Knowledge (XXG)

Variety (universal algebra)

Source 📝

773:. If the ring is infinite, we will thus have infinitely many operations, which is allowed by the definition of an algebraic structure in universal algebra. We will then also need infinitely many identities to express the module axioms, which is allowed by the definition of a variety of algebras. So the left 1283:
is thus enough to recover the finitary algebraic category. Indeed, finitary algebraic categories are precisely those categories equivalent to the Eilenberg-Moore categories of finitary monads. Both these, in turn, are equivalent to categories of algebras of Lawvere theories.
1338:
is usually defined to be a class of algebras of a given signature, closed under the taking of homomorphic images, subalgebras and finitary direct products. Not every author assumes that all algebras of a pseudovariety are finite; if this is the case, one sometimes talks of a
823:
proved that a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and arbitrary products. This is a result of fundamental importance to universal algebra and known as
855:
Using the easy direction of Birkhoff's theorem, we can for example verify the claim made above, that the field axioms are not expressible by any possible set of identities: the product of fields is not a field, so fields do not form a variety.
1307:(complete semilattices) whose signatures include infinitary operations. In those two cases the signature is large, meaning that it forms not a set but a proper class, because its operations are of unbounded arity. The algebraic category of 887:
form a subvariety of the variety of semigroups because the signatures are different. Similarly, the class of semigroups that are groups is not a subvariety of the variety of semigroups. The class of monoids that are groups contains
1326:
Since varieties are closed under arbitrary direct products, all non-trivial varieties contain infinite algebras. Attempts have been made to develop a finitary analogue of the theory of varieties. This led, e.g., to the notion of
488: 847:
One direction of the equivalence mentioned above, namely that a class of algebras satisfying some set of identities must be closed under the HSP operations, follows immediately from the definitions. Proving the
1343:. For pseudovarieties, there is no general finitary counterpart to Birkhoff's theorem, but in many cases the introduction of a more complex notion of equations allows similar results to be derived. 954: 920: 199:
in which each node is labelled by either a variable or an operation, such that every node labelled by a variable has no branches away from the root and every node labelled by an operation
795:
also do not form a variety of algebras, since the cancellation property is not an equation, it is an implication that is not equivalent to any set of equations. However, they do form a
741: 1404: 571: 643: 977:
do not form a subvariety, since by Birkhoff's theorem they don't form a variety, as an arbitrary product of finitely generated abelian groups is not finitely generated.
682: 883:
Notice that although every group becomes a semigroup when the identity as a constant is omitted (and/or the inverse operation is omitted), the class of groups does
517:
forms a variety of algebras of signature (2), meaning that a semigroup has a single binary operation. A sufficient defining equation is the associative law:
1396: 1185:. We may go from a variety to a finitary monad as follows. A category with some variety of algebras as objects and homomorphisms as morphisms is called a 788:
form a variety of algebras; the requirement that all non-zero elements be invertible cannot be expressed as a universally satisfied identity (see below).
356: 236:
consists of a signature, a set of variables, and a set of equational laws. Any theory gives a variety of algebras as follows. Given a theory
1177:
Besides varieties, category theorists use two other frameworks that are equivalent in terms of the kinds of algebras they describe: finitary
750:
also forms a variety of algebras. The signature here is (2,2,0,0,1) (two binary operations, two constants, and one unary operation).
1518: 1501: 974: 133: 1238: 1328: 1315: 85:, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of 925: 891: 1535: 1437: 297:
to the variables in that axiom, the equation holds that is given by applying the operations to the elements of
1355: 1292: 1229: 1178: 1311:
also has infinitary operations, but their arity is countable whence its signature is small (forms a set).
792: 592:(unary). The familiar axioms of associativity, identity and inverse form one suitable set of identities: 502: 102: 1299:. This is a more general notion than "finitary algebraic category" because it admits such categories as 1331:. This kind of variety uses only finitary products. However, it uses a more general kind of identities. 811:
Given a class of algebraic structures of the same signature, we can define the notions of homomorphism,
688: 62: 1169:
etc. It has the consequence that every algebra in a variety is a homomorphic image of a free algebra.
