Knowledge (XXG)

Binary black hole

Source 📝

726:. The center of gravity can add over 1000 km/s of kick velocity. The greatest kick velocities (approaching 5000 km/s) occur for equal-mass and equal-spin-magnitude black-hole binaries, when the spins directions are optimally oriented to be counter-aligned, parallel to the orbital plane or nearly aligned with the orbital angular momentum. This is enough to escape large galaxies. With more likely orientations, a smaller effect takes place, perhaps only a few hundred kilometers per second. This sort of speed can eject merging binary black holes from globular clusters, thus preventing the formation of massive black holes in globular-cluster cores. This, in turn, reduces the chances of subsequent mergers, and thus the chance of detecting gravitational waves. For non-spinning black holes a maximum recoil velocity of 175 km/s occurs for masses in the ratio of five to one. When spins are aligned in the orbital plane, a recoil of 5000 km/s is possible with two identical black holes. Parameters that may be of interest include the point at which the black holes merge, the mass ratio that produces maximum kick, and how much mass/energy is radiated via gravitational waves. In a head-on collision this fraction is calculated at 0.002, or 0.2%. One of the best candidates of the recoiled supermassive black holes is CXO J101527.2+625911. 4062: 114:. As the orbiting black holes give off these waves, the orbit decays, and the orbital period decreases. This stage is called binary black hole inspiral. The black holes will merge once they are close enough. Once merged, the single hole settles down to a stable form, via a stage called ringdown, where any distortion in the shape is dissipated as more gravitational waves. In the final fraction of a second the black holes can reach extremely high velocity, and the gravitational wave amplitude reaches its peak. 3196: 4134: 4026: 4098: 308:, a gradually shrinking orbit. The first stages of the inspiral take a very long time, as the gravitational waves emitted are very weak when the black holes are distant from each other. In addition to the orbit shrinking due to the emission of gravitational waves, extra angular momentum may be lost due to interactions with other matter present, such as other stars. 4122: 4036: 110:. Therefore, during the late 20th and early 21st century, binary black holes became of great interest scientifically as a potential source of such waves and a means by which gravitational waves could be proven to exist. Binary black hole mergers would be one of the strongest known sources of gravitational waves in the universe, and thus offer a good chance of 4074: 4110: 1443:; Yan, Renbin; Barmby, P.; Coil, Alison L.; Conselice, Christopher J.; Ivison, R. J.; Lin, Lihwai; Koo, David C.; Nandra, Kirpal; Salim, Samir; Small, Todd; Weiner, Benjamin J.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; et al. (6 April 2007). "The DEEP2 Galaxy Redshift Survey: AEGIS Observations of a Dual AGN at 4086: 346:. In this region most of the emitted gravitational waves go towards the event horizon, and the amplitude of those escaping reduces. Remotely detected gravitational waves have an oscillation with fast-reducing amplitude, as echos of the merger event result from tighter and tighter spirals around the resulting black hole. 31: 443:
In the full calculations of an entire merger, several of the above methods can be used together. It is then important to fit the different pieces of the model that were worked out using different algorithms. The Lazarus Project linked the parts on a spacelike hypersurface at the time of the merger.
692:
In numerical models, test geodesics are inserted to see whether they encounter an event horizon. As two black holes approach each other, a "duckbill" shape protrudes from each of the two event horizons towards the other one. This protrusion extends longer and narrower until it meets the protrusion
431:
simulations. Numerical relativity models space-time and simulates its change over time. In these calculations it is important to have enough fine detail close into the black holes, and yet have enough volume to determine the gravitation radiation that propagates to infinity. In order to reduce the
439:
Numerical-relativity techniques steadily improved from the initial attempts in the 1960s and 1970s. Long-term simulations of orbiting black holes, however, were not possible until three groups independently developed groundbreaking new methods to model the inspiral, merger, and ringdown of binary
177:
In this visualization a binary system containing two supermassive black holes and their accretion disks is initially viewed from above. After about 25 seconds, the camera tips close to the orbital plane to reveal the most dramatic distortions produced by their gravity. The different colors of the
362:
detector. As observed from Earth, a pair of black holes with estimated masses around 36 and 29 times that of the Sun spun into each other and merged to form an approximately 62-solar-mass black hole on 14 September 2015, at 09:50 UTC. Three solar masses were converted to gravitational
408:
can be used for the inspiral. These approximate the general-relativity field equations adding extra terms to equations in Newtonian gravity. Orders used in these calculations may be termed 2PN (second-order post-Newtonian) 2.5PN or 3PN (third-order post-Newtonian). Effective-one-body (EOB)
261:
A number of solutions to the final-parsec problem have been proposed. Most involve mechanisms to bring additional matter, either stars or gas, close enough to the binary pair to extract energy from the binary and cause it to shrink. If enough stars pass close by to the orbiting pair, their
165: 97:
For many years, proving the existence of binary black holes was made difficult because of the nature of black holes themselves and the limited means of detection available. However, in the event that a pair of black holes were to merge, an immense amount of energy should be given off as
247:
of each other. However, this process also ejects matter from the orbital path, and as the orbits shrink, the volume of space the black holes pass through reduces, until there is so little matter remaining that it could not cause a merger within the age of the universe.
1624:
Graham, Matthew J.; Djorgovski, S. G.; Stern, Daniel; Glikman, Eilat; Drake, Andrew J.; Mahabal, Ashish A.; Donalek, Ciro; Larson, Steve; Christensen, Eric (7 January 2015). "A possible close supermassive black-hole binary in a quasar with optical periodicity".
451:
The gravitational waveform produced is important for observation prediction and confirmation. When inspiralling reaches the strong zone of the gravitational field, the waves scatter within the zone producing what is called the post-Newtonian tail (PN tail).
1942:
For collisionless cold DM, the friction deposits so much energy that the spike is disrupted and cannot bridge the final parsec, while for self-interacting DM, the isothermal core of the halo can act as a reservoir for the energy liberated from the SMBH
273:
One mechanism that is known to work, although infrequently, is a third supermassive black hole from a second galactic collision. With three black holes in close proximity, the orbits are chaotic and allow three additional energy loss mechanisms:
466:
of gravitational wave flux. A technique to establish the radiation is the Cauchy-characteristic extraction technique CCE, which gives a close estimate of the flux at infinity, without having to calculate at larger and larger finite distances.
447:
Results from the calculations can include the binding energy. In a stable orbit the binding energy is a local minimum relative to parameter perturbation. At the innermost stable circular orbit the local minimum becomes an inflection point.
693:
from the other black hole. At this point in time the event horizon has a very narrow X-shape at the meeting point. The protrusions are drawn out into a thin thread. The meeting point expands to a roughly cylindrical connection called a
2154:
Capano, Collin D.; Cabero, Miriam; Westerweck, Julian; Abedi, Jahed; Kastha, Shilpa; Nitz, Alexander H.; Wang, Yi-Fan; Nielsen, Alex B.; Krishnan, Badri (28 November 2023). "Multimode Quasinormal Spectrum from a Perturbed Black Hole".
34: 37: 33: 32: 38: 2364:
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; et al. (The
994:
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; et al.
661: 1202:
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; et al.
169: 172: 171: 168: 167: 409:
approximation solves the dynamics of the binary black-hole system by transforming the equations to those of a single object. This is especially useful where mass ratios are large, such as a stellar-mass black hole
173: 36: 1316:
Komossa, S.; Burwitz, V.; Hasinger, G.; Predehl, P.; Kaastra, J. S.; Ikebe, Y. (2003-01-01). "Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra".
170: 2062:
We found that in most cases two of the three BHs merge through gravitational wave (GW) radiation in the timescale much shorter than the Hubble time, before ejecting one BH through a slingshot.
46:
as seen by a nearby observer, during its final inspiral, merge, and ringdown. The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme
311:
As the black holes’ orbit shrinks, the speed increases, and gravitational wave emission increases. When the black holes are close the gravitational waves cause the orbit to shrink rapidly.
459:
produces a gravitation wave with the horizon frequency. In contrast, the Schwarzschild black-hole ringdown looks like the scattered wave from the late inspiral, but with no direct wave.
