 1779: 1757: 1716: 1706: 1699: 1689: 1682: 1493: DSCF area 1492: 1491: 1484: 1483: 1476: 1475: 1468: 1467: 1460: 1459: 1363:basilar membrane 1348:Rhinolophus spp. 1197: 1127: 1120: 1110: 1103: 1081: 1074: 1064: 958: 893: 886: 876: 869: 837: 830: 820: 767:Rhinolophus spp. 717: 716: 697: 688: 687: 602: 557: 486: 433: 423: 386: 379: 369: 359: 349: 279: 183:The Silent World 168:Echolocation in 51:used by several 21: 7879: 7878: 7874: 7873: 7872: 7870: 7869: 7868: 7834: 7833: 7832: 7827: 7781: 7718: 7626:Ocean acoustics 7620: 7611: 7577:Side-scan sonar 7518: 7513: 7483: 7478: 7446: 7400:Vision in toads 7373: 7352: 7303:Erich von Holst 7298:Karl von Frisch 7256: 7172: 7167: 7127:Wayback Machine 7109:Wayback Machine 7096:Wayback Machine 7073: 7068: 7015: 7006: 6969: 6960: 6922: 6912: 6903: 6899: 6897:Further reading 6894: 6893: 6844:(4): e0152981. 6831: 6830: 6826: 6817: 6815: 6807: 6806: 6802: 6744: 6743: 6739: 6701: 6700: 6696: 6681:10.2307/3495006 6666: 6665: 6658: 6619:(7): eaar7428. 6606: 6605: 6596: 6566: 6565: 6561: 6541: 6540: 6536: 6486: 6485: 6481: 6459: 6458: 6454: 6417:Biology Letters 6410: 6409: 6400: 6366: 6365: 6361: 6346:10.2307/1380190 6327: 6326: 6322: 6315: 6300: 6299: 6295: 6288: 6273: 6272: 6268: 6258: 6257: 6253: 6235: 6234: 6230: 6216: 6215: 6211: 6163: 6158: 6157: 6153: 6146: 6125: 6124: 6120: 6076: 6075: 6068: 6035: 6034: 6030: 5972: 5971: 5964: 5910: 5909: 5900: 5850: 5849: 5840: 5788: 5787: 5783: 5753: 5752: 5748: 5696: 5695: 5688: 5651:Current Biology 5644: 5643: 5636: 5606: 5605: 5601: 5571: 5570: 5566: 5522: 5521: 5514: 5480: 5479: 5470: 5463: 5446: 5445: 5436: 5400: 5399: 5390: 5358: 5357: 5353: 5311: 5310: 5306: 5296: 5295: 5291: 5245: 5244: 5240: 5202: 5201: 5188: 5158: 5157: 5142: 5098: 5097: 5093: 5055: 5054: 5047: 5040: 5027: 5026: 5017: 4988:(11): 984–993. 4975: 4974: 4970: 4936: 4935: 4931: 4887: 4886: 4882: 4851:(2): 20121031. 4845:Biology Letters 4838: 4837: 4833: 4796:Current Biology 4789: 4788: 4784: 4721: 4720: 4716: 4662: 4661: 4654: 4600: 4599: 4595: 4553: 4495: 4439: 4381: 4380: 4376: 4313:Current Biology 4306: 4299: 4297: 4288: 4243: 4242: 4238: 4182: 4177: 4176: 4172: 4136: 4135: 4131: 4085: 4084: 4080: 4032: 4027: 4026: 4022: 4012: 4010: 4002: 4001: 3997: 3987: 3985: 3972: 3971: 3967: 3929: 3928: 3924: 3870: 3869: 3865: 3821: 3820: 3816: 3777:(5): 20190083. 3771:Biology Letters 3764: 3763: 3756: 3718: 3717: 3713: 3683: 3682: 3678: 3640: 3639: 3628: 3621:Hearing in Bats 3618: 3617: 3608: 3578: 3577: 3566: 3559:Hearing in Bats 3556: 3555: 3546: 3516: 3515: 3500: 3493: 3480: 3479: 3475: 3441: 3440: 3436: 3400: 3399: 3395: 3351: 3350: 3346: 3292: 3291: 3287: 3235: 3234: 3230: 3200: 3199: 3192: 3170: 3169: 3165: 3121: 3120: 3113: 3066: 3065: 3058: 3015: 3010: 3009: 3005: 2969: 2968: 2964: 2912: 2911: 2907: 2862:Current Biology 2855: 2854: 2850: 2835: 2834: 2830: 2800: 2799: 2795: 2765: 2764: 2760: 2716: 2715: 2711: 2693: 2692: 2688: 2662:10.2307/1536066 2642: 2641: 2637: 2607: 2606: 2602: 2570: 2569: 2565: 2547: 2546: 2542: 2504: 2503: 2499: 2480: 2479: 2475: 2458: 2457: 2453: 2412: 2411: 2407: 2387: 2386: 2382: 2377: 2350: 2264: 2262:Countermeasures 2256:laboratory rats 2232: 2226: 2198: 2144:Cephalorhynchus 2108: 2106: 1933: 1924: 1915: 1879: 1839: 1830: 1821: 1670:, an Oligocene 1635: 1633:Whale evolution 1539: 1494: 1489: 1488: 1486: 1481: 1480: 1478: 1473: 1472: 1470: 1465: 1464: 1462: 1457: 1456: 1419:auditory cortex 1415: 1413:Auditory cortex 1394: 1339: 1330: 1298: 1293: 1274: 1265: 1256: 1247: 1228: 1218:horseshoe bats 1176: 1167: 1088:Yangochiroptera 1044: 1035: 1026: 1017: 1008: 989: 979:horseshoe bats 942: 933: 844:Yangochiroptera 814:Yangochiroptera 795: 739: 738: 730: 728: 727: 726: 725: 718: 711: 708: 701: 695: 682: 679: 662: 657: 648: 639: 586: 577: 541: 532: 523: 470: 418:Laurasiatheria 409: 339: 337:Taxonomic range 326: 309: 274: 272: 267: 215: 207:multibeam sonar 196: 134:Robert Galambos 122: 30: 23: 22: 15: 12: 11: 5: 7877: 7875: 7867: 7866: 7861: 7856: 7851: 7846: 7836: 7835: 7829: 7828: 7826: 7825: 7820: 7815: 7810: 7805: 7800: 7795: 7789: 7787: 7786:Related topics 7783: 7782: 7780: 7779: 7774: 7769: 7764: 7759: 7754: 7749: 7744: 7739: 7734: 7728: 7726: 7720: 7719: 7717: 7716: 7711: 7706: 7701: 7696: 7691: 7686: 7681: 7676: 7671: 7666: 7661: 7656: 7651: 7646: 7641: 7636: 7630: 7628: 7622: 7621: 7614: 7612: 7610: 7609: 7604: 7599: 7594: 7589: 7584: 7579: 7574: 7569: 7564: 7559: 7554: 7549: 7544: 7542:Bistatic sonar 7539: 7534: 7528: 7526: 7520: 7519: 7516:Hydroacoustics 7514: 7512: 7511: 7504: 7497: 7489: 7480: 7479: 7477: 7476: 7464: 7451: 7448: 7447: 7445: 7444: 7443: 7442: 7432: 7427: 7422: 7420:Vocal learning 7417: 7412: 7407: 7402: 7397: 7392: 7387: 7381: 7379: 7375: 7374: 7372: 7371: 7366: 7360: 7358: 7354: 7353: 7351: 7350: 7345: 7340: 7335: 7330: 7325: 7320: 7315: 7310: 7305: 7300: 7295: 7293:Donald Kennedy 7290: 7288:Donald Griffin 7285: 7280: 7278:Niko Tinbergen 7275: 7270: 7264: 7262: 7258: 7257: 7255: 7254: 7248: 7243: 7238: 7236:Hebbian theory 7233: 7228: 7223: 7218: 7213: 7208: 7203: 7198: 7191: 7186: 7180: 7178: 7174: 7173: 7168: 7166: 7165: 7158: 7151: 7143: 7137: 7136: 7130: 7117: 7111: 7099: 7086: 7080: 7072: 7071:External links 7069: 7067: 7066: 7013: 7004: 6978:(6): 751–758. 