Knowledge (XXG)

Bitangents of a quartic

Source 📝

28: 20: 263:. The four ovals can be grouped into six different pairs of ovals; for each pair of ovals there are four bitangents touching both ovals in the pair, two that separate the two ovals, and two that do not. Additionally, each oval bounds a nonconvex region of the plane and has one bitangent spanning the nonconvex portion of its boundary. 448:
as the coordinates of a line in the same finite projective plane; the condition that the sum is odd is equivalent to requiring that the point and the line do not touch each other, and there are 28 different pairs of a point and a line that do not touch.
452:
The points and lines of the Fano plane that are disjoint from a non-incident point-line pair form a triangle, and the bitangents of a quartic have been considered as being in correspondence with the 28 triangles of the Fano plane. The
243: 342: 423: 70:) As Plücker showed, the number of real bitangents of any quartic must be 28, 16, or a number less than 9. Another quartic with 28 real bitangents can be formed by the 926: 259:
Like the examples of Plücker and of Blum and Guinand, the Trott curve has four separated ovals, the maximum number for a curve of degree four, and hence is an
461:, in which the triangles of the Fano plane are represented by 6-cycles. The 28 6-cycles of the Heawood graph in turn correspond to the 28 vertices of the 124: 284: 639: 881: 805: 990: 747: 704: 357: 23:
The Trott curve and seven of its bitangents. The others are symmetric with respect to 90° rotations through the origin.
479:
The 27 lines on the cubic and the 28 bitangents on a quartic, together with the 120 tritangent planes of a canonic
260: 48: 985: 437: 756: 111: 275:
to a quartic curve has 28 real ordinary double points, dual to the 28 bitangents of the primal curve.
896:
Theorie der algebraischen Curven: gegrundet auf eine neue Behandlungsweise der analytischen Geometrie
492: 473: 761: 645: 71: 40: 852: 832: 791: 782: 620: 602: 505: 484: 82:
gave a different construction of a quartic with twenty-eight bitangents, formed by projecting a
920: 891: 877: 801: 469: 63: 278:
The 28 bitangents of a quartic may also be placed in correspondence with symbols of the form
904: 869: 842: 766: 713: 612: 87: 955: 815: 778: 674: 86:; twenty-seven of the bitangents to Shioda's curve are real while the twenty-eighth is the 951: 811: 774: 488: 480: 249: 56: 660: 670: 27: 468:
The 28 bitangents of a quartic also correspond to pairs of the 56 lines on a degree-2
19: 979: 738:, Andrew Russell Forsyth, ed., The University Press, 1896, vol. 11, pp. 221–223. 725: 462: 458: 83: 856: 786: 847: 238:{\displaystyle \displaystyle 144(x^{4}+y^{4})-225(x^{2}+y^{2})+350x^{2}y^{2}+81=0.} 51:, but it is possible to define quartic curves for which all 28 of these lines have 47:
lines, lines that are tangent to the curve in two places. These lines exist in the
666: 624: 873: 800:, MSRI Publications, vol. 35, Cambridge University Press, pp. 115–131, 936: 742: 52: 36: 962:
Trott, Michael (1997), "Applying GroebnerBasis to Three Problems in Geometry",
864:
McKay, John; Sebbar, Abdellah (2007). "Replicable Functions: An Introduction".
454: 441: 272: 115: 337:{\displaystyle {\begin{bmatrix}a&b&c\\d&e&f\\\end{bmatrix}}} 253: 44: 717: 823:
Manivel, L. (2006), "Configurations of lines and models of Lie algebras",
432:, but only 28 of these choices produce an odd sum. One may also interpret 62:
An explicit quartic with twenty-eight real bitangents was first given by
770: 661:
Lecture 2: Symplectization, Complexification and Mathematical Trinities
75: 702:
Blum, R.; Guinand, A. P. (1964). "A quartic with 28 real bitangents".
616: 593:
Dejter, Italo J. (2011), "From the Coxeter graph to the Klein graph",
837: 607: 26: 18: 16:
28 lines which touch a general quartic plane curve in two places