544: 722:
An unexpected result can occur with binary black holes that merge, in that the gravitational waves carry momentum, and the merging black-hole pair accelerates, seemingly violating
1103: 1070: 2091:
Ori, Amos; Thorne, Kip S. (28 November 2000). "Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole".
1139: 1694:
D'Orazio, Daniel J.; Haiman, ZoltĂĄn; Schiminovich, David (17 September 2015). "Relativistic boost as the cause of periodicity in a massive black-hole binary candidate".
1504:; Gopakumar, A.; Lehto, H. J.; Hyvönen, T.; Rampadarath, H.; Saunders, R.; Basta, M.; Hudec, R. (2010-02-01). "Measuring the Spin of the Primary Black Hole in OJ287". 2277:
Abbott, Benjamin P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (11 February 2016). "Properties of the binary black hole merger GW150914".
2888:
PietilÀ, Harri; HeinÀmÀki, Pekka; Mikkola, Seppo; Valtonen, Mauri J. (1995). "Anisotropic gravitational radiation in the problems of three and four black holes".
209:
of the mobile SMBH in the galaxy J0437+2456 indicate that it is a promising candidate for hosting either a recoiling or binary SMBH, or an ongoing galaxy merger.
251:
Gravitational waves can cause significant loss of orbital energy, but not until the separation shrinks to a much smaller value, roughly 0.01–0.001 parsec.
704:
topology (ring-shaped). Some researchers suggested that it would be possible if, for example, several black holes in the same nearly circular orbit coalesce.
1872: 35: 2890: 3658: 224:
When two galaxies collide, the supermassive black holes at their centers are very unlikely to hit head-on and would most likely shoot past each other on
133:
away. In its final 20 ms of spiraling inward and merging, GW150914 released around 3 solar masses as gravitational energy, peaking at a rate of 3.6
3322: 3422: 925:; Choi, Dae-Il; Koppitz, Michael; van Meter, James (2006). "Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes". 386:
from Earth, between 600 million and 1.8 billion years ago. The observed signal is consistent with the predictions of numerical relativity.
3596: 125:(detected September 2015, announced February 2016), a distinctive gravitational wave signature of two merging stellar-mass black holes of around 30 278:
The black holes orbit through a substantially larger volume of the galaxy, interacting with (and losing energy to) a much greater amount of matter.
1378:
Zhou, Hongyan; Wang, Tinggui; Zhang, Xueguang; Dong, Xiaobo; Li, Cheng (2004-03-20). "Obscured Binary Quasar Cores in SDSS J104807.74+005543.5?".
577: 330:
This is followed by a plunging orbit, in which the two black holes meet, followed by the merger. Gravitational wave emission peaks at this time.
673:
axis of the initial orbit. It is calculated by integrating the product of the multipolar metric waveform with the news function complement over
4061: 3099: 1855: 847:
Campanelli, M.; Lousto, C. O.; Marronetti, P.; Zlochower, Y. (2006). "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision".
371:(200 solar masses per second), which is 50 times the total output power of all the stars in the observable universe. The merger took place 254:
Nonetheless, supermassive black holes appear to have merged, and what appears to be a pair in this intermediate range has been observed in
2018:
Iwasawa, Masaki; Funato, Yoko; Makino, Junichiro (2006). "Evolution of Massive Blackhole Triples I – Equal-mass binary–single systems".
1113: 3638: 2827:
Lousto, Carlos; Zlochower, Yosef (2011). "Hangup Kicks: Still Larger Recoils by Partial Spin–Orbit Alignment of Black-Hole Binaries".
1759: 1077: 427:
Description of the entire evolution, including merger, requires solving the full equations of general relativity. This can be done in
3727: 2434: 1280: 432:
number of points such that the numerical problem is tractable in a reasonable time, special coordinate systems can be used, such as
186:. Some likely candidates for binary black holes are galaxies with double cores still far apart. An example active double nucleus is 3607: 1172: 3722: 1149: 735: 433: 3643: 3439: 315: 3185: 338:
Immediately following the merger, the now single black hole will "ring". This ringing is damped in the next stage, called the
3865: 3546: 166: 154: 2491:
Smarr, Larry; ČadeĆŸ, Andrej; DeWitt, Bryce; Eppley, Kenneth (1976). "Collision of two black holes: Theoretical framework".
3633: 3508: 2366: 1204: 996: 4052: 3454: 3551: 3242: 342:, by the emission of gravitational waves. The ringdown phase starts when the black holes approach each other within the 267: 198:. Other galactic nuclei have periodic emissions suggesting large objects orbiting a central black hole, for example, in 3855: 3820: 3810: 1845: 410: 3541: 3493: 3476: 3175: 2672:
Cohen, Michael I.; Kaplan, Jeffrey D.; Scheel, Mark A. (2012). "Toroidal horizons in binary black hole inspirals".
1961:"Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem" 471: 2212: 190:. Much closer black-hole binaries are likely in single-core galaxies with double emission lines. Examples include 3996: 3498: 3412: 3160: 3092: 2539:
Nichols, David A.; Chen, Yanbei (2012). "Hybrid method for understanding black-hole mergers: Inspiralling case".
2339: 1565:
Pesce, D. W.; Seth, A. C.; Greene, J. E.; Braatz, J. A.; Condon, J. J.; Kent, B. R.; Krajnović, D. (March 2021).
117:
The existence of stellar-mass binary black holes (and gravitational waves themselves) was finally confirmed when
487: 74:
in close orbit around each other. Like black holes themselves, binary black holes are often divided into binary
3673: 1144: 405: 195: 3921: 239:
This slows the black holes enough that they form a bound binary system, and further dynamical friction steals
191: 3850: 3386: 3349: 3252: 3247: 3165: 1896: 233: 87: 4039: 3612: 232:, which transfers kinetic energy from the black holes to nearby matter. As a black hole passes a star, the 145:
put together. Supermassive binary black hole candidates have been found, but not yet categorically proven.
3880: 3768: 3753: 3305: 3195: 3119: 2907: 2742: 394:
Some simplified algebraic models can be used for the case where the black holes are far apart, during the
4159: 3758: 3571: 3315: 3170: 2949: 2428: 1274: 225: 47: 3488: 723: 463: 4154: 4029: 3737: 3709: 3592: 3520: 3332: 3140: 3085: 3048: 2968: 2899: 2846: 2785: 2691: 2623: 2558: 2500: 2457: 2392: 2296: 2174: 2110: 2037: 1982: 1915: 1807: 1713: 1644: 1588: 1523: 1466: 1397: 1336: 1230: 1026: 944: 866: 792: 574:, is the mass as measured at infinite distance and includes all the gravitational radiation emitted: 428: 282: 4126: 3860: 3835: 3805: 3763: 3717: 3354: 3220: 3215: 3145: 2912: 2747: 2370: 1208: 1000: 567: 417: 262:
gravitational ejection can bring the two black holes together in an astronomically plausible time.
142: 4114: 4102: 3694: 3566: 3471: 3277: 3262: 3230: 3155: 3150: 3066: 3038: 2986: 2958: 2925: 2870: 2836: 2809: 2775: 2715: 2681: 2613: 2582: 2548: 2416: 2382: 2320: 2286: 2228: 2164: 2100: 2053: 2027: 2000: 1972: 1905: 1892:"Self-Interacting Dark Matter Solves the Final Parsec Problem of Supermassive Black Hole Mergers" 1823: 1797: 1737: 1703: 1676: 1634: 1606: 1578: 1547: 1513: 1482: 1456: 1421: 1387: 1360: 1326: 1262: 1220: 1052: 1016: 976: 934: 898: 856: 824: 782: 229: 111: 107: 99: 75: 3282: 3840: 3830: 3825: 3525: 3513: 3466: 3407: 3376: 3300: 2862: 2801: 2707: 2649: 2641: 2574: 2516: 2473: 2408: 2373:) (2016-10-21). "Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model". 2312: 2190: 2136: 1933: 1851: 1729: 1668: 1660: 1539: 1413: 1352: 1254: 1246: 1177:
A milli-parsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5
1044: 968: 960: 890: 882: 816: 808: 206: 141: – more than the combined power of all light radiated by all the stars in the 4001: 1873:"Don't Be So Cold – Self-Interacting Dark Matter as a Solution to the 'Final Parsec Problem'" 4078: 3991: 3951: 3699: 3648: 3503: 3417: 3210: 3180: 3056: 2976: 2917: 2854: 2793: 2699: 2631: 2566: 2508: 2465: 2400: 2304: 2220: 2182: 2118: 2045: 1990: 1923: 1815: 1721: 1652: 1596: 1531: 1474: 1405: 1344: 1238: 1036: 952: 874: 800: 717: 666: 563: 83: 1782: 4011: 3961: 3936: 3732: 3576: 3483: 3449: 3361: 2448:
Hahn, Susan G.; Lindquist, Richard W. (1964). "The two-body problem in geometrodynamics".