6967: 6958: 6920: 6910: 6900: 6898: 6895: 6892: 6891: 6824: 6800: 6737: 6694: 6675:(4): 467–477. 6656: 6594: 6575:(4): 323–328. 6559: 6534: 6479: 6468:(6): 352–360. 6452: 6423:(5): 593–596. 6398: 6379:(4): 858–873. 6359: 6340:(4): 751–759. 6320: 6313: 6293: 6286: 6266: 6251: 6228: 6209: 6151: 6144: 6118: 6066: 6045:(2): 213–224. 6028: 5962: 5898: 5838: 5781: 5762:(2): 208–214. 5746: 5709:(5): 480–489. 5686: 5634: 5615:(3): 891–906. 5599: 5580:(1): 419–455. 5564: 5535:(6): 573–585. 5512: 5493:(4): 335–343. 5468: 5461: 5434: 5388: 5369:(2): 479–506. 5351: 5324:(4): 591–611. 5304: 5289: 5238: 5211:(4): 643–654. 5186: 5167:(1): 161–192. 5140: 5091: 5045: 5038: 5015: 4968: 4929: 4900:(3): 305–319. 4880: 4831: 4782: 4714: 4652: 4593: 4566:(7): 351–354. 4374: 4236: 4170: 4129: 4078: 4043:(9): 947–955. 4020: 3995: 3965: 3922: 3863: 3834:(3): 626–644. 3814: 3754: 3733:10.1086/413674 3711: 3692:(3): 385–391. 3676: 3649:(4): 245–256. 3626: 3606: 3564: 3544: 3525:(3): 149–156. 3498: 3491: 3473: 3434: 3393: 3344: 3285: 3228: 3190: 3163: 3111: 3056: 3003: 2982:(3): 297–304. 2962: 2905: 2858:"Echolocation" 2848: 2828: 2809:(2): 153–154. 2793: 2758: 2729:(1–2): 54–57. 2709: 2686: 2635: 2600: 2585:(2): 136–140. 2563: 2540: 2519:10.1086/348834 2497: 2473: 2451: 2405: 2379: 2378: 2376: 2373: 2372: 2371: 2366: 2361: 2356: 2349: 2346: 2341:Argema mimosae 2263: 2260: 2225: 2222: 2197: 2194: 2138:Lagenorhynchus 2105: 2102: 2028:diel migrating 2016:Southern Ocean 2002: 2001: 1995: 1992: 1986: 1985: 1979: 1976: 1970: 1969: 1963: 1957: 1951: 1950: 1947: 1944: 1930: 1929: 1926: 1925: 1921: 1920: 1917: 1916: 1912: 1911: 1906:mid/late  1902: 1901: 1897:Basilosauridae 1893: 1885: 1884: 1881: 1880: 1876: 1875: 1866: 1865: 1858: 1850: 1849: 1841: 1840: 1836: 1835: 1832: 1831: 1827: 1826: 1823: 1822: 1818: 1817: 1809: 1808: 1801: 1795: 1794: 1791: 1790: 1782: 1777: 1775: 1772: 1771: 1768: 1767: 1760: 1755: 1753: 1745: 1744: 1735: 1734: 1724: 1714: 1712: 1704: 1702: 1697: 1695: 1687: 1685: 1680: 1678:odontocetes. 1634: 1631: 1567:river dolphins 1551:toothed whales 1538: 1535: 1534: 1533: 1523: 1508: 1487: 1479: 1471: 1463: 1455: 1414: 1411: 1393: 1390: 1378:acoustic fovea 1352:moustached bat 1344:horseshoe bats 1338: 1335: 1329: 1326: 1313:hearing organs 1297: 1294: 1290: 1289: 1281: CF  1276: 1275: 1271: 1270: 1267: 1266: 1262: 1261: 1258: 1257: 1253: 1252: 1249: 1248: 1244: 1243: 1235: FM  1230: 1229: 1225: 1224: 1221: 1220: 1215: 1212: 1211: 1208: 1207: 1204:Megadermatidae 1200: 1195: 1193: 1191:Rhinolophoidea 1187: 1186: 1178: 1177: 1173: 1172: 1169: 1168: 1164: 1163: 1155: 1154: 1143: 1140: 1139: 1136: 1135: 1130: 1125: 1123: 1118: 1116: 1108: 1106: 1101: 1099: 1096: 1095: 1092: 1091: 1084: 1079: 1077: 1072: 1070: 1062: 1041: 1040: 1037: 1036: 1032: 1031: 1028: 1027: 1023: 1022: 1019: 1018: 1014: 1013: 1010: 1009: 1005: 1004: 996: FM  991: 990: 986: 985: 982: 981: 976: 973: 972: 969: 968: 965:Megadermatidae 961: 956: 954: 952:Rhinolophoidea 948: 947: 944: 943: 939: 938: 935: 934: 930: 929: 921: 920: 909: 906: 905: 902: 901: 896: 891: 889: 884: 882: 874: 872: 867: 865: 862: 861: 853: CF  848: 847: 840: 835: 833: 828: 826: 818: 794: 791: 763:horseshoe bats 729: 719: 709: 704: 703: 702: 693: 692: 691: 661: 658: 654: 653: 650: 649: 645: 644: 641: 640: 636: 635: 632: 631: 622: 619: 618: 615: 614: 605: 600: 598: 592: 591: 588: 587: 583: 582: 579: 578: 574: 573: 570: 569: 560: 555: 553: 547: 546: 543: 542: 538: 537: 534: 533: 529: 528: 525: 524: 520: 519: 516: 515: 506: 503: 502: 499: 498: 489: 484: 482: 476: 475: 472: 471: 467: 466: 463: 462: 453: 450: 449: 446: 445: 436: 431: 429: 421: 419: 415: 414: 411: 410: 406: 405: 402: 401: 392: 384: 382: 377: 375: 367: 365: 357: 355: 347: 338: 335: 325: 322: 308: 305: 271: 268: 266: 263: 214: 211: 195: 192: 130:Donald Griffin 121: 120:Early research 118: 99:cave swiftlets 80:Doppler effect 43:, also called 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7876: 7865: 7862: 7860: 7857: 7855: 7852: 7850: 7849:Neuroethology 7847: 7845: 7842: 7841: 7839: 7824: 7821: 7819: 7816: 7814: 7811: 7809: 7806: 7804: 7801: 7799: 7796: 7794: 7791: 7790: 7788: 7784: 7778: 7775: 7773: 7770: 7768: 7765: 7763: 7760: 7758: 7755: 7753: 7750: 7748: 7747:Beached whale 7745: 7743: 7740: 7738: 7735: 7733: 7730: 7729: 7727: 7725: 7721: 7715: 7712: 7710: 7707: 7705: 7702: 7700: 7697: 7695: 7692: 7690: 7687: 7685: 7684:SOFAR channel 7682: 7680: 7677: 7675: 7672: 7670: 7667: 7665: 7662: 7660: 7657: 7655: 7652: 7650: 7647: 7645: 7642: 7640: 7637: 7635: 7632: 7631: 7629: 7627: 7623: 7618: 7608: 7605: 7603: 7600: 7598: 7595: 7593: 7590: 