Knowledge (XXG)

Bio-layer interferometry

Source 📝

93:. Figure 2 expresses this phenomenon in a more general form. The wavelength shift (Δλ) between these two reflection patterns creates an interference pattern (Figure 3) from which all desired results can be obtained. Since the wavelength shift is direct measure of the change in thickness of the biological layer and the biological layer thickness will change in response to molecules associating to and dissociating from the biosensor, the interference pattern will allow for real-time monitoring of molecular interactions on the biosensor surface. In short, a positive wavelength shift implies an increase in biolayer thickness and thus more association, while a negative wavelength shift implies a decrease in biolayer thickness and thus more dissociation. 28: 153: 102:
purification) that come with it. This structure is often supported by a robot, and both 96-well and 384-well plate formats are combined to achieve this. This distinct detection method ensures that sample concentration and viscosity and varying refractive indexes rarely affect the results of BLI. Thus, BLI finds significant use in viscous media such as glycerol, where other techniques may struggle.
186:. Being a closed system, SPR's association and dissociation phases are limited by the technology's design. BLI's open plate design results in association and dissociation length limits determined by sample evaporation instead. SPR is easily reproducible due to its continuous flow microfluidics. BLI's multi well plate design allows for extremely high throughput in one batch. 115:
act as thin, reflective surfaces. The biosensors are disposable, resulting in low costs and high commercial availability. Biosensor selection is determined by the desired test results: kinetic analysis, quantitative analysis, or both. Most commercially available biosensor types will be grouped into one of these three categories by the BLI manufacturer.
20: 169:(ELISA). Interference patterns found in BLI experiments can be used to calculate rate constants and other kinetic data in biomolecular interactions. The (relatively) lower sensitivity of the BLI sensor results in less response to changes in sample composition. As a result, BLI can also be used to investigate 128:
A key use of Bio-layer interferometry is to analyze and quantify interactions between sets of biomolecules. This is extremely useful in pharmaceutical research, in which biomolecule-membrane interaction determines characteristics of a given drug. Due to its ability to achieve high-resolution data and
50:
biosensing technologies, a detection style that yields more information in less time than traditional processes. The technology relies on the phase shift-wavelength correlation created between interference patterns off of two unique surfaces on the tip of a biosensor. BLI has significant applications
84:
is in solution. Shortly after this, the biosensor tip is dipped into the solution and the target molecule will begin to associate with the analyte, producing a layer on top of the biosensor tip. This creates two separate surfaces: the substrate itself, and the substrate interacting with the molecule
181:
BLI and SPR are both dominant technologies in the label-free instruments market. Despite sharing some similarities in concept, there are significant differences between the two techniques. Micro-fluidic SPR relies on a closed architecture to transport samples to a stationary sensor chip (Figure 4).
114:
with a fiber optic tip upon which the ligand is immobilized. The tip is additionally coated with a matrix biocompatible with the target molecule to limit any non-specific binding. For BLI calculations to work, it is necessary to assume that both the fiber optic tip and the bound ligand and analyte
101:
Bio-layer interferometry platforms achieve high throughput by utilizing a "Dip and Read" format. The biosensor tips themselves are transported directly to the desired sample and "dipped" into their respective compartment, eliminating the needs for micro-fluidics and the complications (clogging,
89:, in which the created layer acts as a thin film bound by these two surfaces. White light from a tungsten lamp is shone onto the biosensor tip and reflected off both surfaces, creating two unique reflection patterns with different 190:
configuration in BLI can, in stable conditions, allow for recovery of samples. Assay configuration in SPR allows for higher sensitivity. As a result, BLI results are often compared to SPR results for validation.
165:
Bio-layer interferometry can be used to analyze kinetics in biomolecular systems. The benefits that BLI brings provide additional insight into kinetics on top of commonly used endpoint methods like
65: 479:
Wallner J, Lhota G, Jeschek D, Mader A, Vorauer-Uhl K (January 2013). "Application of Bio-Layer Interferometry for the analysis of protein/liposome interactions".
606:
Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT (September 2016).
51:
in quantifying binding strength, measuring protein interactions, and identifying properties of reaction kinetics, such as rate constants and reaction rates.
129:
high throughput, BLI has been used to identify biophysical properties of lipid bilayers, allowing for an alternative method of study than the traditional
42:) is an optical biosensing technology that analyzes biomolecular interactions in real-time without the need for fluorescent labeling. Alongside 64: 970: 254: 205: 146: 741:"Understanding ForteBio's Sensors for High-Throughput Kinetic and Epitope Screening for Purified Antibodies and Yeast Culture Supernatant" 149:(EMSA) method can be used, BLI can act as a suitable substitute if the provided benefits (label-free, real-time measurements) are desired. 790:
Wilson JL, Scott IM, McMurry JL (November 2010). "Optical biosensing: Kinetics of protein A-IGG binding using biolayer interferometry".
200: 655:
Gao S, Zheng X, Wu J (2017). "A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin".
31:
Figure 2 - The ligand-analyte layer creates an optical path length difference, reflecting incident light in two different patterns
182:
BLI instead utilizes an open system, shaking multiple wells on a plate to transport the sensors to the samples without need for
516:"Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions" 19: 880:"Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet" 700:"Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet" 245:
Apiyo D, Schasfoort R, Schuck P, Marquart A, Gedig ET, Karlsson R, Abdiche YN, Eckman Y, Blum SR, Schasfoort RB (2017).
76:. To prepare for BLI analysis between two unique biomolecules, the ligand is first immobilized onto a bio compatible 608:"Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins" 47: 43: 835:"Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects" 383:
Rich RL, Myszka DG (February 2007). "Higher-throughput, label-free, real-time molecular interaction analysis".
975: 86: 27: 921:"Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics" 170: 664: 557:"Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development" 965: 423:"Bio-Layer Interferometry Analysis of the Target Binding Activity of CRISPR-Cas Effector Complexes" 334:"Bio-Layer Interferometry Analysis of the Target Binding Activity of CRISPR-Cas Effector Complexes" 152: 815: 142: 90: 942: 901: 860: 807: 772: 721: 680: 637: 588: 537: 496: 454: 400: 365: 311: 260: 250: 73: 932: 891: 850: 842: 799: 762: 752: 711: 672: 627: 619: 578: 568: 527: 488: 444: 434: 392: 355: 345: 301: 291: 138: 668: 855: 834: 767: 740: 632: 607: 583: 556: 449: 422: 360: 333: 306: 279: 72:
Bio-layer interferometry measures kinetics and biomolecular interactions on a basis of
421:
Müller-Esparza H, Osorio-Valeriano M, Steube N, Thanbichler M, Randau L (2020-05-27).
332:
Müller-Esparza H, Osorio-Valeriano M, Steube N, Thanbichler M, Randau L (2020-05-27).
959: 739:
Yu Y, Mitchell S, Lynaugh H, Brown M, Nobrega RP, Zhi X, et al. (January 2016).
183: 819: 623: 492: 296: 676: 134: 937: 920: 896: 879: 757: 716: 699: 684: 532: 515: 439: 396: 350: 264: 111: 77: 946: 905: 864: 811: 776: 725: 641: 592: 541: 500: 458: 404: 369: 315: 130: 573: 81: 803: 280:"Label and Label-Free Detection Techniques for Protein Microarrays" 846: 278:
Syahir A, Usui K, Tomizaki KY, Kajikawa K, Mihara H (April 2015).
187: 166: 63: 23:
Figure 1 - Overview schematic of a Bio-layer interferometry setup
85:
immobilized on the biosensor tip. This essentially creates a
156:
Figure 4 - Overview schematic of Surface Plasmon Resonance
878:
Abdiche Y, Malashock D, Pinkerton A, Pons J (June 2008).
698:
Abdiche Y, Malashock D, Pinkerton A, Pons J (June 2008).
68:
Figure 3 - Reflectance signal as a function of wavelength
919:
Yang D, Singh A, Wu H, Kroe-Barrett R (September 2016).
145:complex-target interactions. Where the traditional 481:Journal of Pharmaceutical and Biomedical Analysis 240: 8: 792:Biochemistry and Molecular Biology Education 238: 236: 234: 232: 230: 228: 226: 224: 222: 220: 936: 895: 854: 766: 756: 715: 631: 582: 572: 531: 448: 438: 359: 349: 305: 295: 141:). In addition, BLI can be used to study 151: 26: 18: 216: 474: 472: 470: 468: 416: 414: 247:Handbook of Surface Plasmon Resonance 46:, BLI is one of few widely available 7: 833:Shah NB, Duncan TM (February 2014). 514:Kamat V, Rafique A (November 2017). 327: 325: 206:Surface plasmon resonance microscopy 147:Electrophoretic Mobility Shift Assay 124:Analyzing biomolecular interactions 110:Bio-layer interferometry relies on 427:Frontiers in Molecular Biosciences 338:Frontiers in Molecular Biosciences 201:Interference reflection microscopy 173:on enzyme conformational changes. 14: 839:Journal of Visualized Experiments 745:Journal of Biomolecular Screening 657:Sensors and Actuators B: Chemical 167:enzyme-linked immunosorbent assay 161:Measuring biomolecular kinetics 249:. Royal Society of Chemistry. 177:Distinguishing characteristics 1: 16:Optical biosensing technology 971:Molecular biology techniques 555:Petersen RL (October 2017). 106:Biosensor type and selection 624:10.1021/acs.biochem.6b00293 992: 493:10.1016/j.jpba.2012.10.008 297:10.3390/microarrays4020228 677:10.1016/j.snb.2017.02.078 44:Surface Plasmon Resonance 938:10.1016/j.ab.2016.06.024 897:10.1016/j.ab.2008.03.035 758:10.1177/1087057115609564 717:10.1016/j.ab.2008.03.035 533:10.1016/j.ab.2017.08.002 440:10.3389/fmolb.2020.00098 397:10.1016/j.ab.2006.10.040 351:10.3389/fmolb.2020.00098 133:methods currently used ( 36:Bio-layer interferometry 925:Analytical Biochemistry 884:Analytical Biochemistry 704:Analytical Biochemistry 520:Analytical Biochemistry 385:Analytical Biochemistry 157: 87:thin-film interference 69: 32: 24: 155: 97:"Dip and read" format 67: 30: 22: 669:2017SeAcB.246..169G 574:10.3390/bios7040049 171:allosteric effects 158: 70: 60:Mechanism overview 33: 25: 804:10.1002/bmb.20442 256:978-1-78801-139-6 74:wave interference 983: 951: 950: 940: 916: 910: 909: 899: 875: 869: 868: 858: 830: 824: 823: 787: 781: 780: 770: 760: 736: 730: 729: 719: 695: 689: 688: 652: 646: 645: 635: 618:(35): 4885–908. 603: 597: 596: 586: 576: 552: 546: 545: 535: 511: 505: 504: 476: 463: 462: 452: 442: 418: 409: 408: 380: 374: 373: 363: 353: 329: 320: 319: 309: 299: 275: 269: 268: 242: 991: 990: 986: 985: 984: 982: 981: 980: 956: 955: 954: 918: 917: 913: 877: 876: 872: 832: 831: 827: 789: 788: 784: 738: 737: 733: 697: 696: 692: 654: 653: 649: 605: 604: 600: 554: 553: 549: 513: 512: 508: 478: 477: 466: 420: 419: 412: 382: 381: 377: 331: 330: 323: 277: 276: 272: 257: 244: 243: 218: 214: 197: 179: 163: 139:electrophoresis 126: 121: 108: 99: 62: 57: 17: 12: 11: 5: 989: 987: 979: 978: 976:Interferometry 973: 968: 958: 957: 953: 952: 911: 890:(2): 209–217. 