91: 3911: 3052: 2972: 2903: 2850: 2789: 2733:
PietilÀ, Harri; HeinÀmÀki, Pekka; Mikkola, Seppo; Valtonen, Mauri J. (10 January 1996).
2695: 2627: 2562: 2504: 2461: 2396: 2300: 2252: 2178: 2114: 2041: 1986: 1919: 1811: 1717: 1648: 1592: 1527: 1470: 1401: 1340: 1234: 1031: 948: 870: 796: 270:
is required to avoid the same problem of it all being ejected before the merger occurs.
4138: 4066: 3926: 3678: 3617: 3461: 3135: 2340:"This collision was 50 times more powerful than all the stars in the universe combined" 1755: 922: 456: 240: 1535: 1211:) (2016-02-11). "Observation of Gravitational Waves from a Binary Black Hole Merger". 1005:"Search for gravitational waves from binary black hole inspiral, merger, and ringdown" 1004: 4148: 3986: 3906: 3434: 3429: 3070: 3022: 2990: 2929: 2763: 2469: 2324: 2232: 2004: 1956: 1841: 1778: 1741: 1610: 1551: 1501: 1440: 1266: 686: 674: 343: 183: 2874: 2813: 2719: 2586: 2420: 2057: 1827: 1486: 1425: 1364: 980: 828: 4133: 4090: 3941: 3815: 3783: 3391: 3310: 2858: 2636: 2601: 2308: 2186: 1928: 1891: 1680: 1242: 902: 570:
at null infinity varied by solid angle. The Arnowitt–Deser–Misner (ADM) energy, or
285:, allowing energy loss by gravitational radiation at the point of closest approach. 255: 213: 2797: 2766:; Zlochower, Yosef; Merritt, David (7 June 2007). "Maximum Gravitational Recoil". 1056: 956: 878: 804: 178:
accretion disks make it easier to track where light from each black hole turns up.
17: 3981: 2600:
Damour, Thibault; Nagar, Alessandro; Pollney, Denis; Reisswig, Christian (2012).
3931: 3885: 3788: 3663: 3602: 3327: 3235: 1135: 713: 421: 263: 79: 2981: 2944: 2703: 2570: 2122: 2074: 1601: 1566: 1040: 3971: 3901: 3870: 3845: 3798: 3793: 3778: 3444: 3381: 3371: 3272: 3108: 3008: 2404: 2224: 2075:"Introduction to LIGO & Gravitational Waves: Inspiral Gravitational Waves" 475: 382: 318:(ISCO) is the innermost complete orbit before the transition from inspiral to 288:
Two of the black holes can transfer energy to the third, possibly ejecting it.
228:, unless some mechanism brings them together. The most important mechanism is 216:
appears to have a binary black hole with an orbital period of 1900 days.
130: 126: 71: 51: 2711: 2645: 2578: 2520: 2512: 2477: 2412: 1664: 1543: 1417: 1356: 1250: 1048: 964: 886: 812: 424:
is distorted, and the spectrum of frequencies it produces can be calculated.
4006: 3653: 3556: 3344: 3339: 1995: 1960: 2866: 2805: 2653: 2316: 2194: 1937: 1733: 1672: 1258: 1104:"Einstein was right: Scientists detect gravitational waves in breakthrough" 972: 894: 820: 656:{\displaystyle M_{\text{ADM}}=M_{\text{B}}(U)+\int _{-\infty }^{U}F(V)\,dV} 363:
radiation in the final fraction of a second, with a peak power 3.6×10 
3916: 3875: 3773: 3043: 2032: 1802: 1461: 1392: 1331: 1295:"NASA Visualization Probes the Doubly Warped World of Binary Black Holes" 1108: 571: 355: 304: 187: 122: 103: 43: 3061: 3026: 1890:
Alonso-Álvarez, Gonzalo; Cline, James M.; Dewar, Caitlyn (9 July 2024).
1725: 1656: 470:
The final mass of the resultant black hole depends on the definition of
153:
Stellar-mass binary black holes have been demonstrated to exist, by the
3956: 3014: 2921: 2780: 2105: 1819: 939: 861: 787: 773:
Pretorius, Frans (2005). "Evolution of Binary Black-Hole Spacetimes".
669:
is also lost in the gravitational radiation. This is primarily in the
3976: 3966: 3946: 3668: 3267: 3257: 701: 368: 244: 27:
System consisting of two black holes in close orbit around each other
2945:"A Potential Recoiling Supermassive Black Hole CXO J101527.2+625911" 2253:"Gravitational waves detected 100 years after Einstein's prediction" 1959:; Haiman, ZoltĂĄn; Ostriker, Jeremiah P.; Stone, Nicholas C. (2018). 1071:"Observation Of Gravitational Waves From A Binary Black Hole Merger" 182:
Supermassive black-hole (SMBH) binaries are believed to form during
4085: 2963: 2387: 2291: 2169: 2049: 1977: 1910: 1708: 1639: 1583: 1478: 1409: 1348: 1225: 54:
itself is distorted and dragged around by the rotating black holes.
2841: 2686: 2618: 2553: 1518: 1294: 1171:
Liu, Fukun; Komossa, Stefanie; Schartel, Norbert (22 April 2014).
1021: 354:
The first observation of stellar-mass binary black holes merging,
258:. The question of how this happens is the "final-parsec problem". 199: 2735:
Anisotropic Gravitational Radiation In The Merger Of Black Holes
700:
Simulations as of 2011 had not produced any event horizons with
359: 158: 138: 118: 3081: 3077: 755: 364: 1567:"A Restless Supermassive Black Hole in the Galaxy J0437+2456" 685:
One of the problems to solve is the shape or topology of the
1173:"Unique Pair of Hidden Black Holes Discovered yy XMM-Newton" 302:
The first stage of the life of a binary black hole is the
2211:
Castelvecchi, Davide; Witze, Witze (February 11, 2016).
236:
accelerates the star while decelerating the black hole.