7588: 7585: 7583: 7580: 7578: 7575: 7573: 7570: 7568: 7565: 7563: 7560: 7558: 7555: 7553: 7550: 7548: 7547:Echo sounding 7545: 7543: 7540: 7538: 7535: 7533: 7530: 7529: 7527: 7525: 7521: 7517: 7510: 7505: 7503: 7498: 7496: 7491: 7490: 7487: 7475: 7474: 7465: 7463: 7462: 7453: 7452: 7449: 7441: 7438: 7437: 7436: 7433: 7431: 7428: 7426: 7423: 7421: 7418: 7416: 7413: 7411: 7408: 7406: 7403: 7401: 7398: 7396: 7393: 7391: 7388: 7386: 7383: 7382: 7380: 7376: 7370: 7367: 7365: 7362: 7361: 7359: 7355: 7349: 7346: 7344: 7341: 7339: 7336: 7334: 7331: 7329: 7326: 7324: 7321: 7319: 7316: 7314: 7311: 7309: 7306: 7304: 7301: 7299: 7296: 7294: 7291: 7289: 7286: 7284: 7283:Konrad Lorenz 7281: 7279: 7276: 7274: 7271: 7269: 7266: 7265: 7263: 7259: 7252: 7249: 7247: 7244: 7242: 7239: 7237: 7234: 7232: 7229: 7227: 7224: 7222: 7219: 7217: 7216:NMDA receptor 7214: 7212: 7209: 7207: 7204: 7202: 7199: 7197: 7196: 7192: 7190: 7187: 7185: 7182: 7181: 7179: 7175: 7171: 7170:Neuroethology 7164: 7159: 7157: 7152: 7150: 7145: 7144: 7141: 7134: 7131: 7128: 7124: 7121: 7118: 7115: 7112: 7110: 7106: 7103: 7100: 7097: 7093: 7090: 7087: 7084: 7081: 7078: 7075: 7074: 7070: 7063: 7059: 7054: 7049: 7044: 7039: 7035: 7031: 7027: 7023: 7019: 7014: 7010: 7005: 7001: 6997: 6993: 6989: 6985: 6981: 6977: 6973: 6968: 6964: 6959: 6954: 6950: 6946: 6942: 6938: 6934: 6930: 6926: 6921: 6916: 6911: 6907: 6902: 6901: 6896: 6887: 6883: 6878: 6873: 6869: 6865: 6860: 6855: 6851: 6847: 6843: 6839: 6835: 6828: 6825: 6814: 6810: 6804: 6801: 6796: 6792: 6788: 6784: 6780: 6776: 6772: 6768: 6764: 6760: 6756: 6752: 6748: 6741: 6738: 6733: 6729: 6725: 6721: 6717: 6713: 6709: 6705: 6698: 6695: 6690: 6686: 6682: 6678: 6674: 6670: 6663: 6661: 6657: 6652: 6648: 6643: 6638: 6634: 6630: 6626: 6622: 6618: 6614: 6610: 6603: 6601: 6599: 6595: 6590: 6586: 6582: 6578: 6574: 6570: 6563: 6560: 6555: 6551: 6550: 6545: 6538: 6535: 6530: 6526: 6522: 6518: 6514: 6510: 6506: 6502: 6498: 6494: 6490: 6483: 6480: 6475: 6471: 6467: 6463: 6456: 6453: 6448: 6444: 6439: 6434: 6430: 6426: 6422: 6418: 6414: 6407: 6405: 6403: 6399: 6394: 6390: 6386: 6382: 6378: 6374: 6370: 6363: 6360: 6355: 6351: 6347: 6343: 6339: 6335: 6331: 6324: 6321: 6316: 6310: 6306: 6305: 6297: 6294: 6289: 6283: 6279: 6278: 6270: 6267: 6262: 6255: 6252: 6247: 6242: 6241: 6232: 6229: 6224: 6220: 6213: 6210: 6205: 6201: 6197: 6193: 6189: 6185: 6181: 6177: 6173: 6169: 6162: 6155: 6152: 6147: 6141: 6137: 6133: 6129: 6122: 6119: 6114: 6110: 6105: 6100: 6096: 6092: 6088: 6086: 6082: 6073: 6071: 6067: 6061: 6056: 6052: 6048: 6044: 6040: 6032: 6029: 6024: 6020: 6016: 6012: 6008: 6004: 6000: 5996: 5992: 5988: 5984: 5980: 5976: 5969: 5967: 5963: 5958: 5954: 5949: 5944: 5940: 5936: 5931: 5926: 5922: 5918: 5914: 5907: 5905: 5903: 5899: 5894: 5890: 5886: 5882: 5878: 5874: 5870: 5866: 5862: 5858: 5854: 5847: 5845: 5843: 5839: 5834: 5830: 5825: 5820: 5816: 5812: 5808: 5804: 5800: 5796: 5792: 5785: 5782: 5777: 5773: 5769: 5765: 5761: 5757: 5750: 5747: 5742: 5738: 5733: 5728: 5724: 5720: 5716: 5712: 5708: 5704: 5700: 5693: 5691: 5687: 5682: 5678: 5673: 5668: 5664: 5660: 5656: 5652: 5648: 5641: 5639: 5635: 5630: 5626: 5622: 5618: 5614: 5610: 5603: 5600: 5595: 5591: 5587: 5583: 5579: 5575: 5568: 5565: 5560: 5556: 5551: 5546: 5542: 5538: 5534: 5530: 5526: 5519: 5517: 5513: 5508: 5504: 5500: 5496: 5492: 5488: 5484: 5477: 5475: 5473: 5469: 5464: 5458: 5454: 5450: 5443: 5441: 5439: 5435: 5429: 5424: 5420: 5416: 5412: 5408: 5404: 5397: 5395: 5393: 5389: 5384: 5380: 5376: 5372: 5368: 5364: 5363: 5355: 5352: 5347: 5343: 5339: 5335: 5331: 5327: 5323: 5319: 5315: 5308: 5305: 5300: 5293: 5290: 5285: 5281: 5277: 5273: 5269: 5265: 5261: 5257: 5253: 5249: 5242: 5239: 5234: 5230: 5226: 5222: 5218: 5214: 5210: 5206: 5199: 5197: 5195: 5193: 5191: 5187: 5182: 5178: 5174: 5170: 5166: 5162: 5155: 5153: 5151: 5149: 5147: 5145: 5141: 5136: 5132: 5127: 5122: 5118: 5114: 5110: 5106: 5102: 5095: 5092: 5087: 5083: 5079: 5075: 5071: 5067: 5063: 5059: 5052: 5050: 5046: 5041: 5035: 5031: 5024: 5022: 5020: 5016: 5011: 5007: 5003: 4999: 4995: 4991: 4987: 4983: 4979: 4972: 4969: 4964: 4960: 4956: 4952: 4948: 4944: 4940: 4933: 4930: 4925: 4921: 4917: 4913: 4908: 4903: 4899: 4895: 4891: 4884: 4881: 4876: 4872: 4867: 4862: 4858: 4854: 4850: 4846: 4842: 4835: 4832: 4827: 4823: 4818: 4813: 4809: 4805: 4801: 4797: 4793: 4786: 4783: 4778: 4774: 4769: 4764: 4760: 4756: 4751: 4746: 4742: 4738: 4734: 4730: 4726: 4718: 4715: 4710: 4706: 4701: 4696: 4691: 4686: 4682: 4678: 4674: 4670: 4666: 4659: 4657: 4653: 4648: 4644: 4639: 4634: 4629: 4624: 4620: 4616: 4612: 4608: 4604: 4597: 4594: 4589: 4585: 4581: 4577: 4573: 4569: 4565: 4561: 4557: 4549: 4545: 4540: 4535: 4531: 4527: 4523: 4519: 4515: 4511: 4507: 4503: 4499: 4491: 4487: 4483: 4479: 4475: 4471: 4467: 4463: 4459: 4455: 4451: 4447: 4443: 4435: 4431: 4426: 4421: 4417: 4413: 4409: 4405: 4401: 4397: 4393: 4389: 4385: 4378: 4375: 4370: 4366: 4362: 4358: 4354: 