1413: 758: 144: 1457: 781: 577: 66: 54: 523: 1429: 1158: 1090: 747: 598: 74: 50: 1227:, namely the functor that assigns to each set the free algebra on that set. This adjunction is 1514: 1497: 1194: 140: 129: 58: 38: 31: 649: 1466: 1421: 1363: 1182: 997: 849: 820: 852:—classes of algebras closed under the HSP operations must be equational—is more difficult. 17: 1351: 985: 580:
forms a variety of algebras of signature (2,0,1), the three operations being respectively
98: 1417: 963:
is a subvariety of the variety of groups because it consists of those groups satisfying
816: 172: 94: 1529: 1509: 1433: 1308: 1287:
Working with monads permits the following generalization. One says a category is an
960: 800: 70: 1492: 1375: 1211: 1162: 796: 505:
where the objects are algebras of that theory and the morphisms are homomorphisms.
152: 148: 86: 1455:
Banaschewski, B. (1983), "The Birkhoff Theorem for varieties of finite algebras",
844:
stand, respectively, for the operations of homomorphism, subalgebra, and product.
1166: 196: 117: 1425: 1154: 1056:
contains algebras with more than one element. One can show that for every set
812: 90: 136:. They are formally quite distinct and their theories have little in common. 1347: 514: 483:{\displaystyle f(o_{A}(a_{1},\dots ,a_{n}))=o_{B}(f(a_{1}),\dots ,f(a_{n}))} 139:
The term "variety of algebras" refers to algebras in the general sense of
1263: 799:
as the implication defining the cancellation property is an example of a
1470: 78: 1346:
Pseudovarieties are of particular importance in the study of finite
880:
and is itself a variety, i.e., is defined by a set of identities.
101:, a variety of algebras, together with its homomorphisms, forms a 30:
For the set of solutions to a system of polynomial equations, see
922:
and does not contain its subalgebra (more precisely, submonoid)
143:; there is also a more specific sense of algebra, namely as 211:
is a pair of such words; the axiom consisting of the words
1362:, describes a natural correspondence between varieties of 765:. To express the scalar multiplication with elements from 203:
has as many branches away from the root as the arity of
1513:, Lecture Notes in Mathematics 1533. Springer Verlag. 167:(in this context) is a set, whose elements are called 928: 894: 691: 652: 601: 526: 359: 128:
A variety of algebras should not be confused with an
82: 1405:Proceedings of the Cambridge Philosophical Society 948: 914: 769:, we need one unary operation for each element of 735: 676: 637: 565: 482: 1490:Stanley N. Burris and H.P. Sankappanavar (1981), 1072:. This means that there is an injective set map 949:{\displaystyle \langle \mathbb {N} ,+\rangle } 915:{\displaystyle \langle \mathbb {Z} ,+\rangle } 8: 943: 929: 909: 895: 1052:is a non-trivial variety of algebras, i.e. 1366:and pseudovarieties of finite semigroups. 309:. The class of algebras of a given theory 933: 932: 927: 899: 898: 893: 715: 699: 690: 651: 600: 525: 468: 440: 421: 402: 383: 370: 358: 777:-modules do form a variety of algebras. 1397:"On the structure of abstract algebras" 1387: 1314:Every finitary algebraic category is a 1303:(complete atomic Boolean algebras) and 1189:. For any finitary algebraic category 1486:Two monographs available free online: 132:, which means a set of solutions to a 69:form a variety of algebras, as do the 7: 1507:Peter Jipsen and Henry Rose (1992), 1262:, meaning it commutes with filtered 973:, with no change of signature. The 301:as indicated by the trees defining 293:and each assignment of elements of 736:{\displaystyle xx^{-1}=x^{-1}x=1.