2602:"Energy Versus Angular Momentum in Black Hole Binaries" 1140:"Found! Gravitational Waves, or a Wrinkle in Spacetime" 842: 840: 838: 4050: 580: 554:) being the gravitational wave flux at retarded time 490: 484:
is calculated from the Bondi–Sach mass-loss formula,
916: 914: 912: 42:
Computer simulation of the black hole binary system
3894: 3746: 3708: 3687: 3626: 3585: 3534: 3400: 3293: 3203: 3128: 266:is also being considered, although it appears that 243:from the pair until they are orbiting within a few 655: 538: 462:The radiation reaction force can be calculated by 2206: 2204: 1965:Monthly Notices of the Royal Astronomical Society 1386:(1). The American Astronomical Society: L33–L36. 1325:(1). The American Astronomical Society: L15–L19. 1760:"More Evidence for Coming Black Hole Collision" 768: 766: 764: 413:, but can also be used for equal-mass systems. 2534: 2532: 2530: 2213:"Einstein's gravitational waves found at last" 3093: 1796:(1). American Institute of Physics: 201–210. 8: 2667: 2665: 2663: 455:In the ringdown phase of a Kerr black hole, 2891:Celestial Mechanics and Dynamical Astronomy 756:SXS (Simulating eXtreme Spacetimes) project 3659:Magnetospheric eternally collapsing object 3100: 3086: 3078: 539:{\displaystyle {\frac {dM_{B}}{dU}}=-f(U)} 3561: 3060: 3042: 2980: 2962: 2911: 2840: 2779: 2746: 2685: 2635: 2617: 2552: 2386: 2290: 2168: 2104: 2031: 1994: 1976: 1927: 1909: 1850:. Princeton: Princeton University Press. 1847:Dynamics and Evolution of Galactic Nuclei 1801: 1707: 1638: 1600: 1582: 1517: 1460: 1391: 1330: 1224: 1030: 1020: 938: 860: 786: 646: 628: 620: 598: 585: 579: 501: 491: 489: 157:of a black-hole merger event GW150914 by 78:, formed either as remnants of high-mass 1197: 1195: 1193: 1076:. LIGO. 11 February 2016. Archived from 163: 29: 4057: 747: 411:merging with a galactic-core black hole 398:stage, and also to solve for the final 129:each, occurring about 1.3 billion 2426: 2086: 2084: 1272: 3027:"Massive Black Hole Binary Evolution" 1439:Gerke, Brian F.; Newman, Jeffrey A.; 7: 4035: 3010:Binary Black Holes Orbit and Collide 2739:Relativistic Astrophysics Conference 2259:. NSF – National Science Foundation 714:Pulsar kick § Black hole kicks 2338:Kramer, Sarah (11 February 2016). 624: 25: 1449:The Astrophysical Journal Letters 4132: 4120: 4108: 4096: 4084: 4072: 4060: 4034: 4025: 4024: 3323:Tolman–Oppenheimer–Volkoff limit 3194: 2943:Kim, D.-C.; et al. (2017). 2077:. LIGO Scientific Collaboration. 1102:Harwood, W. (11 February 2016). 736:List of most massive black holes 70:, is a system consisting of two 3440:Innermost stable circular orbit 3025:; Milosavljević, MiloĆĄ (2005). 2137:"For whom the black hole rings" 1871:Lamb, William (8 August 2024). 316:innermost stable circular orbit 86:and mutual capture; and binary 3866:Timeline of black hole physics 2859:10.1103/PhysRevLett.107.231102 2637:10.1103/PhysRevLett.108.131101 2309:10.1103/PhysRevLett.116.241102 2187:10.1103/PhysRevLett.131.221402 1929:10.1103/PhysRevLett.133.021401 1500:Valtonen, M. J.; Mikkola, S.; 1243:10.1103/PhysRevLett.116.061102 643: 637: 610: 604: 533: 527: 1: 3634:Nonsingular black hole models 2798:10.1103/PhysRevLett.98.231102 2433:: CS1 maint: date and year ( 2367:LIGO Scientific Collaboration 1279:: CS1 maint: date and year ( 1205:LIGO Scientific Collaboration 997:LIGO Scientific Collaboration 957:10.1103/PhysRevLett.96.111102 879:10.1103/PhysRevLett.96.111101 805:10.1103/PhysRevLett.95.121101 416:For the ringdown, black-hole 406:Post-Newtonian approximations 281:The orbits can become highly 112:directly detecting such waves 106:that can be calculated using 90:, believed to be a result of 3031:Living Reviews in Relativity 2470:10.1016/0003-4916(64)90223-4 689:during a black-hole merger. 268:self-interacting dark matter 3856:Rossi X-ray Timing Explorer 3821:Hypercompact stellar system 3811:Gamma-ray burst progenitors 1536:10.1088/0004-637X/709/2/725 434:Boyer–Lindquist coordinates 4176: 3542:Black hole complementarity 3509:Bousso's holographic bound 3494:Quasi-periodic oscillation 3192: 3186:Malament–Hogarth spacetime 2704:10.1103/PhysRevD.85.024031 2571:10.1103/PhysRevD.85.044035 2123:10.1103/PhysRevD.62.124022 1790:AIP Conference Proceedings 1783:"The Final Parsec Problem" 1041:10.1103/PhysRevD.83.122005 711: 472:mass in general relativity 4020: 3413:Gravitational singularity 3115: 2405:10.1103/PhysRevX.6.041014 2225:10.1038/nature.2016.19361 1506:The Astrophysical Journal 1380:The Astrophysical Journal 1319:The Astrophysical Journal 436:or fish-eye coordinates. 314:The last stable orbit or 196:EGSD2 J142033.66 525917.5 3997:PSO J030947.49+271757.31 3922:SDSS J150243.09+111557.3 3455:Blandford–Znajek process 2982:10.3847/1538-4357/aa6030 2513:10.1103/PhysRevD.14.2443 1602:10.3847/1538-4357/abde3d 1145:National Geographic News 708:Black-hole merger recoil 192:SDSS J104807.74+005543.5 88:supermassive black holes 3253:Active galactic nucleus 2829:Physical Review Letters 2768:Physical Review Letters 2606:Physical Review Letters 2279:Physical Review Letters 2157:Physical Review Letters 1897:Physical Review Letters 1213:Physical Review Letters 927:Physical Review Letters 849:Physical Review Letters 775:Physical Review Letters 420:can be used. The final 358:, was performed by the 234:gravitational slingshot 226:hyperbolic trajectories 3881:Tidal disruption event 3851:Supermassive dark star 3769:Black holes in fiction 3754:Outline of black holes 3387:Supermassive dark star 3306:Gravitational collapse 1777:Milosavljević, MiloĆĄ; 657: 540: 179: 55: 3759:Black Hole Initiative 3572:Holographic principle 2950:Astrophysical Journal 2762:Campanelli, Manuela; 1996:10.1093/mnras/stx2524 1758:(16 September 2015). 1571:Astrophysical Journal 1297:. NASA. 15 April 2021 658: 541: 440:black holes in 2005. 220:Final-parsec problem 176: 48:gravitational lensing 41: 3562:Final parsec problem 3521:Schwarzschild radius 1138:(11 February 2016). 