4350: 4345: 4340: 4335: 4330: 4326: 4322: 4318: 4314: 4310: 4295: 4291: 4284: 4280: 4276: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4240: 4237: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4204: 4200: 4196: 4192: 4188: 4181: 4174: 4171: 4166: 4162: 4157: 4152: 4148: 4144: 4140: 4133: 4130: 4125: 4121: 4117: 4113: 4109: 4105: 4101: 4097: 4093: 4089: 4082: 4079: 4074: 4070: 4066: 4062: 4058: 4054: 4050: 4046: 4042: 4038: 4031: 4024: 4021: 4009: 4005: 3999: 3996: 3983: 3979: 3975: 3969: 3966: 3961: 3957: 3953: 3949: 3945: 3941: 3937: 3933: 3926: 3923: 3918: 3914: 3909: 3904: 3899: 3894: 3890: 3886: 3882: 3878: 3874: 3867: 3864: 3859: 3855: 3851: 3847: 3842: 3837: 3833: 3829: 3825: 3818: 3815: 3810: 3806: 3802: 3798: 3793: 3788: 3784: 3780: 3776: 3772: 3768: 3761: 3759: 3755: 3750: 3746: 3742: 3738: 3734: 3730: 3726: 3722: 3715: 3712: 3707: 3703: 3699: 3695: 3691: 3687: 3680: 3677: 3672: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3637: 3635: 3633: 3631: 3627: 3622: 3615: 3613: 3611: 3607: 3602: 3598: 3594: 3590: 3586: 3582: 3575: 3573: 3571: 3569: 3565: 3560: 3553: 3551: 3549: 3545: 3540: 3536: 3532: 3528: 3524: 3520: 3513: 3511: 3509: 3507: 3505: 3503: 3499: 3494: 3488: 3484: 3477: 3474: 3469: 3465: 3461: 3457: 3453: 3449: 3445: 3438: 3435: 3430: 3426: 3421: 3416: 3412: 3408: 3404: 3397: 3394: 3389: 3385: 3380: 3375: 3371: 3367: 3363: 3359: 3355: 3348: 3345: 3340: 3336: 3331: 3326: 3321: 3316: 3312: 3308: 3304: 3300: 3296: 3289: 3286: 3281: 3277: 3273: 3269: 3265: 3261: 3256: 3251: 3247: 3243: 3239: 3232: 3229: 3224: 3220: 3216: 3212: 3208: 3204: 3197: 3195: 3191: 3186: 3182: 3178: 3174: 3167: 3164: 3159: 3155: 3150: 3145: 3141: 3137: 3133: 3129: 3125: 3118: 3116: 3112: 3107: 3103: 3099: 3095: 3091: 3087: 3083: 3079: 3075: 3071: 3063: 3061: 3057: 3053: 3049: 3045: 3041: 3037: 3033: 3029: 3025: 3021: 3014: 3007: 3004: 2999: 2995: 2990: 2985: 2981: 2977: 2973: 2966: 2963: 2958: 2954: 2949: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2909: 2906: 2901: 2897: 2893: 2889: 2884: 2879: 2875: 2871: 2867: 2863: 2859: 2852: 2849: 2844: 2843: 2838: 2832: 2829: 2824: 2820: 2816: 2812: 2808: 2804: 2797: 2794: 2789: 2785: 2781: 2777: 2773: 2769: 2762: 2759: 2754: 2750: 2745: 2740: 2736: 2732: 2728: 2724: 2720: 2713: 2710: 2705: 2701: 2697: 2690: 2687: 2682: 2678: 2673: 2668: 2663: 2658: 2654: 2650: 2646: 2639: 2636: 2631: 2627: 2623: 2619: 2615: 2611: 2604: 2601: 2597: 2592: 2588: 2584: 2580: 2579: 2574: 2567: 2564: 2559: 2556:(in French). 2555: 2551: 2544: 2541: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2501: 2498: 2493: 2489: 2488: 2483: 2477: 2474: 2468: 2467: 2461: 2455: 2452: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2409: 2406: 2401: 2397: 2396: 2391: 2384: 2381: 2374: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2351: 2347: 2345: 2343: 2342: 2337: 2333: 2332: 2327: 2326: 2320: 2318: 2314: 2309: 2307: 2302: 2301: 2296: 2293:Tiger moths ( 2291: 2289: 2285: 2277: 2273: 2268: 2261: 2259: 2257: 2253: 2249: 2245: 2241: 2237: 2231: 2223: 2221: 2218: 2214: 2207: 2202: 2195: 2193: 2189: 2185: 2183: 2179: 2174: 2172: 2170: 2166: 2160: 2158: 2154: 2150: 2146: 2145: 2140: 2139: 2134: 2130: 2126: 2118: 2117:killer whales 2103: 2101: 2099: 2095: 2090: 2086: 2082: 2078: 2073: 2071: 2067: 2066:Drake Passage 2063: 2059: 2055: 2051: 2047: 2042: 2040: 2036: 2033:. The family 2032: 2029: 2025: 2021: 2017: 2013: 2009: 1999: 1996: 1993: 1991: 1988: 1987: 1984:echolocation 1983: 1980: 1977: 1975: 1972: 1971: 1967: 1964: 1962: 1958: 1956: 1953: 1952: 1941: 1938: 1928: 1927: 1919: 1918: 1910: 1909: 1904: 1903: 1900: 1898: 1892: 1891: 1887: 1886: 1883: 1882: 1874: 1873: 1868: 1867: 1864: 1863: 1857: 1856: 1852: 1851: 1848: 1847: 1843: 1842: 1834: 1833: 1825: 1824: 1816: 1815: 1811: 1810: 1807: 1806: 1800: 1797: 1796: 1793: 1792: 1789: 1787: 1781: 1780: 1774: 1773: 1770: 1769: 1766: 1765: 1764:Physeteroidea 1759: 1758: 1752: 1751: 1747: 1746: 1743: 1742: 1737: 1736: 1733: 1731: 1730: 1723: 1722: 1718: 1717: 1711: 1708: 1707: 1701: 1700: 1694: 1691: 1690: 1684: 1683: 1679: 1677: 1673: 1669: 1668: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1632: 1630: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1585:), including 1584: 1580: 1579:baleen whales 1576: 1572: 1571:killer whales 1568: 1564: 1560: 1557:), including 1556: 1552: 1543: 1536: 1531: 1527: 1524: 1520: 1519:Doppler shift 1516: 1512: 1509: 1505: 1501: 1498: 1497: 1452: 1448: 1444: 1442: 1438: 1433: 1431: 1430: 1425: 1420: 1412: 1410: 1408: 1403: 1399: 1391: 1389: 1385: 1381: 1379: 1375: 1374: 1368: 1364: 1359: 1357: 1353: 1349: 1345: 1336: 1334: 1327: 1325: 1323: 1319: 1314: 1309: 1307: 1303: 1295: 1288: 1286: 1282: 1278: 1277: 1269: 1268: 1260: 1259: 1251: 1250: 1242: 1240: 1236: 1232: 1231: 1223: 1222: 1219: 1214: 1213: 1210: 1209: 1206: 1205: 1199: 1198: 1192: 1189: 1188: 1185: 1184: 1180: 1179: 1171: 1170: 1162: 1161: 1157: 1156: 1153: 1152: 