658:
Arnold 1997, p. 13 – Arnold, Vladimir, 1997, Toronto Lectures,
102:, another curve with 28 real bitangents, is the set of points ( 907:(1876), "Zur Theorie der Abel'schen Funktionen für den Fall 78:
with fixed axis lengths, tangent to two non-parallel lines.
495:, and can be related to many further objects, including E 248:
These points form a nonsingular quartic curve that has
418:{\displaystyle ad+be+cf=1\ (\operatorname {mod} \ 2).} 293: 360: 287: 128: 127: 866:
Frontiers in Number Theory, Physics, and Geometry II
944:Commentarii Mathematici Universitatis Sancti Pauli 736:The collected mathematical papers of Arthur Cayley 417: 336: 237: 55:as their coordinates and therefore belong to the 937:"Weierstrass transformations and cubic surfaces" 745:(1982), "From the history of a simple group", 8: 686: 537: 925:: CS1 maint: location missing publisher ( 728:(1879), "On the bitangents of a quartic", 846: 836: 760: 606: 359: 288: 286: 216: 206: 187: 174: 152: 139: 126: 665:June 1997 (last updated August, 1998). 580: 561: 517: 67: 31:The Trott curve with all 28 bitangents. 918: 565: 79: 964:Mathematica in Education and Research 576: 574: 549: 252:three and that has twenty-eight real 7: 525: 14: 638:le Bruyn, Lieven (17 June 2008), 267:Connections to other structures 848:10.1016/j.jalgebra.2006.04.029 748:The Mathematical Intelligencer 705:Canadian Mathematical Bulletin 409: 394: 351:are all zero or one and where 193: 167: 158: 132: 1: 874:10.1007/978-3-540-30308-4_10 730:Salmon's Higher Plane Curves 915:, Leipzig, pp. 456–472 35:In the theory of algebraic 1007: 796:Levy, Silvio, ed. (1999), 538:Blum & Guinand (1964) 491:, specifically a form of 457:of the Fano plane is the 428:There are 64 choices for 90:in the projective plane. 935:Shioda, Tetsuji (1995), 49:complex projective plane 991:Real algebraic geometry 898:, Berlin: Adolph Marcus 687:McKay & Sebbar 2007 595:Journal of Graph Theory 438:homogeneous coordinates 718:10.4153/cmb-1964-038-6 419: 338: 239: 32: 24: 931:. As cited by Cayley. 474:theta characteristics 420: 339: 240: 30: 22: 868:. pp. 373–386. 493:McKay correspondence 483:of genus 4, form a " 472:, and to the 28 odd 358: 285: 125: 41:quartic plane curve 825:Journal of Algebra 771:10.1007/BF03023483 732:, pp. 387–389 641:Arnold's trinities 503:, as discussed at 487:" in the sense of 440:of a point of the 415: 334: 328: 235: 234: 33: 25: 911: = 3", 905:Riemann, G. F. B. 883:978-3-540-30307-7 798:The Eightfold Way 617:10.1002/jgt.20597 470:del Pezzo surface 405: 393: 110:) satisfying the 998: 971: 958: 941: 930: 924: 916: 899: 887: 859: 850: 840: 818: 789: 764: 733: 721: 690: 683: 677: 656: 650: 649: 644:, archived from 635: 629: 627: 610: 590: 584: 578: 569: 559: 553: 547: 541: 535: 529: 522: 447: 435: 431: 430:a, b, c, d, e, f 424: 422: 421: 416: 403: 391: 350: 349:a, b, c, d, e, f 343: 341: 340: 335: 333: 332: 244: 242: 241: 236: 221: 220: 211: 210: 192: 191: 179: 178: 157: 156: 144: 143: 88:line at infinity 1006: 1005: 1001: 1000: 999: 997: 996: 995: 976: 975: 961: 939: 934: 917: 903: 890: 884: 863: 822: 808: 795: 762:10.1.1.163.2944 741: 724: 701: 698: 693: 684: 680: 657: 653: 637: 636: 632: 592: 591: 587: 579: 572: 560: 556: 548: 544: 536: 532: 523: 519: 515: 502: 498: 489:Vladimir Arnold 445: 433: 429: 356: 355: 348: 327: 326: 321: 316: 310: 309: 304: 299: 289: 283: 282: 269: 212: 202: 183: 170: 148: 135: 123: 122: 96: 57:Euclidean plane 17: 12: 11: 5: 1004: 1002: 994: 993: 988: 986:Quartic curves 978: 977: 974: 973: 959: 950:(1): 109–128, 932: 901: 888: 882: 861: 831:(1): 457–486, 820: 806: 739: 726:Cayley, Arthur 722: 712:(3): 399–404. 