578: 488: 429:numerical relativity 205:Measurements of the 3861:Superluminal motion 3836:Population III star 3806:Gravitational waves 3764:Black hole starship 3547:Information paradox 3062:10.12942/lrr-2005-8 3053:2005LRR.....8....8M 2973:2017ApJ...840...71K 2904:1995CeMDA..62..377P 2851:2011PhRvL.107w1102L 2790:2007PhRvL..98w1102C 2696:2012PhRvD..85b4031C 2628:2012PhRvL.108m1101D 2563:2012PhRvD..85d4035N 2505:1976PhRvD..14.2443S 2462:1964AnPhy..29..304H 2397:2016PhRvX...6d1014A 2371:Virgo Collaboration 2301:2016PhRvL.116x1102A 2179:2023PhRvL.131v1402C 2115:2000PhRvD..62l4022O 2042:2006ApJ...651.1059I 1987:2018MNRAS.473.3410R 1920:2024PhRvL.133b1401A 1812:2003AIPC..686..201M 1726:10.1038/nature15262 1718:2015Natur.525..351D 1657:10.1038/nature14143 1649:2015Natur.518...74G 1593:2021ApJ...909..141P 1528:2010ApJ...709..725V 1471:2007ApJ...660L..23G 1402:2004ApJ...604L..33Z 1341:2003ApJ...582L..15K 1235:2016PhRvL.116f1102A 1209:Virgo Collaboration 1152:on 12 February 2016 1116:on 12 February 2016 1083:on 16 February 2016 1032:2011PhRvD..83l2005A 1001:Virgo Collaboration 949:2006PhRvL..96k1102B 871:2006PhRvL..96k1101C 797:2005PhRvL..95l1101P 633: 418:perturbation theory 143:observable universe 102:, with distinctive 100:gravitational waves 76:stellar black holes 3695:Optical black hole 3608:Reissner–Nordström 3567:Firewall (physics) 3472:Gravitational lens 2922:10.1007/BF00692287 1764:The New York Times 724:Newton's third law 653: 616: 536: 390:Dynamics modelling 230:dynamical friction 180: 108:general relativity 56: 18:Binary black holes 4048: 4047: 3841:Supermassive star 3831:Naked singularity 3826:Membrane paradigm 3552:Cosmic censorship 3526:Spaghettification 3514:Immirzi parameter 3467:Hawking radiation 3408:Astrophysical jet 3377:Supermassive star 3367:Binary black hole 3301:Stellar evolution 3243:Intermediate-mass 2674:Physical Review D 2541:Physical Review D 2499:(10): 2443–2452. 2493:Physical Review D 2450:Annals of Physics 2375:Physical Review X 2093:Physical Review D 1857:978-0-691-12101-7 1820:10.1063/1.1629432 1702:(7569): 351–353. 1009:Physical Review D 601: 588: 516: 207:peculiar velocity 174: 84:dynamic processes 68:black hole binary 60:binary black hole 39: 16:(Redirected from 4167: 4137: 4136: 4125: 4124: 4123: 4113: 4112: 4111: 4101: 4100: 4099: 4089: 4088: 4077: 4076: 4075: 4065: 4064: 4056: 4038: 4037: 4028: 4027: 3700:Sonic black hole 3649:Dark-energy star 3504:Bekenstein bound 3489:M–sigma relation 3418:Ring singularity 3198: 3102: 3095: 3088: 3079: 3074: 3064: 3046: 3044:astro-ph/0410364 3018: 2995: 2994: 2984: 2966: 2940: 2934: 2933: 2915: 2885: 2879: 2878: 2844: 2824: 2818: 2817: 2783: 2759: 2753: 2752: 2750: 2730: 2724: 2723: 2689: 2669: 2658: 2657: 2639: 2621: 2597: 2591: 2590: 2556: 2536: 2525: 2524: 2488: 2482: 2481: 2445: 2439: 2438: 2432: 2424: 2390: 2361: 2355: 2354: 2352: 2350: 2335: 2329: 2328: 2294: 2274: 2268: 2267: 2265: 2264: 2249: 2243: 2242: 2240: 2239: 2208: 2199: 2198: 2172: 2151: 2145: 2144: 2133: 2127: 2126: 2108: 2088: 2079: 2078: 2071: 2065: 2064: 2035: 2033:astro-ph/0511391 2026:(2): 1059–1067. 2015: 2009: 2008: 1998: 1980: 1971:(3): 3410–3433. 1952: 1946: 1945: 1931: 1913: 1887: 1881: 1880: 1868: 1862: 1861: 1838: 1832: 1831: 1805: 1803:astro-ph/0212270 1787: 1781:(October 2003). 1774: 1768: 1767: 1752: 1746: 1745: 1711: 1691: 1685: 1684: 1642: 1621: 1615: 1614: 1604: 1586: 1562: 1556: 1555: 1521: 1497: 1491: 1490: 1464: 1462:astro-ph/0608380 1436: 1430: 1429: 1395: 1393:astro-ph/0411167 1375: 1369: 1368: 1334: 1332:astro-ph/0212099 1313: 1307: 1306: 1304: 1302: 1291: 1285: 1284: 1278: 1270: 1228: 1199: 1188: 1187: 1185: 1183: 1168: 1162: 1161: 1159: 1157: 1148:. Archived from 1132: 1126: 1125: 1123: 1121: 1112:. Archived from 1099: 1093: 1092: 1090: 1088: 1082: 1075: 1067: 1061: 1060: 1034: 1024: 1003:) (2011-06-06). 991: 985: 984: 942: 921:Baker, John G.; 918: 907: 906: 864: 844: 833: 832: 790: 770: 759: 752: 718:Rogue black hole 667:Angular momentum 662: 660: 659: 654: 632: 627: 603: 602: 599: 590: 589: 586: 564:surface integral 545: 543: 542: 537: 517: 515: 507: 506: 505: 492: 464:PadĂ© resummation 385: 380: 379: 175: 136: 92:galactic mergers 40: 21: 4175: 4174: 4170: 4169: 4168: 4166: 4165: 4164: 4145: 4144: 4143: 4131: 4121: 4119: 4109: 4107: 4097: 4095: 4083: 4073: 4071: 4059: 4051: 4049: 4044: 4016: 3992:ULAS J1342+0928 3952:SDSS J0849+1114 3937:Phoenix Cluster 3890: 3742: 3704: 3683: 3622: 3581: 3577:No-hair theorem 3530: 3484:Bondi accretion 3450:Penrose process 3396: 3362:Gamma-ray burst 3289: 3199: 3190: 3176:Direct collapse 3124: 3111: 3106: 3021: 3007: 3004: 2999: 2998: 2942: 2941: 2937: 2887: 2886: 2882: 2826: 2825: 2821: 2761: 2760: 2756: 2732: 2731: 2727: 2671: 2670: 2661: 2599: 2598: 2594: 2538: 2537: 2528: 2490: 2489: 2485: 2447: 2446: 2442: 2425: 2363: 2362: 2358: 2348: 2346: 2337: 2336: 2332: 2276: 2275: 2271: 2262: 2260: 2251: 2250: 2246: 2237: 2235: 2210: 2209: 2202: 2153: 2152: 2148: 2135: 2134: 2130: 2090: 2089: 2082: 2073: 2072: 2068: 2017: 2016: 2012: 1954: 1953: 1949: 1889: 1888: 1884: 1870: 1869: 1865: 1858: 1840: 1839: 1835: 1785: 1776: 1775: 1771: 1756:Overbye, Dennis 1754: 1753: 1749: 1693: 1692: 1688: 1623: 1622: 1618: 1564: 1563: 1559: 1499: 1498: 1494: 1438: 1437: 1433: 1377: 1376: 1372: 1315: 1314: 1310: 1300: 1298: 1293: 1292: 1288: 1271: 1201: 1200: 1191: 1181: 1179: 1170: 1169: 1165: 1155: 1153: 1134: 1133: 1129: 1119: 1117: 1101: 1100: 1096: 1086: 1084: 1080: 1073: 1069: 1068: 1064: 993: 992: 988: 923:Centrella, Joan 920: 919: 910: 846: 845: 836: 772: 771: 762: 753: 749: 744: 732: 720: 710: 683: 594: 581: 576: 575: 508: 497: 493: 486: 485: 483: 422:Kerr black hole 392: 377: 375: 374: 372: 352: 336: 328: 300: 295: 222: 164: 155:first detection 151: 134: 30: 28: 23: 22: 15: 12: 11: 5: 4173: 4171: 4163: 4162: 4157: 4147: 4146: 4142: 4141: 4129: 4117: 4105: 4093: 4081: 4069: 4046: 4045: 4043: 4042: 4032: 4021: 4018: 4017: 4015: 4014: 4012:Swift J1644+57 4009: 4004: 3999: 3994: 3989: 3984: 3979: 3974: 3969: 3964: 3962:MS 0735.6+7421 3959: 3954: 3949: 3944: 3939: 3934: 3929: 3927:Sagittarius A* 3924: 3919: 3914: 3909: 3904: 3898: 3896: 3892: 3891: 3889: 3888: 3883: 3878: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3838: 3833: 3828: 3823: 3818: 3813: 3808: 3803: 3802: 3801: 3796: 3786: 3781: 3776: 3771: 3766: 3761: 3756: 3750: 3748: 3744: 3743: 3741: 3740: 