870: 841:(84): e51383. 825: 798:(6): 400–407. 782: 731: 710:(2): 209–217. 690: 647: 598: 547: 506: 464: 410: 375: 321: 290:(2): 228–244. 270: 255: 215: 213: 210: 209: 208: 203: 196: 193: 184:micro-fluidics 178: 175: 162: 159: 125: 122: 120: 117: 107: 104: 98: 95: 61: 58: 56: 53: 15: 13: 10: 9: 6: 4: 3: 2: 988: 977: 974: 972: 969: 967: 964: 963: 961: 948: 944: 939: 934: 930: 926: 922: 915: 912: 907: 903: 898: 893: 889: 885: 881: 874: 871: 866: 862: 857: 852: 848: 847:10.3791/51383 844: 840: 836: 829: 826: 821: 817: 813: 809: 805: 801: 797: 793: 786: 783: 778: 774: 769: 764: 759: 754: 750: 746: 742: 735: 732: 727: 723: 718: 713: 709: 705: 701: 694: 691: 686: 682: 678: 674: 670: 666: 662: 658: 651: 648: 643: 639: 634: 629: 625: 621: 617: 613: 609: 602: 599: 594: 590: 585: 580: 575: 570: 566: 562: 558: 551: 548: 543: 539: 534: 529: 525: 521: 517: 510: 507: 502: 498: 494: 490: 486: 482: 475: 473: 471: 469: 465: 460: 456: 451: 446: 441: 436: 432: 428: 424: 417: 415: 411: 406: 402: 398: 394: 390: 386: 379: 376: 371: 367: 362: 357: 352: 347: 343: 339: 335: 328: 326: 322: 317: 313: 308: 303: 298: 293: 289: 285: 281: 274: 271: 266: 262: 258: 252: 248: 241: 239: 237: 235: 233: 231: 229: 227: 225: 223: 221: 217: 211: 207: 204: 202: 199: 198: 194: 192: 189: 185: 176: 174: 172: 168: 160: 154: 150: 148: 144: 140: 136: 132: 123: 118: 116: 113: 105: 103: 96: 94: 92: 88: 83: 79: 75: 66: 59: 54: 52: 49: 45: 41: 37: 29: 21: 928: 924: 914: 887: 883: 873: 838: 828: 795: 791: 785: 751:(1): 88–95. 748: 744: 734: 707: 703: 693: 660: 656: 650: 615: 612:Biochemistry 611: 601: 564: 560: 550: 523: 519: 509: 484: 480: 430: 426: 388: 384: 378: 341: 337: 287: 283: 273: 246: 180: 164: 127: 119:Applications 109: 100: 71: 39: 35: 34: 663:: 169–174. 487:: 150–154. 284:Microarrays 91:intensities 966:Biosensors 960:Categories 561:Biosensors 391:(1): 1–6. 212:References 135:microscopy 112:biosensors 80:while the 48:label-free 931:: 78–96. 685:0925-4005 567:(4): 49. 526:: 16–31. 265:988866146 78:biosensor 947:27365220 906:18405656 865:24638157 820:29689214 812:21567869 777:26442912 726:18405656 642:27505032 593:29088096 542:28802648 501:23146240 459:32528975 405:17145039 370:32528975 316:27600222 195:See also 143:effector 131:in vitro 856:4089413 768:4708621 665:Bibcode 633:5524994 584:5746772 450:7266957 361:7266957 307:4996399 82:analyte 945:  904:  863:  853:  818:  810:  775:  765:  724:  683:  640:  630:  591:  581:  540:  499:  457:  447:  433:: 98. 403:  368:  358:  344:: 98. 314:  304:  263:  253:  55:Method 816:S2CID 188:Assay 943:PMID 902:PMID 861:PMID 808:PMID 773:PMID 722:PMID 681:ISSN 638:PMID 589:PMID 538:PMID 497:PMID 455:PMID 401:PMID 366:PMID 312:PMID 261:OCLC 251:ISBN 933:doi 929:508 892:doi 888:377 851:PMC 843:doi 800:doi 763:PMC 753:doi 712:doi 708:377 673:doi 661:246 628:PMC 620:doi 579:PMC 569:doi 528:doi 524:536 489:doi 445:PMC 435:doi 393:doi 389:361 356:PMC 346:doi 302:PMC 292:doi 40:BLI 962:: 941:. 927:. 923:. 900:. 886:. 882:. 859:. 849:. 837:. 814:. 806:. 796:38 794:. 771:. 761:. 749:21 747:. 743:. 720:. 706:. 702:. 679:. 671:. 659:. 636:. 626:. 616:55 614:. 610:. 587:. 577:. 563:. 559:. 536:. 522:. 518:. 495:. 485:72 483:. 467:^ 453:. 443:. 429:. 425:. 413:^ 399:. 387:. 364:. 354:. 340:. 336:. 324:^ 310:. 300:. 286:. 282:. 259:. 219:^ 137:, 949:. 935:: 908:. 894:: 867:. 845:: 822:. 802:: 779:. 755:: 728:. 714:: 687:. 675:: 667:: 644:. 622:: 595:. 571:: 565:7 544:. 530:: 503:. 491:: 461:. 437:: 431:7 407:. 395:: 372:. 348:: 342:7 318:. 294:: 288:4 267:. 38:(

Index



Surface Plasmon Resonance
label-free

wave interference
biosensor
analyte
thin-film interference
intensities
biosensors
in vitro
microscopy
electrophoresis
effector
Electrophoretic Mobility Shift Assay

enzyme-linked immunosorbent assay
allosteric effects
micro-fluidics
Assay
Interference reflection microscopy
Surface plasmon resonance microscopy






Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.