697: 694: 692: 691: 678: 651: 630: 585: 581:Manivel (2006) 570: 562:Riemann (1876) 554: 542: 530: 516: 514: 511: 500: 496: 426: 425: 414: 411: 408: 402: 399: 396: 390: 387: 384: 381: 378: 375: 372: 369: 366: 363: 345: 344: 331: 325: 322: 320: 317: 315: 312: 311: 308: 305: 303: 300: 298: 295: 294: 292: 268: 265: 246: 245: 233: 230: 227: 224: 219: 215: 209: 205: 201: 198: 195: 190: 186: 182: 177: 173: 169: 166: 163: 160: 155: 151: 147: 142: 138: 134: 131: 95: 92: 74:of centers of 15: 13: 10: 9: 6: 4: 3: 2: 1003: 992: 989: 987: 984: 983: 981: 969: 965: 960: 957: 953: 949: 945: 938: 933: 928: 922: 914: 910: 906: 902: 897: 893: 889: 885: 879: 875: 871: 867: 862: 858: 854: 849: 844: 839: 834: 830: 826: 821: 817: 813: 809: 807:0-521-66066-1 803: 799: 793: 788: 784: 780: 776: 772: 768: 763: 758: 754: 750: 749: 744: 740: 737: 731: 727: 723: 719: 715: 711: 707: 706: 700: 699: 695: 688: 682: 679: 676: 672: 668: 664: 662: 655: 652: 648:on 2011-04-11 647: 643: 642: 634: 631: 626: 622: 618: 614: 609: 604: 600: 596: 589: 586: 582: 577: 575: 571: 567: 566:Cayley (1879) 563: 558: 555: 551: 546: 543: 539: 534: 531: 527: 521: 518: 512: 510: 509: 507: 494: 490: 486: 482: 477: 475: 471: 466: 464: 463:Coxeter graph 460: 459:Heawood graph 456: 450: 443: 439: 412: 406: 400: 397: 388: 385: 382: 379: 376: 373: 370: 367: 364: 361: 354: 353: 352: 329: 323: 318: 313: 306: 301: 296: 290: 281: 280: 279: 276: 274: 266: 264: 262: 257: 255: 251: 231: 228: 225: 222: 217: 213: 207: 203: 199: 196: 188: 184: 180: 175: 171: 164: 161: 153: 149: 145: 140: 136: 129: 121: 120: 119: 117: 113: 109: 105: 101: 93: 91: 89: 85: 84:cubic surface 81: 80:Shioda (1995) 77: 73: 69: 65: 60: 58: 54: 50: 46: 42: 38: 29: 21: 967: 963: 947: 943: 912: 908: 895: 865: 838:math/0507118 828: 824: 797: 755:(2): 59–67, 752: 746: 743:Gray, Jeremy 735: 729: 709: 703: 681: 659: 654: 646:the original 640: 633: 598: 594: 588: 557: 550:Trott (1997) 545: 533: 520: 504: 481:sextic curve 478: 467: 451: 427: 346: 277: 270: 258: 247: 107: 103: 99: 97: 61: 53:real numbers 39:, a general 37:plane curves 34: 892:Plücker, J. 526:Gray (1982) 100:Trott curve 980:Categories 970:(1): 15–28 913:Ges. Werke 696:References 671:PostScript 455:Levi graph 442:Fano plane 273:dual curve 254:bitangents 116:polynomial 792:Reprinted 757:CiteSeerX 608:1002.1960 524:See e.g. 506:trinities 401:⁡ 162:− 118:equation 45:bitangent 921:citation 894:(1839), 857:17374533 787:14602496 689:, p. 11) 76:ellipses 956:1336422 816:1722415 779:0672918 601:: 1–9, 485:trinity 446:d, e, f 436:as the 434:a, b, c 261:M-curve 94:Example 66: ( 64:Plücker 43:has 28 954:  880:  855:  814:  804:  785:  777:  759:  625:754481 623:  404:  392:  347:where 112:degree 940:(PDF) 853:S2CID 833:arXiv 783:S2CID 734:. In 621:S2CID 603:arXiv 513:Notes 499:and E 250:genus 114:four 72:locus 927:link 878:ISBN 802:ISBN 444:and 271:The 98:The 68:1839 870:doi 843:doi 829:304 794:in 767:doi 714:doi 675:PDF 667:TeX 613:doi 398:mod 200:350 165:225 130:144 982:: 966:, 952:MR 948:44 946:, 942:, 923:}} 919:{{ 876:. 851:, 841:, 827:, 812:MR 810:, 790:. 781:, 775:MR 773:, 765:, 751:, 708:. 673:, 669:, 619:, 611:, 599:70 597:, 573:^ 564:; 476:. 465:. 256:. 232:0. 226:81 59:. 972:. 968:6 929:) 909:p 900:. 886:. 872:: 860:. 845:: 835:: 819:. 769:: 753:4 720:. 716:: 710:7 685:( 663:, 628:. 615:: 605:: 583:. 568:. 552:. 540:. 528:. 508:. 501:8 497:7 413:. 410:) 407:2 395:( 389:1 386:= 383:f 380:c 377:+ 374:e 371:b 368:+ 365:d 362:a 330:] 324:f 319:e 314:d 307:c 302:b 297:a 291:[ 229:= 223:+ 218:2 214:y 208:2 204:x 197:+ 194:) 189:2 185:y 181:+ 176:2 172:x 168:( 159:) 154:4 150:y 146:+ 141:4 137:x 133:( 108:y 106:, 104:x

Index



plane curves
quartic plane curve
bitangent
complex projective plane
real numbers
Euclidean plane
Plücker
1839
locus
ellipses
Shioda (1995)
cubic surface
line at infinity
degree
polynomial
genus
bitangents
M-curve
dual curve
homogeneous coordinates
Fano plane
Levi graph
Heawood graph
Coxeter graph
del Pezzo surface
theta characteristics
sextic curve
trinity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.