3735: 3730: 3725: 3720: 3714: 3712: 3706: 3705: 3703: 3702: 3697: 3691: 3689: 3685: 3684: 3682: 3681: 3676: 3671: 3666: 3661: 3656: 3651: 3646: 3641: 3636: 3630: 3628: 3624: 3623: 3621: 3620: 3615: 3610: 3605: 3600: 3589: 3587: 3583: 3582: 3580: 3579: 3574: 3569: 3564: 3559: 3554: 3549: 3544: 3538: 3536: 3532: 3531: 3529: 3528: 3523: 3518: 3517: 3516: 3506: 3501: 3499:Thermodynamics 3496: 3491: 3486: 3481: 3480: 3479: 3469: 3464: 3462:Accretion disk 3459: 3458: 3457: 3452: 3442: 3437: 3432: 3427: 3426: 3425: 3420: 3410: 3404: 3402: 3398: 3397: 3395: 3394: 3389: 3384: 3379: 3374: 3369: 3364: 3359: 3358: 3357: 3352: 3347: 3337: 3336: 3335: 3325: 3320: 3319: 3318: 3308: 3303: 3297: 3295: 3291: 3290: 3288: 3287: 3286: 3285: 3280: 3275: 3270: 3265: 3260: 3255: 3245: 3240: 3239: 3238: 3228: 3227: 3226: 3223: 3218: 3207: 3205: 3201: 3200: 3193: 3191: 3189: 3188: 3183: 3178: 3173: 3168: 3163: 3158: 3153: 3148: 3143: 3138: 3136:BTZ black hole 3132: 3130: 3126: 3125: 3123: 3122: 3116: 3113: 3112: 3107: 3105: 3104: 3097: 3090: 3082: 3076: 3075: 3023:Merritt, David 3019: 3003: 3002:External links 3000: 2997: 2996: 2935: 2913:10.1.1.51.2616 2898:(4): 377–394. 2880: 2835:(23): 231102. 2819: 2774:(23): 231102. 2764:Lousto, Carlos 2754: 2748:10.1.1.51.2616 2725: 2659: 2612:(13): 131101. 2592: 2526: 2483: 2456:(2): 304–331. 2440: 2356: 2330: 2285:(24): 241102. 2269: 2244: 2200: 2163:(22): 221402. 2146: 2141:www.aei.mpg.de 2128: 2099:(12): 124022. 2080: 2066: 2050:10.1086/507473 2010: 1957:Perna, Rosalba 1947: 1882: 1863: 1856: 1842:Merritt, David 1833: 1779:Merritt, David 1769: 1747: 1686: 1633:(7537): 74–6. 1616: 1577:(2): 141–153. 1557: 1512:(2): 725–732. 1492: 1479:10.1086/517968 1455:(1): L23–L26. 1441:Lotz, Jennifer 1431: 1410:10.1086/383310 1370: 1349:10.1086/346145 1308: 1286: 1189: 1163: 1127: 1094: 1062: 1015:(12): 122005. 986: 933:(11): 111102. 908: 855:(11): 111101. 834: 781:(12): 121101. 760: 746: 745: 743: 740: 739: 738: 731: 728: 709: 706: 682: 679: 652: 649: 645: 642: 639: 636: 631: 626: 623: 619: 615: 612: 609: 606: 597: 593: 584: 535: 532: 529: 526: 523: 520: 514: 511: 504: 500: 496: 481: 457:frame-dragging 391: 388: 351: 348: 335: 332: 327: 324: 299: 296: 294: 291: 290: 289: 286: 279: 241:orbital energy 221: 218: 184:galaxy mergers 150: 147: 82:systems or by 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4172: 4161: 4158: 4156: 4153: 4152: 4150: 4140: 4135: 4130: 4128: 4118: 4116: 4106: 4104: 4094: 4092: 4087: 4082: 4080: 4070: 4068: 4063: 4058: 4054: 4041: 4033: 4031: 4023: 4022: 4019: 4013: 4010: 4008: 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3987:Markarian 501 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3912:XTE J1118+480 3910: 3908: 3907:XTE J1650-500 3905: 3903: 3900: 3899: 3897: 3893: 3887: 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3800: 3797: 3795: 3792: 3791: 3790: 3787: 3785: 3782: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3751: 3749: 3745: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3716: 3715: 3713: 3711: 3707: 3701: 3698: 3696: 3693: 3692: 3690: 3686: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3631: 3629: 3625: 3619: 3616: 3614: 3611: 3609: 3606: 3604: 3601: 3598: 3594: 3593:Schwarzschild 3591: 3590: 3588: 3584: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3539: 3537: 3533: 3527: 3524: 3522: 3519: 3515: 3512: 3511: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3478: 3475: 3474: 3473: 3470: 3468: 3465: 3463: 3460: 3456: 3453: 3451: 3448: 3447: 3446: 3443: 3441: 3438: 3436: 3435:Photon sphere 3433: 3431: 3430:Event horizon 3428: 3424: 3421: 3419: 3416: 3415: 3414: 3411: 3409: 3406: 3405: 3403: 3399: 3393: 3390: 3388: 3385: 3383: 3380: 3378: 3375: 3373: 3370: 3368: 3365: 3363: 3360: 3356: 3355:Related links 3353: 3351: 3348: 3346: 3343: 3342: 3341: 3338: 3334: 3333:Related links 3331: 3330: 3329: 3326: 3324: 3321: 3317: 3316:Related links 3314: 3313: 3312: 3309: 3307: 3304: 3302: 3299: 3298: 3296: 3292: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3250: 3249: 3246: 3244: 3241: 3237: 3234: 3233: 3232: 3229: 3224: 3222: 3219: 3217: 3214: 3213: 3212: 3209: 3208: 3206: 3202: 3197: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3141:Schwarzschild 3139: 3137: 3134: 3133: 3131: 3127: 3121: 3118: 3117: 3114: 3110: 3103: 3098: 3096: 3091: 3089: 3084: 3083: 3080: 3072: 3068: 3063: 3058: 3054: 3050: 3045: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3011: 3006: 3005: 3001: 2992: 2988: 2983: 2978: 2974: 2970: 2965: 2960: 2956: 2952: 2951: 2946: 2939: 2936: 2931: 2927: 2923: 2919: 2914: 2909: 2905: 2901: 2897: 2893: 2892: 2884: 2881: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2843: 2838: 2834: 2830: 2823: 2820: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2782: 2781:gr-qc/0702133 2777: 2773: 2769: 2765: 2758: 2755: 2749: 2744: 2740: 2736: 2729: 2726: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2688: 2683: 2680:(2): 024031. 2679: 2675: 2668: 2666: 2664: 2660: 2655: 2651: 2647: 2643: 2638: 2633: 2629: 2625: 2620: 2615: 2611: 2607: 2603: 2596: 2593: 2588: 2584: 2580: 2576: 2572: 2568: 2564: 2560: 2555: 2550: 2547:(4): 044035. 2546: 2542: 2535: 2533: 2531: 2527: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2487: 2484: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2430: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2389: 2384: 2381:(4): 041014. 