} 252:together with, for each operation 25: 975:finitely generated abelian groups 1322:Pseudovariety of finite algebras 1153:This generalizes the notions of 1004:, meaning that for any objects 876:that has the same signature as 806: 757:, we can consider the class of 320:Given two algebras of a theory 1493:A Course in Universal Algebra. 629: 620: 614: 605: 554: 545: 539: 530: 477: 474: 461: 446: 433: 427: 411: 408: 376: 363: 171:, each of which is assigned a 134:system of polynomial equations 1: 1089:that satisfies the following 107:finitary algebraic categories 27:Class of algebraic structures 1329:variety of finite semigroups 1316:locally presentable category 1233:, meaning that the category 566:{\displaystyle x(yz)=(xy)z.} 187:, whose elements are called 1358:, often referred to as the 1187:finitary algebraic category 984:and its homomorphisms as a 638:{\displaystyle x(yz)=(xy)z} 105:; these are usually called 18:Birkhoff's HSP theorem 1552: 1341:variety of finite algebras 826:Birkhoff's variety theorem 807:Birkhoff's Variety theorem 753:If we fix a specific ring 588:(nullary, a constant) and 175:(0, 1, 2, ...) called its 61:satisfying a given set of 29: 1426:10.1017/S0305004100013463 1395:Birkhoff, G. (Oct 1935), 1016:, the homomorphisms from 868:of a variety of algebras 283:such that for each axiom 1239:Eilenberg–Moore category 1115:, there exists a unique 1028:are exactly those from 793:cancellative semigroups 677:{\displaystyle 1x=x1=x} 1352:formal language theory 1254:. Moreover the monad 959:However, the class of 950: 916: 737: 678: 639: 567: 484: 120:of a given signature. 118:coalgebraic structures 1510:Varieties of Lattices 1237:is equivalent to the 951: 917: 738: 679: 640: 568: 501:. Any theory gives a 485: 179:. Given a signature 1093:: given any algebra 926: 892: 689: 650: 599: 524: 493:for every operation 357: 145:algebra over a field 116:is the class of all 97:. In the context of 55:algebraic structures 1458:Algebra Universalis 1418:1935PCPS...31..433B 1356:Eilenberg's theorem 315:variety of algebras 65:. For example, the 43:variety of algebras 1471:10.1007/BF01194543 1289:algebraic category 1159:free abelian group 1091:universal property 980:Viewing a variety 946: 912: 733: 674: 635: 563: 480: 248:consists of a set 83:Birkhoff's theorem 81:etc. According to 1536:Universal algebra 1496:Springer-Verlag. 1364:regular languages 1195:forgetful functor 872:is a subclass of 513:The class of all 141:universal algebra 130:algebraic variety 95:(direct) products 39:universal algebra 32:Algebraic variety 16:(Redirected from 1543: 1474: 1473: 1451: 1445: 1444: 1442: 1436:, archived from 1401: 1392: 1282: 1253: 1226: 1209: 1183:Lawvere theories 1149: 1135: 1114: 1088: 998:full subcategory 972: 955: 953: 952: 947: 936: 921: 919: 918: 913: 902: 821:Garrett Birkhoff 742: 740: 739: 734: 723: 722: 707: 706: 683: 681: 680: 675: 644: 642: 641: 636: 572: 570: 569: 564: 489: 487: 486: 481: 473: 472: 445: 444: 426: 425: 407: 406: 388: 387: 375: 374: 349: 292: 282: 228: 155:multiplication. 151:equipped with a 47:equational class 21: 1551: 1550: 1546: 1545: 1544: 1542: 1541: 1540: 1526: 1525: 1524: 1483: 1478: 1477: 1454: 1452: 1448: 1440: 1399: 1394: 1393: 1389: 1384: 1372: 1360:variety theorem 1324: 1270: 1245: 1214: 1197: 1175: 1173:Category theory 1137: 1129: 1120: 1102: 1086: 1073: 1069: 1046: 988:, a subvariety 964: 924: 923: 890: 889: 862: 809: 711: 695: 687: 686: 648: 647: 597: 596: 522: 521: 511: 464: 436: 417: 398: 379: 366: 355: 354: 337: 284: 273: 265: 220: 161: 126: 99:category theory 35: 28: 23: 22: 15: 12: 11: 5: 1549: 1547: 1539: 1538: 1528: 1527: 1523: 1522: 1505: 1484: 1482: 1481:External links 1479: 1476: 