1151: 1150: 1142: 1141: 1138: 1137: 1134: 1129: 1128: 1122: 1121: 1115: 1112: 1111: 1105: 1104: 1098: 1097: 1094: 1093: 1090: 1089: 1083: 1082: 1076: 1075: 1069: 1066: 1065: 1061: 1059: 1058: 1053: 1049: 1039: 1038: 1030: 1029: 1021: 1020: 1012: 1011: 1003: 1001: 997: 993: 992: 984: 983: 980: 975: 974: 971: 970: 967: 966: 960: 959: 953: 950: 949: 946: 945: 937: 936: 928: 927: 923: 922: 919: 918: 917: 916: 908: 907: 904: 903: 900: 895: 894: 888: 887: 881: 878: 877: 871: 870: 864: 863: 860: 858: 854: 850: 849: 846: 845: 839: 838: 832: 831: 825: 822: 821: 817: 815: 811: 806: 804: 800: 793:Bat evolution 792: 790: 788: 787:terminal buzz 782: 778: 776: 772: 768: 764: 760: 756: 751: 749: 744: 737: 735: 723: 720:Recording of 707: 676: 675: 670: 666: 659: 652: 651: 643: 642: 634: 633: 630: 629: 628: 621: 620: 617: 616: 613: 612: 611: 604: 603: 597: 594: 593: 590: 589: 581: 580: 572: 571: 568: 567: 566: 559: 558: 552: 549: 548: 545: 544: 536: 535: 527: 526: 518: 517: 514: 513: 512: 505: 504: 501: 500: 497: 496: 495: 488: 487: 481: 478: 477: 474: 473: 465: 464: 461: 460: 459: 452: 451: 448: 447: 444: 443: 442: 435: 434: 428: 425: 424: 417: 416: 413: 412: 404: 403: 400: 399: 398: 391: 388: 387: 381: 380: 374: 373:Boreoeutheria 371: 370: 364: 361: 360: 354: 351: 350: 346: 344: 336: 334: 330: 323: 321: 317: 314: 313:Doppler shift 306: 304: 300: 298: 290: 286: 285: 269: 264: 262: 258: 256: 251: 249: 244: 242: 237: 235: 231: 230: 224: 223:Insectivorous 219: 212: 210: 208: 203: 201: 193: 191: 189: 185: 184: 179: 175: 171: 166: 164: 160: 156: 152: 147: 144: 139: 135: 131: 127: 119: 117: 115: 111: 106: 104: 100: 96: 92: 88: 83: 81: 77: 72: 70: 66: 62: 58: 54: 50: 46: 42: 34: 27: 19: 7798:Bioacoustics 7741: 7737:Acoustic tag 7471: 7459: 7440:Lateral line 7390:Waggle dance 7384: 7328:Eric Knudsen 7193: 7028:(4): e2036. 7025: 7021: 7008: 6975: 6971: 6962: 6928: 6924: 6914: 6908:. MIT Press. 6905: 6841: 6837: 6827: 6816:. Retrieved 6812: 6803: 6754: 6750: 6740: 6707: 6703: 6697: 6672: 6668: 6616: 6612: 6572: 6568: 6562: 6553: 6547: 6543: 6537: 6496: 6492: 6482: 6465: 6461: 6455: 6420: 6416: 6376: 6372: 6362: 6337: 6333: 6329: 6323: 6303: 6296: 6276: 6269: 6260: 6254: 6239: 6231: 6222: 6218: 6212: 6174:(1): 19–29. 6171: 6167: 6154: 6127: 6121: 6094: 6090: 6084: 6080: 6042: 6038: 6031: 5982: 5978: 5920: 5916: 5860: 5856: 5798: 5794: 5784: 5759: 5755: 5749: 5706: 5702: 5654: 5650: 5612: 5608: 5602: 5577: 5573: 5567: 5532: 5528: 5490: 5486: 5448: 5410: 5406: 5366: 5360: 5354: 5321: 5318:Paleobiology 5317: 5307: 5298: 5292: 5251: 5247: 5241: 5208: 5204: 5164: 5160: 5117:10.2741/2413 5108: 5104: 5094: 5061: 5057: 5029: 4985: 4981: 4971: 4949:(1): 47–54. 4946: 4942: 4932: 4897: 4893: 4883: 4848: 4844: 4834: 4799: 4795: 4785: 4732: 4728: 4717: 4672: 4668: 4610: 4606: 4596: 4563: 4559: 4505: 4501: 4449: 4445: 4391: 4387: 4377: 4316: 4312: 4298:. Retrieved 4294:the original 4250: 4246: 4239: 4190: 4186: 4173: 4146: 4142: 4132: 4091: 4087: 4081: 4040: 4036: 4023: 4011:. Retrieved 4007: 3998: 3986:. Retrieved 3982:the original 3977: 3968: 3935: 3931: 3925: 3880: 3876: 3866: 3831: 3827: 3817: 3774: 3770: 3727:(1): 33–53. 3724: 3720: 3714: 3689: 3685: 3679: 3646: 3642: 3620: 3587:(1): 61–84. 3584: 3580: 3558: 3522: 3518: 3482: 3476: 3451: 3447: 3437: 3413:(1): 11–20. 3410: 3406: 3396: 3361: 3357: 3347: 3305:(4): e2036. 3302: 3298: 3288: 3245: 3241: 3231: 3206: 3202: 3176: 3172: 3166: 3131: 3127: 3073: 3069: 3051: 3023: 3019: 3006: 2979: 2975: 2965: 2922: 2918: 2908: 2865: 2861: 2851: 2841: 2831: 2806: 2802: 2796: 2771: 2767: 2761: 2726: 2722: 2712: 2703: 2699: 2689: 2652: 2648: 2638: 2616:(2): 90–92. 2613: 2609: 2603: 2594: 2582: 2576: 2566: 2557: 2553: 2543: 2510: 2506: 2500: 2491: 2486: 2476: 2465: 2454: 2421: 2417: 2408: 2393: 2383: 2339: 2329: 2323: 2321: 2310: 2305: 2298: 2292: 2281: 2233: 2211: 2205: 2190: 2186: 2175: 2173: 2168: 2161: 2157:Acrophyseter 2156: 2142: 2136: 2122: 2098:median plane 2093: 2074: 2043: 2005: 1998:Archaeocetes 1936: 1905: 1895: 1889: 1888: 1870:middle  1869: 1860: 1855:echolocation 1854: 1853: 1844: 1812: 1805:Delphinoidea 1803: 1798: 1784: 1762: 1750:echolocation 1749: 1748: 1738: 1727: 1726: 1721:echolocation 1720: 1719: 1665: 1662:monophyletic 1654:basilosaurid 1650:archaeocetes 1636: 1575:sperm whales 1548: 1529: 1525: 1510: 1503: 1499: 1445: 1434: 1427: 1416: 1402:interneurons 1395: 1386: 1384:necessary. 1382: 1371: 1360: 1355: 1347: 1340: 1331: 1310: 1299: 1280: 1279: 1234: 1233: 1217: 1202: 1183:CF lost 1182: 1181: 1159: 1158: 1147: 1146: 1145: 1132: 1114:Pteropodidae 1086: 1055: 1052:Pteropodidae 1045: 995: 994: 978: 963: 925: 924: 913: 912: 911: 898: 880:Pteropodidae 852: 851: 842: 807: 796: 786: 783: 779: 766: 752: 740: 722:Pipistrellus 721: 672: 625: 624: 608: 607: 563: 562: 509: 508: 492: 491: 480:Eulipotyphla 456: 455: 439: 438: 395: 394: 340: 331: 327: 318: 310: 301: 297:localization 294: 282: 259: 252: 245: 238: 227: 220: 216: 204: 197: 181: 167: 148: 143:Louis Jurine 132:, who, with 126:echolocation 125: 123: 107: 84: 73: 69:hunting prey 49:active sonar 44: 41:Echolocation 40: 39: 26: 7364:Patch clamp 7333:Eric Kandel 7313:Franz Huber 7184:Feedforward 7133:Morcegoteca 6556:(4): 49–60. 