2380: 2376: 2372: 2368: 2360: 2357: 2345: 2341: 2334: 2331: 2326: 2322: 2318: 2314: 2310: 2306: 2302: 2298: 2293: 2288: 2284: 2280: 2273: 2270: 2258: 2254: 2248: 2245: 2234: 2230: 2226: 2222: 2218: 2214: 2207: 2205: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2171: 2166: 2162: 2158: 2150: 2147: 2142: 2138: 2132: 2129: 2124: 2120: 2116: 2112: 2107: 2106:gr-qc/0003032 2102: 2098: 2094: 2087: 2085: 2081: 2076: 2070: 2067: 2063: 2059: 2055: 2051: 2047: 2043: 2039: 2034: 2029: 2025: 2021: 2014: 2011: 2006: 2002: 1997: 1992: 1988: 1984: 1979: 1974: 1970: 1966: 1962: 1958: 1951: 1948: 1944: 1939: 1935: 1930: 1925: 1921: 1917: 1912: 1907: 1903: 1899: 1898: 1893: 1886: 1883: 1878: 1874: 1867: 1864: 1859: 1853: 1849: 1848: 1843: 1837: 1834: 1829: 1825: 1821: 1817: 1813: 1809: 1804: 1799: 1795: 1791: 1784: 1780: 1773: 1770: 1765: 1761: 1757: 1751: 1748: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1710: 1705: 1701: 1697: 1690: 1687: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1641: 1636: 1632: 1628: 1620: 1617: 1612: 1608: 1603: 1598: 1594: 1590: 1585: 1580: 1576: 1572: 1568: 1561: 1558: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1520: 1515: 1511: 1507: 1503: 1496: 1493: 1488: 1484: 1480: 1476: 1472: 1468: 1463: 1458: 1454: 1450: 1446: 1442: 1435: 1432: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1394: 1389: 1385: 1381: 1374: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1333: 1328: 1324: 1320: 1312: 1309: 1296: 1290: 1287: 1282: 1276: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1227: 1222: 1219:(6): 061102. 1218: 1214: 1210: 1206: 1198: 1196: 1194: 1190: 1178: 1174: 1167: 1164: 1151: 1147: 1146: 1141: 1137: 1131: 1128: 1115: 1111: 1110: 1105: 1098: 1095: 1079: 1072: 1066: 1063: 1058: 1054: 1050: 1046: 1042: 1038: 1033: 1028: 1023: 1018: 1014: 1010: 1006: 1002: 998: 990: 987: 982: 978: 974: 970: 966: 962: 958: 954: 950: 946: 941: 940:gr-qc/0511103 936: 932: 928: 924: 917: 915: 913: 909: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 863: 862:gr-qc/0511048 858: 854: 850: 843: 841: 839: 835: 830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 789: 788:gr-qc/0507014 784: 780: 776: 769: 767: 765: 761: 757: 751: 748: 741: 737: 734: 733: 729: 727: 725: 719: 715: 707: 705: 703: 698: 696: 690: 688: 687:event horizon 680: 678: 676: 675:retarded time 672: 668: 664: 650: 647: 640: 634: 629: 621: 617: 613: 607: 595: 591: 582: 573: 569: 568:news function 565: 561: 557: 553: 549: 530: 524: 521: 518: 512: 509: 502: 498: 494: 480: 477: 473: 468: 465: 460: 458: 453: 449: 445: 441: 437: 435: 430: 425: 423: 419: 414: 412: 407: 403: 401: 397: 389: 387: 384: 370: 366: 361: 357: 349: 347: 345: 344:photon sphere 341: 333: 331: 325: 323: 321: 317: 312: 309: 307: 306: 297: 292: 287: 284: 280: 277: 276: 275: 271: 269: 265: 259: 257: 252: 249: 246: 242: 237: 235: 231: 227: 219: 217: 215: 210: 208: 203: 201: 197: 193: 189: 185: 162: 160: 156: 148: 146: 144: 140: 132: 128: 124: 120: 115: 113: 109: 105: 101: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 53: 49: 45: 19: 4160:Binary stars 4127:Solar System 3942:PKS 1302-102 3816:Gravity well 3784:Compact star 3738:Microquasars 3723:Most massive 3627:Alternatives 3392:X-ray binary 3366: 3311:Neutron star 3248:Supermassive 3225:Hawking star 3166:Supermassive 3034: 3030: 3013:– via 3009: 2957:(2): 71–77. 2954: 2948: 2938: 2895: 2889: 2883: 2832: 2828: 2822: 2771: 2767: 2757: 2738: 2734: 2728: 2677: 2673: 2609: 2605: 2595: 2544: 2540: 2496: 2492: 2486: 2453: 2449: 2443: 2429:cite journal 2378: 2374: 2359: 2347:. Retrieved 2344:Tech Insider 2343: 2333: 2282: 2278: 2272: 2261:. Retrieved 2256: 2247: 2236:. Retrieved 2216: 2160: 2156: 2149: 2140: 2131: 2096: 2092: 2069: 2061: 2023: 2020:Astrophys. J 2019: 2013: 1968: 1964: 1955:Ryu, Taeho; 1950: 1941: 1904:(2) 021401. 1901: 1895: 1885: 1876: 1866: 1846: 1836: 1793: 1789: 1772: 1763: 1750: 1699: 1695: 1689: 1630: 1626: 1619: 1574: 1570: 1560: 1509: 1505: 1495: 1452: 1448: 1444: 1434: 1383: 1379: 1373: 1322: 1318: 1311: 1299:. Retrieved 1289: 1275:cite journal 1216: 1212: 1180:. Retrieved 1176: 1166: 1154:. Retrieved 1150:the original 1143: 1136:Drake, Nadia 1130: 1118:. Retrieved 1114:the original 1107: 1097: 1085:. Retrieved 1078:the original 1065: 1012: 1008: 989: 930: 926: 852: 848: 778: 774: 750: 721: 699: 694: 691: 684: 670: 665: 559: 555: 551: 547: 478: 469: 461: 454: 450: 446: 442: 438: 426: 415: 404: 399: 395: 393: 353: 339: 337: 329: 319: 313: 310: 303: 301: 272: 260: 256:PKS 1302-102 253: 250: 238: 223: 214:PKS 1302-102 211: 204: 181: 152: 127:solar masses 116: 96: 67: 63: 59: 57: 4155:Black holes 4115:Outer space 4103:Spaceflight 3932:Centaurus A 3886:Planet Nine 3789:Exotic star 3718:Black holes 3664:Planck star 3613:Kerr–Newman 3328:White dwarf 3278:Radio-Quiet 3236:Microquasar 3109:Black holes 2349:12 February 2257:www.nsf.gov 2217:Nature News 1502:Merritt, D. 1182:23 December 1156:12 February 1120:12 February 1087:11 February 383:megaparsecs 350:Observation 264:Dark matter 212:The quasar 131:light-years 80:binary star 72:black holes 4149:Categories 3982:Q0906+6930 3972:Hercules A 3902:Cygnus X-1 3871:White hole 3846:Quasi-star 3799:Preon star 3794:Quark star 3779:Big Bounce 3639:Black star 3597:Derivation 3445:Ergosphere 3401:Properties 3382:Quasi-star 3372:Quark star 3283:Radio-Loud 3171:Primordial 3161:Kugelblitz 2964:1704.05549 2388:1606.01210 2292:1602.03840 2263:2016-02-11 2238:2016-02-11 2170:2105.05238 1978:1709.06501 1911:2401.14450 1877:Astrobites 1709:1509.04301 1640:1501.01375 1584:2101.07932 1226:1602.03837 742:References 712:See also: 476:Bondi mass 149:Occurrence 52:space-time 4079:Astronomy 4007:AT2018hyz 3654:Gravastar 3644:Dark star 3477:Microlens 3350:Hypernova 3345:Micronova 3340:Supernova 3294:Formation 3071:119367453 2991:119401892 2930:122956625 2908:CiteSeerX 2842:1108.2009 2743:CiteSeerX 2712:1550-7998 2687:1110.1668 2646:0031-9007 2619:1110.2938 2579:1550-7998 2554:1109.0081 2521:0556-2821 2478:0003-4916 2413:2160-3308 2325:217406416 2233:182916902 2005:119083047 1742:205245606 1665:0028-0836 1611:231648121 1552:119276181 1544:0004-637X 1519:0912.1209 1418:0004-637X 1357:0004-637X 1267:124959784 1251:0031-9007 1049:1550-7998 1022:1102.3781 965:0031-9007 887:0031-9007 813:0031-9007 754:Credits: 625:∞ 622:− 618:∫ 522:− 293:Lifecycle 283:eccentric 121:detected 104:waveforms 4030:Category 3917:A0620-00 3876:Wormhole 3774:Big Bang 3674:Fuzzball 3557:ER = EPR 3423:Theorems 3221:Electron 3216:Extremal 3146:Rotating 2875:15546595 2867:22182078 2814:29246347 2806:17677894 2720:37654897 2654:22540688 2587:30890236 2421:18217435 2369:and The 2317:27367378 2195:38101361 2058:14816623 1938:39073950 1844:(2013). 1828:12124842 1734:26381982 1673:25561176 1487:14320681 1447:= 0.7". 