1475: 1465:(1): 360–368, 1446: 1412:(4): 433–454, 1386: 1385: 1383: 1380: 1379: 1378: 1371: 1368: 1323: 1320: 1309:sigma algebras 1244:for the monad 1174: 1171: 1127: 1119:-homomorphism 1084: 1067: 1066:free algebra F 1060:, the variety 1045: 1042: 961:abelian groups 945: 942: 939: 935: 931: 911: 908: 905: 901: 897: 861: 858: 808: 805: 801:quasi-identity 744: 743: 732: 729: 726: 721: 718: 714: 710: 705: 702: 698: 694: 684: 673: 670: 667: 664: 661: 658: 655: 645: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 582:multiplication 574: 573: 562: 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 510: 507: 491: 490: 479: 476: 471: 467: 463: 460: 457: 454: 451: 448: 443: 439: 435: 432: 429: 424: 420: 416: 413: 410: 405: 401: 397: 394: 391: 386: 382: 378: 373: 369: 365: 362: 336:is a function 269: 219:is written as 209:equational law 173:natural number 160: 157: 125: 122: 71:abelian groups 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1548: 1537: 1534: 1533: 1531: 1520: 1519:0-387-56314-8 1516: 1512: 1511: 1506: 1503: 1502:3-540-90578-2 1499: 1495: 1494: 1489: 1488: 1487: 1480: 1472: 1468: 1464: 1460: 1459: 1450: 1447: 1443:on 2018-03-30 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1406: 1398: 1391: 1388: 1381: 1377: 1374: 1373: 1369: 1367: 1365: 1361: 1357: 1353: 1350:and hence in 1349: 1344: 1342: 1337: 1336:pseudovariety 1332: 1330: 1321: 1319: 1317: 1312: 1310: 1306: 1302: 1298: 1294: 1290: 1285: 1281: 1277: 1273: 1267: 1265: 1261: 1257: 1252: 1248: 1243: 1240: 1236: 1232: 1231: 1225: 1221: 1217: 1213: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1172: 1170: 1168: 1164: 1160: 1156: 1151: 1148: 1144: 1140: 1134: 1130: 1123: 1118: 1113: 1109: 1105: 1100: 1096: 1092: 1087: 1080: 1076: 1071: 1063: 1059: 1055: 1051: 1043: 1041: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 978: 976: 971: 967: 962: 957: 940: 937: 906: 903: 886: 881: 879: 875: 871: 867: 859: 857: 853: 851: 845: 843: 839: 835: 831: 827: 822: 818: 814: 804: 802: 798: 794: 789: 787: 783: 778: 776: 772: 768: 764: 762: 756: 751: 749: 746:The class of 730: 727: 724: 719: 716: 712: 708: 703: 700: 696: 692: 685: 671: 668: 665: 662: 659: 656: 653: 646: 632: 626: 623: 617: 611: 608: 602: 595: 594: 593: 591: 587: 583: 579: 576:The class of 560: 557: 551: 548: 542: 536: 533: 527: 520: 519: 518: 516: 508: 506: 504: 500: 496: 469: 465: 458: 455: 452: 449: 441: 437: 430: 422: 418: 414: 403: 399: 395: 392: 389: 384: 380: 371: 367: 360: 353: 352: 351: 348: 344: 340: 335: 331: 327: 323: 318: 316: 312: 308: 304: 300: 296: 291: 287: 281: 277: 272: 268: 264:, a function 263: 259: 255: 251: 247: 243: 239: 235: 230: 227: 223: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 158: 156: 154: 150: 146: 142: 137: 135: 131: 123: 121: 119: 115: 110: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 1508: 1491: 1485: 1462: 1456: 1449: 1438:the original 1409: 1403: 1390: 1376:Quasivariety 1359: 1345: 1340: 1335: 1333: 1325: 1313: 1304: 1300: 1296: 1288: 1286: 1279: 1275: 1271: 1268: 1259: 1255: 1250: 1246: 1241: 1234: 1228: 1223: 1219: 1215: 1212:left adjoint 1206: 1202: 1198: 1190: 1186: 1176: 1163:free algebra 1152: 1146: 1142: 1138: 1132: 1125: 1121: 1116: 1111: 1107: 1103: 1101:and any map 1098: 1094: 1082: 1078: 1074: 1065: 1061: 1057: 1053: 1049: 1047: 1044:Free objects 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 993: 989: 981: 979: 969: 965: 958: 884: 882: 877: 873: 869: 865: 863: 860:Subvarieties 854: 846: 841: 837: 833: 829: 825: 810: 797:quasivariety 790: 785: 779: 774: 770: 766: 760: 754: 752: 745: 589: 585: 581: 575: 512: 498: 494: 492: 346: 342: 338: 334:homomorphism 333: 