5917:BMC Biology 5413:: 319–336. 4344:1885/286428 2610:Experientia 2596:themselves. 2513:(1): 9–20. 2336:Arsenurinae 2331:Saturniidae 2317:aposematism 2178:phonic lips 2133:Phocoenidae 2085:xenorophids 2035:Delphinidae 2031:cephalopods 2024:photic zone 1982:Odontocetes 1946:Start date 1615:Odontocetes 1599:gray whales 1595:pygmy right 1365:within the 1133:fruit bats 899:fruit bats 669:Spectrogram 289:heterodyned 255:spectrogram 170:odontocetes 151:Hiram Maxim 87:odontocetes 7838:Categories 7823:Soundscape 7777:Whale song 7757:Fishfinder 7679:Sofar bomb 7659:Hydrophone 7338:Nobuo Suga 7253:in insects 6818:2023-11-10 4300:2007-12-30 4057:2115/14484 4013:16 January 3988:16 January 2706:: 148–150. 2560:: 145–148. 2375:References 2369:Ultrasound 2306:B. trigona 2252:solenodons 2244:Madagascar 2147:, and the 1739:late  1729:Xenorophus 1710:Odontoceti 1667:Xenorophus 1642:radiations 1627:infrasonic 1623:mysticetes 1619:ultrasonic 1581:(suborder 1555:Odontoceti 1553:(suborder 1530:Pteronotus 1511:CF-CF area 1504:Pteronotus 1500:FM-FM area 1424:Nobuo Suga 1306:Madagascar 1068:Chiroptera 824:Chiroptera 755:ultrasound 734:media help 551:Afrotheria 511:Solenodons 427:Scrotifera 194:Principles 114:ultrasonic 61:navigation 7818:Noise map 6868:1932-6203 6795:206520028 6779:0036-8075 6724:1477-9145 6549:Zoologica 6529:235463083 6513:0036-8075 6007:1476-4687 5939:1741-7007 5923:(1): 86. 5877:1558-5646 5857:Evolution 5815:1932-8486 5723:1365-2540 5346:233517623 5010:237094069 4924:143423009 4759:0027-8424 4530:2041-1723 4508:(1): 98. 4474:2397-334X 4452:(2): 21. 4416:1476-4687 4369:232125726 4353:0960-9822 4283:205004782 4215:0036-8075 3809:155091623 3264:1477-9145 3040:1939-5078 2900:235311777 2295:Arctiidae 2276:Saturniid 2141:, all of 2104:Mechanism 2081:maxillary 1974:Oligocene 1872:Oligocene 1862:Mysticeti 1846:Oligocene 1786:Ziphiidae 1741:Oligocene 1658:Oligocene 1611:turbidity 1583:Mysticeti 1563:porpoises 1515:harmonics 1441:amplitude 1437:frequency 1149:Rousettus 1057:Rousettus 915:Rousettus 810:laryngeal 627:Swiftlets 353:Tetrapoda 124:The term 45:bio sonar 7844:Ethology 7803:Biophony 7587:Sonobuoy 7461:Category 7201:Instinct 7177:Concepts 7123:Archived 7105:Archived 7092:Archived 7062:18446226 7022:PLOS ONE 6992:14662378 6886:27096408 6838:PLOS ONE 6787:19608920 6732:85257361 6651:29978042 6589:13475510 6521:34140356 6447:19535367 6393:53160608 6204:27290079 6196:17671323 6113:20472781 6015:24670659 5957:32646447 5885:29624668 5833:30737886 5776:23965379 5741:22167055 5703:Heredity 5681:20933423 5629:19699809 5559:20525610 5383:23103570 5284:11840108 5233:18390219 5135:17485400 5002:34393089 4916:31045392 4875:23302868 4826:20727755 4777:31636187 4709:18725624 4647:11353869 4588:19482373 4548:29311648 4490:29068452 4482:28812602 4434:32699395 4361:33675700 4275:10646602 4231:25912333 4223:15681385 4165:29567831 4073:20190217 4065:15459453 3960:15658720 3917:11805285 3858:32118961 3850:23347323 3801:31088283 3749:83946162 3706:36824634 3663:12743729 3601:20515827 3539:16701491 3468:10562518 3429:19088206 3388:14613617 3339:18446226 3299:PLOS ONE 3272:22875762 3158:17251105 3106:14511456 3098:17407911 3048:27538733 2998:31021108 2957:30945281 2892:16005275 2839:(1953). 2753:16993475 2535:11923119 2527:13816753 2484:(1794). 2462:(1958). 2446:17776129 2400:Archived 2348:See also 2217:swiftlet 2213:Oilbirds 2129:Kogiidae 1638:Cetacean 1603:rorquals 1559:dolphins 1350:and the 757:via the 743:navigate 610:Oilbirds 390:Rodentia 248:decibels 174:Schevill 101:and the 65:foraging 18:Biosonar 7473:Commons 7378:Systems 7357:Methods 7053:2323577 7030:Bibcode 7000:8541198 6953:7642811 6933:Bibcode 6877:4838332 6846:Bibcode 6759:Bibcode 6751:Science 6689:3495006 6642:6031379 6621:Bibcode 6493:Science 6438:2781971 6354:1380190 6176:Bibcode 6023:4457391 5987:Bibcode 5948:7350770 5893:4656605 5824:9324554 5732:3330687 5659:Bibcode 5582:Bibcode 5550:2777972 5495:Bibcode 5487:Lethaia 5415:Bibcode 5326:Bibcode 5256:Bibcode 5248:Science 5225:3681389 5181:1159359 5126:4276140 5066:Bibcode 5058:Science 4963:7176515 4866:3639754 4804:Bibcode 4768:6842621 4737:Bibcode 4700:2529029 4677:Bibcode 4615:Bibcode 4568:Bibcode 4539:5758785 4510:Bibcode 4454:Bibcode 4425:8075899 4396:Bibcode 4321:Bibcode 4255:Bibcode 4195:Bibcode 4187:Science 4124:4314715 4116:2011191 4096:Bibcode 3940:Bibcode 3885:Bibcode 3792:6548736 3741:2827869 3671:8761216 3379:1691500 3330:2323577 3307:Bibcode 3223:9317482 3149:1919403 3078:Bibcode 2948:6849779 2927:Bibcode 2870:Bibcode 2811:Bibcode 2788:1754799 2768:Science 2744:1405739 2681:1536066 2426:Bibcode 2418:Science 2313:startle 2240:tenrecs 2077:frontal 2070:Miocene 2050:cochlea 2046:Prestin 2039:Neogene 1955:Miocene 1814:Miocene 1788:, etc. 1693:Cetacea 1591:bowhead 1396:In the 1367:cochlea 748:insects 678:buzz"). 