1426:14297940 1365:16697327 1301:16 April 1259:26918975 1109:CBS News 981:23409406 973:16605809 895:16605808 829:24225193 821:16197061 730:See also 702:toroidal 572:ADM mass 400:ringdown 396:inspiral 356:GW150914 340:ringdown 334:Ringdown 305:inspiral 298:Inspiral 188:NGC 6240 137:10  123:GW150914 44:GW150914 4139:Science 4067:Physics 4053:Portals 4040:Commons 4002:P172+18 3957:TON 618 3895:Notable 3747:Related 3733:Quasars 3728:Nearest 3688:Analogs 3618:Hayward 3586:Metrics 3231:Stellar 3156:Virtual 3151:Charged 3120:Outline 3049:Bibcode 3015:YouTube 2969:Bibcode 2900:Bibcode 2847:Bibcode 2786:Bibcode 2692:Bibcode 2624:Bibcode 2559:Bibcode 2501:Bibcode 2458:Bibcode 2393:Bibcode 2297:Bibcode 2175:Bibcode 2111:Bibcode 2038:Bibcode 1983:Bibcode 1943:orbits. 1916:Bibcode 1808:Bibcode 1714:Bibcode 1681:4459433 1645:Bibcode 1589:Bibcode 1524:Bibcode 1467:Bibcode 1398:Bibcode 1337:Bibcode 1231:Bibcode 1027:Bibcode 945:Bibcode 903:5954627 867:Bibcode 793:Bibcode 566:of the 546:, with 245:parsecs 3977:3C 273 3967:NeVe 1 3947:OJ 287 3669:Q star 3535:Issues 3268:Blazar 3258:Quasar 3069:  2989:  2928:  2910:  2873:  2865:  2812:  2804:  2745:  2718:  2710:  2652:  2644:  2585:  2577:  2519:  2476:  2419:  2411:  2323:  2315:  2231:  2193:  2056:  2003:  1936:  1854:  1826:  1740:  1732:  1696:Nature 1679:  1671:  1663:  1627:Nature 1609:  1550:  1542:  1485:  1424:  1416:  1363:  1355:  1265:  1257:  1249:  1057:174250 1055:  1047:  979:  971:  963:  901:  893:  885:  827:  819:  811:  716:, and 695:bridge 474:. The 381:  326:Merger 320:merger 66:), or 4091:Stars 3710:Lists 3211:Micro 3181:Rogue 3129:Types 3067:S2CID 3039:arXiv 3037:: 8. 2987:S2CID 2959:arXiv 2926:S2CID 2871:S2CID 2837:arXiv 2810:S2CID 2776:arXiv 2716:S2CID 2682:arXiv 2614:arXiv 2583:S2CID 2549:arXiv 2417:S2CID 2383:arXiv 2321:S2CID 2287:arXiv 2229:S2CID 2165:arXiv 2101:arXiv 2054:S2CID 2028:arXiv 2001:S2CID 1973:arXiv 1906:arXiv 1824:S2CID 1798:arXiv 1786:(PDF) 1738:S2CID 1704:arXiv 1677:S2CID 1635:arXiv 1607:S2CID 1579:arXiv 1548:S2CID 1514:arXiv 1483:S2CID 1457:arXiv 1422:S2CID 1388:arXiv 1361:S2CID 1327:arXiv 1263:S2CID 1221:arXiv 1081:(PDF) 1074:(PDF) 1053:S2CID 1017:arXiv 977:S2CID 935:arXiv 899:S2CID 857:arXiv 825:S2CID 783:arXiv 681:Shape 562:is a 200:OJ287 139:watts 50:, as 3679:Geon 3603:Kerr 3204:Size 2863:PMID 2802:PMID 2708:ISSN 2650:PMID 2642:ISSN 2575:ISSN 2517:ISSN 2474:ISSN 2435:link 2409:ISSN 2351:2016 2313:PMID 2191:PMID 1934:PMID 1852:ISBN 1730:PMID 1669:PMID 1661:ISSN 1540:ISSN 1414:ISSN 1353:ISSN 1303:2021 1281:link 1255:PMID 1247:ISSN 1207:and 1184:2014 1158:2016 1122:2016 1089:2016 1045:ISSN 999:and 969:PMID 961:ISSN 891:PMID 883:ISSN 817:PMID 809:ISSN 378:−180 376:+160 360:LIGO 194:and 159:LIGO 119:LIGO 3273:OVV 3263:LQG 3057:doi 2977:doi 2955:840 2918:doi 2855:doi 2833:107 2794:doi 2700:doi 2632:doi 2610:108 2567:doi 2509:doi 2466:doi 2401:doi 2305:doi 2283:116 2221:doi 2183:doi 2161:131 2119:doi 2046:doi 2024:651 1991:doi 1969:473 1924:doi 1902:133 1816:doi 1794:686 1722:doi 1700:525 1653:doi 1631:518 1597:doi 1575:909 1532:doi 1510:709 1475:doi 1453:660 1406:doi 1384:604 1345:doi 1323:582 1239:doi 1217:116 1037:doi 953:doi 875:doi 801:doi 587:ADM 373:440 365:erg 64:BBH 4151:: 3065:. 3055:. 3047:. 3033:. 3029:. 2985:. 2975:. 2967:. 2953:. 2947:. 2924:. 2916:. 2906:. 2896:62 2894:. 2869:. 2861:. 2853:. 2845:. 2831:. 2808:. 2800:. 2792:. 2784:. 2772:98 2770:. 2741:. 2737:. 2714:. 2706:. 2698:. 2690:. 2678:85 2676:. 2662:^ 2648:. 2640:. 2630:. 2622:. 2608:. 2604:. 2581:. 2573:. 2565:. 2557:. 2545:85 2543:. 2529:^ 2515:. 2507:. 2497:14 2495:. 2472:. 2464:. 2454:29 2452:. 2431:}} 2427:{{ 2415:. 2407:. 2399:. 2391:. 2377:. 2342:. 2319:. 2311:. 2303:. 2295:. 2281:. 2255:. 2227:. 2219:. 2215:. 2203:^ 2189:. 2181:. 2173:. 2159:. 2139:. 2117:. 2109:. 2097:62 2095:. 2083:^ 2060:. 2052:. 2044:. 2036:. 2022:. 1999:. 1989:. 1981:. 1967:. 1963:. 1940:. 1932:. 1922:. 1914:. 1900:. 1894:. 1875:. 1822:. 1814:. 1806:. 1792:. 1788:. 1762:. 1736:. 1728:. 1720:. 1712:. 1698:. 1675:. 1667:. 1659:. 1651:. 1643:. 1629:. 1605:. 1595:. 1587:. 1573:. 1569:. 1546:. 1538:. 1530:. 1522:. 1508:. 1481:. 1473:. 1465:. 1451:. 1420:. 1412:. 1404:. 1396:. 1382:. 1359:. 1351:. 1343:. 1335:. 1321:. 1277:}} 1273:{{ 1261:. 1253:. 1245:. 1237:. 1229:. 1215:. 1192:^ 1175:. 1142:. 1106:. 1051:. 1043:. 1035:. 1025:. 1013:83 1011:. 1007:. 975:. 967:. 959:. 951:. 943:. 931:96 929:. 911:^ 897:. 889:. 881:. 873:. 865:. 853:96 851:. 837:^ 823:. 815:. 807:. 799:. 791:. 779:95 777:. 763:^ 697:. 677:. 663:. 558:. 402:. 322:. 202:. 161:. 94:. 58:A 4055:: 3599:) 3595:( 3101:e 3094:t 3087:v 3073:. 3059:: 3051:: 3041:: 3035:8 3017:. 2993:. 2979:: 2971:: 2961:: 2932:. 2920:: 2902:: 2877:. 2857:: 2849:: 2839:: 2816:. 2796:: 2788:: 2778:: 2751:. 2722:. 2702:: 2694:: 2684:: 2656:. 2634:: 2626:: 2616:: 2589:. 2569:: 2561:: 2551:: 2523:. 2511:: 2503:: 2480:. 2468:: 2460:: 2437:) 2423:. 2403:: 2395:: 2385:: 2379:6 2353:. 2327:. 2307:: 2299:: 2289:: 2266:. 2241:. 2223:: 2197:. 2185:: 2177:: 2167:: 2143:. 2125:. 2121:: 2113:: 2103:: 2048:: 2040:: 2030:: 2007:. 1993:: 1985:: 1975:: 1926:: 1918:: 1908:: 1879:. 1860:. 1830:. 1818:: 1810:: 1800:: 1766:. 1744:. 1724:: 1716:: 1706:: 1683:. 1655:: 1647:: 1637:: 1613:. 1599:: 1591:: 1581:: 1554:. 1534:: 1526:: 1516:: 1489:. 1477:: 1469:: 1459:: 1445:z 1428:. 1408:: 1400:: 1390:: 1367:. 1347:: 1339:: 1329:: 1305:. 1283:) 1269:. 1241:: 1233:: 1223:: 1203:( 1186:. 1160:. 1124:. 1091:. 1059:. 1039:: 1029:: 1019:: 995:( 983:. 955:: 947:: 937:: 905:. 877:: 869:: 859:: 831:. 803:: 795:: 785:: 758:. 671:z 651:V 648:d 644:) 641:V 638:( 635:F 630:U 614:+ 611:) 608:U 605:( 600:B 596:M 592:= 583:M 560:f 556:U 552:U 550:( 548:f 534:) 531:U 528:( 525:f 519:= 513:U 510:d 503:B 499:M 495:d 482:B 479:M 369:s 367:/ 135:× 62:( 20:)

Index

Binary black holes
GW150914
gravitational lensing
space-time
black holes
stellar black holes
binary star
dynamic processes
supermassive black holes
galactic mergers
gravitational waves
waveforms
general relativity
directly detecting such waves
LIGO
GW150914
solar masses
light-years
watts
observable universe
first detection
LIGO
galaxy mergers
NGC 6240
SDSS J104807.74+005543.5
EGSD2 J142033.66 525917.5
OJ287
peculiar velocity
PKS 1302-102
hyperbolic trajectories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