329: 325: 321: 319: 314: 313:is called a 310: 306: 302: 298: 294: 289: 285: 279: 275: 270: 266: 261: 257: 253: 249: 245: 241: 237: 233: 231: 225: 221: 216: 212: 208: 204: 200: 195:is a finite 192: 188: 184: 180: 176: 168: 164: 162: 149:vector space 138: 127: 113: 111: 106: 46: 42: 36: 1167:free module 1064:contains a 830:HSP theorem 260:with arity 197:rooted tree 124:Terminology 91:subalgebras 87:homomorphic 57:of a given 1348:semigroups 1269:The monad 1155:free group 1136:such that 866:subvariety 828:or as the 813:subalgebra 584:(binary), 515:semigroups 350:such that 183:and a set 169:operations 159:Definition 63:identities 1434:121173630 1291:if it is 944:⟩ 930:⟨ 910:⟩ 896:⟨ 717:− 701:− 590:inversion 497:of arity 453:… 393:… 189:variables 165:signature 147:, i.e. a 114:covariety 59:signature 1530:Category 1370:See also 1274: : 1264:colimits 1260:finitary 1218: : 1201: : 1124: : 1106: : 1077: : 1048:Suppose 986:category 850:converse 763:-modules 586:identity 509:Examples 503:category 341: : 274: : 153:bilinear 103:category 89:images, 1414:Bibcode 1293:monadic 1230:monadic 817:product 242:algebra 79:monoids 53:of all 49:is the 1517:  1500:  1432:  1210:has a 1193:, the 1179:monads 840:, and 815:, and 782:fields 578:groups 324:, say 234:theory 207:. An 181:σ 93:, and 77:, the 73:, the 67:groups 1453:E.g. 1441:(PDF) 1430:S2CID 1400:(PDF) 1382:Notes 1305:CSLat 1295:over 996:is a 759:left 748:rings 240:, an 177:arity 75:rings 51:class 1515:ISBN 1498:ISBN 1301:CABA 1181:and 1070:on S 791:The 780:The 332:, a 328:and 305:and 215:and 193:word 191:, a 41:, a 1467:doi 1422:doi 1297:Set 1280:Set 1276:Set 1258:is 1242:Set 1220:Set 1207:Set 1097:in 1036:in 1032:to 1024:in 1020:to 1012:in 1000:of 992:of 885:not 786:not 784:do 256:of 244:of 45:or 37:In 1532:: 1504:. 1463:17 1461:, 1428:, 1420:, 1410:31 1408:, 1402:, 1354:. 1334:A 1318:. 1278:→ 1266:. 1251:GF 1249:= 1222:→ 1205:→ 1165:, 1161:, 1157:, 1150:. 1145:= 1141:∘ 1131:→ 1110:→ 1081:→ 1040:. 1008:, 970:yx 968:= 966:xy 956:. 864:A 836:, 832:. 819:. 803:. 731:1. 345:→ 317:. 288:= 278:→ 232:A 229:. 224:= 163:A 112:A 109:. 1521:. 1469:: 1424:: 1416:: 1272:T 1256:T 1247:T 1235:V 1224:V 1216:F 1203:V 1199:G 1191:V 1147:k 1143:i 1139:f 1133:A 1128:S 1126:F 1122:f 1117:V 1112:A 1108:S 1104:k 1099:V 1095:A 1085:S 1083:F 1079:S 1075:i 1068:S 1062:V 1058:S 1054:V 1050:V 1038:V 1034:b 1030:a 1026:U 1022:b 1018:a 1014:U 1010:b 1006:a 1002:V 994:V 990:U 982:V 941:+ 938:, 934:N 907:+ 904:, 900:Z 878:V 874:V 870:V 842:P 838:S 834:H 775:R 771:R 767:R 761:R 755:R 728:= 725:x 720:1 713:x 709:= 704:1 697:x 693:x 672:x 669:= 666:1 663:x 660:= 657:x 654:1 633:z 630:) 627:y 624:x 621:( 618:= 615:) 612:z 609:y 606:( 603:x 561:. 558:z 555:) 552:y 549:x 546:( 543:= 540:) 537:z 534:y 531:( 528:x 499:n 495:o 478:) 475:) 470:n 466:a 462:( 459:f 456:, 450:, 447:) 442:1 438:a 434:( 431:f 428:( 423:B 419:o 415:= 412:) 409:) 404:n 400:a 396:, 390:, 385:1 381:a 377:( 372:A 368:o 364:( 361:f 347:B 343:A 339:f 330:B 326:A 322:T 311:T 307:w 303:v 299:A 295:A 290:w 286:v 280:A 276:A 271:A 267:o 262:n 258:T 254:o 250:A 246:T 238:T 226:w 222:v 217:w 213:v 205:o 201:o 185:V 34:. 20:)

Index

Birkhoff's HSP theorem
Algebraic variety
universal algebra
class
algebraic structures
signature
identities
groups
abelian groups
rings
monoids
Birkhoff's theorem
homomorphic
subalgebras
(direct) products
category theory
category
coalgebraic structures
algebraic variety
system of polynomial equations
universal algebra
algebra over a field
vector space
bilinear
natural number
rooted tree
category
semigroups
groups
rings

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.