565:Tenrecs 363:Mammals 103:oilbird 7854:Senses 7261:People 7195:Umwelt 7060:  7050:  6998:  6990:  6951:  6884:  6874:  6866:  6793:  6785:  6777:  6730:  6722:  6687:  6649:  6639:  6587:  6527:  6519:  6511:  6474:986137 6472:  6445:  6435:  6391:  6352:  6311:  6284:  6202:  6194:  6142:  6111:  6021:  6013:  6005:  5979:Nature 5955:  5945:  5937:  5891:  5883:  5875:  5831:  5821:  5813:  5774:  5739:  5729:  5721:  5679:  5627:  5557:  5547:  5459:  5381:  5344:  5282:  5276:482944 5274:  5231:  5223:  5179:  5133:  5123:  5086:857318 5084:  5036:  5008:  5000:  4961:  4922:  4914:  4873:  4863:  4824:  4775:  4765:  4757:  4707:  4697:  4645:  4635:  4586:  4546:  4536:  4528:  4488:  4480:  4472:  4432:  4422:  4414:  4388:Nature 4367:  4359:  4351:  4281:  4273:  4247:Nature 4229:  4221:  4213:  4163:  4122:  4114:  4088:Nature 4071:  4063:  3958:  3915:  3908:122208 3905:  3856:  3848:  3807:  3799:  3789:  3747:  3739:  3704:  3669:  3661:  3599:  3537:  3489:  3466:  3427:  3386:  3376:  3337:  3327:  3280:405317 3278:  3270:  3262:  3221:  3156:  3146:  3104:  3096:  3046:  3038:  2996:  2955:  2945:  2898:  2890:  2786:  2751:  2741:  2679:  2630:500691 2628:  2533:  2525:  2444:  2250:, and 2238:, the 2236:shrews 2062:Cldn14 1994:49 mya 1990:Eocene 1978:34 mya 1949:Event 1943:Epoch 1908:Eocene 1646:Eocene 1607:vision 1597:, and 1577:, and 1537:Whales 1302:Europe 1285:Eocene 1239:Eocene 1000:Eocene 857:Eocene 799:Eocene 775:tragus 759:larynx 494:Shrews 458:Whales 95:shrews 67:, and 57:echoes 53:animal 7859:Sonar 7524:Sonar 6996:S2CID 6791:S2CID 6728:S2CID 6685:JSTOR 6525:S2CID 6470:JSTOR 6389:S2CID 6350:JSTOR 6248:–750. 6200:S2CID 6164:(PDF) 6019:S2CID 5889:S2CID 5342:S2CID 5280:S2CID 5229:S2CID 5006:S2CID 4959:S2CID 4920:S2CID 4638:33452 4486:S2CID 4365:S2CID 4279:S2CID 4227:S2CID 4183:(PDF) 4120:S2CID 4069:S2CID 4033:(PDF) 3854:S2CID 3805:S2CID 3745:S2CID 3737:JSTOR 3702:S2CID 3667:S2CID 3597:S2CID 3276:S2CID 3102:S2CID 3016:(PDF) 2896:S2CID 2784:JSTOR 2677:JSTOR 2626:S2CID 2531:S2CID 2490:[ 2089:melon 1676:crown 1587:right 1507:area. 1048:basal 596:Birds 234:moths 200:sonar 188:sonar 7058:PMID 6988:PMID 6949:PMID 6882:PMID 6864:ISSN 6783:PMID 6775:ISSN 6720:ISSN 6647:PMID 6585:PMID 6517:PMID 6509:ISSN 6443:PMID 6309:ISBN 6282:ISBN 6192:PMID 6140:ISBN 6109:PMID 6011:PMID 6003:ISSN 5953:PMID 5935:ISSN 5881:PMID 5873:ISSN 5829:PMID 5811:ISSN 5772:PMID 5756:Gene 5737:PMID 5719:ISSN 5677:PMID 5625:PMID 5555:PMID 5457:ISBN 5379:PMID 5272:PMID 5221:PMID 5177:PMID 5131:PMID 5082:PMID 5034:ISBN 4998:PMID 4912:PMID 4871:PMID 4822:PMID 4773:PMID 4755:ISSN 4705:PMID 4643:PMID 4584:PMID 4544:PMID 4526:ISSN 4478:PMID 4470:ISSN 4430:PMID 4412:ISSN 4357:PMID 4349:ISSN 4271:PMID 4219:PMID 4211:ISSN 4161:PMID 4112:PMID 4061:PMID 4015:2019 3990:2019 3956:PMID 3913:PMID 3877:PNAS 3846:PMID 3797:PMID 3659:PMID 3535:PMID 3487:ISBN 3464:PMID 3425:PMID 3384:PMID 3335:PMID 3268:PMID 3260:ISSN 3219:PMID 3154:PMID 3094:PMID 3044:PMID 3036:ISSN 2994:PMID 2953:PMID 2888:PMID 2749:PMID 2523:PMID 2507:Isis 2442:PMID 2274:, a 2153:orca 2079:and 2054:Tmc1 1672:stem 1601:and 1573:and 1439:and 1417:The 1361:The 1304:and 660:Bats 441:Bats 7048:PMC 7038:doi 6980:doi 6941:doi 6872:PMC 6854:doi 6767:doi 6755:325 6712:doi 6708:209 6677:doi 6637:PMC 6629:doi 6577:doi 6501:doi 6497:372 6466:109 6433:PMC 6425:doi 6381:doi 6342:doi 6332:". 6246:717 6184:doi 6132:doi 6099:doi 6095:213 6055:hdl 6047:doi 6043:166 5995:doi 5983:508 5943:PMC 5925:doi 5865:doi 5819:PMC 5803:doi 5799:302 5764:doi 5760:530 5727:PMC 5711:doi 5707:108 5667:doi 5617:doi 5590:doi 5545:PMC 5537:doi 5503:doi 5423:doi 5371:doi 5334:doi 5264:doi 5252:206 5213:doi 5169:doi 5121:PMC 5113:doi 5074:doi 5062:196 4990:doi 4951:doi 4947:132 4902:doi 4898:133 4861:PMC 4853:doi 4812:doi 4763:PMC 4745:doi 4733:116 4695:PMC 4685:doi 4673:105 4633:PMC 4623:doi 4576:doi 4534:PMC 4518:doi 4462:doi 4420:PMC 4404:doi 4392:583 4339:hdl 4329:doi 4263:doi 4251:403 4203:doi 4191:307 4151:doi 4147:221 4104:doi 4092:350 4053:hdl 4045:doi 3948:doi 3936:116 3903:PMC 3893:doi 3836:doi 3787:PMC 3779:doi 3729:doi 3694:doi 3690:153 3651:doi 3647:189 3589:doi 3585:135 3527:doi 3456:doi 3452:202 3415:doi 3411:212 3374:PMC 3366:doi 3362:270 3325:PMC 3315:doi 3250:doi 3246:215 3211:doi 3207:200 3181:doi 3144:PMC 3136:doi 3132:274 3086:doi 3074:121 3028:doi 2984:doi 2980:133 2943:PMC 2935:doi 2878:doi 2819:doi 2776:doi 2772:128 2739:PMC 2731:doi 2667:hdl 2657:doi 2618:doi 2587:doi 2515:doi 2434:doi 2422:100 2308:. 2242:of 1961:mya 1959:23 1380:". 1324:". 803:mya 671:of 105:. 91:bat 7840:: 7056:. 7046:. 7036:. 7024:. 7020:. 6994:. 6986:. 6976:13 6974:. 6947:. 6939:. 6929:98 6927:. 6880:. 6870:. 6862:. 6852:. 6842:11 6840:. 6836:. 6811:. 6789:. 6781:. 6773:. 6765:. 6753:. 6749:. 6726:. 6718:. 6706:. 6683:. 6673:71 6671:. 6659:^ 6645:. 6635:. 6627:. 6615:. 6611:. 6597:^ 6583:. 6573:50 6571:. 6554:51 6552:. 6523:. 6515:. 6507:. 6495:. 6491:. 6464:. 6441:. 6431:. 6419:. 6415:. 6401:^ 6387:. 6377:24 6375:. 6371:. 6348:. 6338:60 6336:. 6198:. 6190:. 6182:. 6170:. 6166:. 6138:. 6107:. 6093:. 6089:. 6069:^ 6053:. 6041:. 6017:. 6009:. 6001:. 5993:. 5981:. 5977:. 5965:^ 5951:. 5941:. 5933:. 5921:18 5919:. 5915:. 5901:^ 5887:. 5879:. 5871:. 5861:72 5859:. 5855:. 5841:^ 5827:. 5817:. 5809:. 5797:. 5793:. 5770:. 5758:. 5735:. 5725:. 5717:. 5705:. 5701:. 5689:^ 5675:. 5665:. 5655:20 5653:. 5649:. 5637:^ 5623:. 5613:53 5611:. 5588:. 5578:22 5576:. 5553:. 5543:. 5533:58 5531:. 5527:. 5515:^ 5501:. 5491:40 5489:. 5471:^ 5451:. 5437:^ 5421:. 5411:31 5409:. 5405:. 5391:^ 5377:. 5367:66 5365:. 5340:. 5332:. 5322:47 5320:. 5316:. 5278:. 5270:. 5262:. 5250:. 5227:. 5219:. 5209:58 5207:. 5189:^ 5175:. 5165:63 5163:. 5143:^ 5129:. 5119:. 5109:12 5107:. 5103:. 5080:. 5072:. 5060:. 5048:^ 5018:^ 5004:. 4996:. 4986:48 4984:. 4980:. 4957:. 4945:. 4941:. 4918:. 4910:. 4896:. 4892:. 4869:. 4859:. 4847:. 4843:. 4820:. 4810:. 4800:20 4798:. 4794:. 4771:. 4761:. 4753:. 4743:. 4731:. 4727:. 4703:. 4693:. 4683:. 4671:. 4667:. 4655:^ 4641:. 4631:. 4621:. 4611:98 4609:. 4605:. 4582:. 4574:. 4564:24 4562:. 4558:. 4552:; 4542:. 4532:. 4524:. 4516:. 4504:. 4500:. 4494:; 4484:. 4476:. 4468:. 4460:. 4448:. 4444:. 4438:; 4428:. 4418:. 4410:. 4402:. 4390:. 4386:. 4363:. 4355:. 4347:. 4337:. 4327:. 4317:31 4315:. 4311:. 4305:; 4287:; 4277:. 4269:. 4261:. 4249:. 4225:. 4217:. 4209:. 4201:. 4189:. 4185:. 4159:. 4145:. 4141:. 4118:. 4110:. 4102:. 4090:. 4067:. 4059:. 4051:. 4041:21 4039:. 4035:. 4006:. 3976:. 3954:. 3946:. 3934:. 3911:. 3901:. 3891:. 3881:99 3879:. 3875:. 3852:. 3844:. 3832:88 3830:. 3826:. 3803:. 3795:. 3785:. 3775:15 3773:. 3769:. 3757:^ 3743:. 3735:. 3725:59 3723:. 3700:. 3688:. 3665:. 3657:. 3645:. 3629:^ 3609:^ 3595:. 3583:. 3567:^ 3547:^ 3533:. 3523:21 3521:. 3501:^ 3462:. 3450:. 3446:. 3423:. 3409:. 3405:. 3382:. 3372:. 3360:. 3356:. 3333:. 3323:. 3313:. 3301:. 3297:. 3274:. 3266:. 3258:. 3244:. 3240:. 3217:. 3205:. 3193:^ 3177:76 3175:. 3152:. 3142:. 3130:. 3126:. 3114:^ 3100:. 3092:. 3084:. 3072:. 3059:^ 3050:. 3042:. 3034:. 3022:. 3018:. 2992:. 2978:. 2974:. 2951:. 2941:. 2933:. 2923:88 2921:. 2917:. 2894:. 2886:. 2876:. 2866:15 2864:. 2860:. 2817:. 2805:. 2782:. 2770:. 2747:. 2737:. 2727:54 2725:. 2721:. 2704:74 2702:. 2698:. 2675:. 2665:. 2653:15 2651:. 2647:. 2624:. 2612:. 2593:. 2581:. 2575:. 2558:46 2529:. 2521:. 2511:51 2509:. 2440:. 2432:. 2420:. 2398:. 2392:. 2290:. 2246:, 1899:† 1732:† 1613:. 1593:, 1589:, 1569:, 1565:, 1561:, 1354:, 1346:, 345:. 165:. 71:. 63:, 7508:e 7501:t 7494:v 7162:e 7155:t 7148:v 7064:. 7040:: 7032:: 7026:3 7002:. 6982:: 6955:. 6943:: 6935:: 6888:. 6856:: 6848:: 6821:. 6797:. 6769:: 6761:: 6734:. 6714:: 6691:. 6679:: 6653:. 6631:: 6623:: 6617:4 6591:. 6579:: 6531:. 6503:: 6476:. 6449:. 6427:: 6421:5 6395:. 6383:: 6356:. 6344:: 6317:. 6290:. 6206:. 6186:: 6178:: 6172:2 6148:. 6134:: 6115:. 6101:: 6063:. 6057:: 6049:: 6025:. 5997:: 5989:: 5959:. 5927:: 5895:. 5867:: 5835:. 5805:: 5778:. 5766:: 5743:. 5713:: 5683:. 5669:: 5661:: 5631:. 5619:: 5596:. 5592:: 5584:: 5561:. 5539:: 5509:. 5505:: 5497:: 5465:. 5431:. 5425:: 5417:: 5385:. 5373:: 5348:. 5336:: 5328:: 5286:. 5266:: 5258:: 5235:. 5215:: 5183:. 5171:: 5137:. 5115:: 5088:. 5076:: 5068:: 5042:. 5012:. 4992:: 4965:. 4953:: 4926:. 4904:: 4877:. 4855:: 4849:9 4828:. 4814:: 4806:: 4779:. 4747:: 4739:: 4711:. 4687:: 4679:: 4649:. 4625:: 4617:: 4590:. 4578:: 4570:: 4550:. 4520:: 4512:: 4506:9 4492:. 4464:: 4456:: 4450:1 4436:. 4406:: 4398:: 4371:. 4341:: 4331:: 4323:: 4303:. 4285:. 4265:: 4257:: 4233:. 4205:: 4197:: 4167:. 4153:: 4126:. 4106:: 4098:: 4075:. 4055:: 4047:: 4017:. 3992:. 3962:. 3950:: 3942:: 3919:. 3895:: 3887:: 3860:. 3838:: 3811:. 3781:: 3751:. 3731:: 3708:. 3696:: 3673:. 3653:: 3603:. 3591:: 3541:. 3529:: 3495:. 3470:. 3458:: 3431:. 3417:: 3390:. 3368:: 3341:. 3317:: 3309:: 3303:3 3282:. 3252:: 3225:. 3213:: 3187:. 3183:: 3160:. 3138:: 3108:. 3088:: 3080:: 3030:: 3024:7 3000:. 2986:: 2959:. 2937:: 2929:: 2902:. 2880:: 2872:: 2825:. 2821:: 2813:: 2807:3 2790:. 2778:: 2755:. 2733:: 2683:. 2669:: 2659:: 2632:. 2620:: 2614:5 2589:: 2583:1 2537:. 2517:: 2448:. 2436:: 2428:: 2167:( 2092:( 1490:E 1482:D 1474:C 1466:B 1458:A 1342:( 1287:) 1241:) 1002:) 859:) 765:( 736:. 20:)

Index

Biosonar

active sonar
animal
echoes
navigation
foraging
hunting prey
frequency modulated
Doppler effect
odontocetes
bat
shrews
cave swiftlets
oilbird
active countermeasures
ultrasonic
Donald Griffin
Robert Galambos
Lazzaro Spallanzani
Louis Jurine
Hiram Maxim
sound below the human auditory range
Hamilton Hartridge
frequencies above the range of human hearing
odontocetes
Schevill
Jacques Yves Cousteau
The Silent World
sonar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