Knowledge (XXG)

Signal separation

Source đź“ť

126: 933:, is to impose structural constraints on the source signals. These structural constraints may be derived from a generative model of the signal, but are more commonly heuristics justified by good empirical performance. A common theme in the second approach is to impose some kind of low-complexity constraint on the signal, such as 161:
Figure 2 shows the basic concept of BSS. The individual source signals are shown as well as the mixed signals which are received signals. BSS is used to separate the mixed signals with only knowing mixed signals and nothing about original signal or how they were mixed. The separated signals are
144:
At a cocktail party, there is a group of people talking at the same time. You have multiple microphones picking up mixed signals, but you want to isolate the speech of a single person. BSS can be used to separate the individual sources by using mixed signals. In the presence of noise, dedicated
908:
Since the chief difficulty of the problem is its underdetermination, methods for blind source separation generally seek to narrow the set of possible solutions in a way that is unlikely to exclude the desired solution. In one approach, exemplified by
79:, but useful solutions can be derived under a surprising variety of conditions. Much of the early literature in this field focuses on the separation of temporal signals such as audio. However, blind signal separation is now routinely performed on 265: 154: 202:, such as a wristwatch on the subject's arm, will significantly degrade the accuracy of the measurement. Applying source separation techniques on the measured signals can help remove undesired artifacts from the signal. 218:(MEG), the interference from muscle activity masks the desired signal from brain activity. BSS, however, can be used to separate the two so an accurate representation of brain activity may be achieved. 72:), and a listener is trying to follow one of the discussions. The human brain can handle this sort of auditory source separation problem, but it is a difficult problem in digital signal processing. 847: 517: 362: 755: 425: 171: 899: 661: 56:
from a set of mixed signals, without the aid of information (or with very little information) about the source signals or the mixing process. It is most commonly applied in
94:
Several approaches have been proposed for the solution of this problem but development is currently still very much in progress. Some of the more successful approaches are
609: 583: 692: 557: 537: 611:, the system is underdetermined and a non-linear method must be employed to recover the unmixed signals. The signals themselves can be multidimensional. 64:; the objective is to recover the original component signals from a mixture signal. The classical example of a source separation problem is the 941:
for the signal space. This approach can be particularly effective if one requires not the whole signal, but merely its most salient features.
1175: 103: 1170:
P. Comon and C. Jutten (editors). “Handbook of Blind Source Separation, Independent Component Analysis and Applications” Academic Press,
1236: 31: 973: 930: 1035: 914: 1147: 1092:"On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics" 230:
signals. For a stereo mix of relatively simple signals it is now possible to make a fairly accurate separation, although some
993: 963: 175: 99: 102:, which work well when there are no delays or echoes present; that is, the problem is simplified a great deal. The field of 953: 910: 163: 95: 760: 430: 275: 983: 978: 968: 958: 109:
The human brain must also solve this problem in real time. In human perception this ability is commonly referred to as
1212:
A tutorial-style dissertation by Volker Koch that introduces message-passing on factor graphs to decompose EMG signals
61: 665:
The above equation is effectively 'inverted' as follows. Blind source separation separates the set of mixed signals,
697: 367: 178:, ICA. This toolbox method can be used with multi-dimensions but for an easy visual aspect images(2-D) were used. 1241: 1216: 922: 125: 57: 585:, then the system of equations is overdetermined and thus can be unmixed using a conventional linear method. If 198:
outside the head which yield an accurate 3D-picture of the interior of the head. However, external sources of
110: 988: 938: 215: 191: 76: 65: 199: 139: 114: 80: 854: 616: 211: 1060: 1040: 1158:
Rui Li, Hongwei Li, and Fasong Wang. “Dependent Component Analysis: Concepts and Main Algorithms”
1187: 1129: 1103: 1077: 1005: 926: 106:
attempts to achieve auditory source separation using an approach that is based on human hearing.
1171: 1121: 1030: 1010: 53: 1113: 588: 562: 167: 1148:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.9738&rep=rep1&type=pdf
668: 187: 1221: 1025: 542: 522: 231: 195: 162:
only approximations of the source signals. The separated images, were separated using
69: 17: 1230: 1020: 84: 1133: 1015: 68:, where a number of people are talking simultaneously in a room (for example, at a 1117: 1091: 918: 1159: 1076:
Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. “Independent Component Analysis”
264: 1125: 1090:
Congedo, Marco; Gouy-Pailler, Cedric; Jutten, Christian (December 2008).
934: 1146:
Jean-Francois Cardoso “Blind Signal Separation: statistical Principles”
153: 88: 1206: 1222:
Removing electroencephalographic artifacts by blind source separation
1211: 186:
One of the practical applications being researched in this area is
1191: 1186:
Shlens, Jonathon. "A tutorial on independent component analysis."
1108: 263: 227: 152: 124: 27:
Separation of a set of source signals from a set of mixed signals
1061:
http://shogun-toolbox.org/static/notebook/current/bss_image.html
917:
component analysis, one seeks source signals that are minimally
1078:
https://www.cs.helsinki.fi/u/ahyvarin/papers/bookfinal_ICA.pdf
1059:
Kevin Hughes “Blind Source Separation on Images with Shogun”
194:(MEG). This kind of imaging involves careful measurements of 170:
using Joint Approximation Diagonalization of Eigen-matrices (
757:, to 'recover' an approximation of the original signals, 949:
There are different methods of blind signal separation:
857: 763: 700: 694:, through the determination of an 'unmixing' matrix, 671: 619: 591: 565: 545: 525: 433: 370: 278: 91:, which may involve no time dimension whatsoever. 1207:
Explanation of Independent Component Analysis (ICA)
842:{\displaystyle y(t)=(y_{1}(t),\dots ,y_{n}(t))^{T}} 512:{\displaystyle x(t)=(x_{1}(t),\dots ,x_{m}(t))^{T}} 357:{\displaystyle s(t)=(s_{1}(t),\dots ,s_{n}(t))^{T}} 893: 841: 749: 686: 655: 603: 577: 551: 531: 511: 419: 356: 750:{\displaystyle B=\in \mathbb {R} ^{n\times m}} 420:{\displaystyle A=\in \mathbb {R} ^{m\times n}} 1080:pp. 147–148, pp. 410–411, pp. 441–442, p. 448 8: 1160:http://www.jcomputers.us/vol5/jcp0504-13.pdf 1217:Blind source separation flash presentation 1107: 929:sense. A second approach, exemplified by 856: 833: 814: 786: 762: 735: 731: 730: 714: 699: 670: 618: 590: 564: 544: 524: 503: 484: 456: 432: 405: 401: 400: 384: 369: 348: 329: 301: 277: 226:Another application is the separation of 60:and involves the analysis of mixtures of 1052: 427:, to produce a set of 'mixed' signals, 145:optimization criteria need to be used. 52:, is the separation of a set of source 272:The set of individual source signals, 104:computational auditory scene analysis 7: 1072: 1070: 1068: 1011:Celemony Software#Direct Note Access 979:Low-complexity coding and decoding 75:This problem is in general highly 32:Source separation (disambiguation) 25: 974:Non-negative matrix factorization 931:nonnegative matrix factorization 894:{\displaystyle y(t)=B\cdot x(t)} 656:{\displaystyle x(t)=A\cdot s(t)} 1036:Segmentation (image processing) 157:Figure 2. Visual example of BSS 994:Canonical correlation analysis 964:Independent component analysis 888: 882: 867: 861: 830: 826: 820: 798: 792: 779: 773: 767: 723: 707: 681: 675: 650: 644: 629: 623: 500: 496: 490: 468: 462: 449: 443: 437: 393: 377: 345: 341: 335: 313: 307: 294: 288: 282: 176:independent component analysis 174:) algorithm which is based on 100:independent component analysis 1: 954:Principal components analysis 364:, is 'mixed' using a matrix, 96:principal components analysis 1118:10.1016/j.clinph.2008.09.007 984:Stationary subspace analysis 969:Dependent component analysis 959:Singular value decomposition 260:Mathematical representation 1260: 137: 129:polyphonic note separation 29: 1237:Digital signal processing 58:digital signal processing 1096:Clinical Neurophysiology 519:, as follows. Usually, 111:auditory scene analysis 50:blind source separation 42:blind signal separation 18:Blind source separation 989:Common spatial pattern 925:in a probabilistic or 895: 843: 751: 688: 657: 605: 604:{\displaystyle n>m} 579: 578:{\displaystyle m>n} 553: 533: 513: 421: 358: 269: 268:Basic flowchart of BSS 255:Text Document Analysis 216:magnetoencephalography 200:electromagnetic fields 192:magnetoencephalography 158: 134:Cocktail party problem 130: 66:cocktail party problem 927:information-theoretic 896: 844: 752: 689: 658: 606: 580: 554: 534: 514: 422: 359: 267: 156: 140:Cocktail party effect 128: 115:cocktail party effect 81:multidimensional data 855: 761: 698: 687:{\displaystyle x(t)} 669: 617: 589: 563: 543: 523: 431: 368: 276: 242:Other applications: 212:electroencephalogram 30:For other uses, see 1041:Speech segmentation 1006:Adaptive filtering 891: 839: 747: 684: 653: 601: 575: 549: 529: 509: 417: 354: 270: 252:Seismic Monitoring 190:of the brain with 159: 131: 1242:Speech processing 1176:978-2-296-12827-9 1102:(12): 2677–2686. 1031:Infomax principle 552:{\displaystyle m} 532:{\displaystyle n} 38:Source separation 16:(Redirected from 1249: 1194: 1184: 1178: 1168: 1162: 1156: 1150: 1144: 1138: 1137: 1111: 1087: 1081: 1074: 1063: 1057: 900: 898: 897: 892: 848: 846: 845: 840: 838: 837: 819: 818: 791: 790: 756: 754: 753: 748: 746: 745: 734: 722: 721: 693: 691: 690: 685: 662: 660: 659: 654: 610: 608: 607: 602: 584: 582: 581: 576: 558: 556: 555: 550: 538: 536: 535: 530: 518: 516: 515: 510: 508: 507: 489: 488: 461: 460: 426: 424: 423: 418: 416: 415: 404: 392: 391: 363: 361: 360: 355: 353: 352: 334: 333: 306: 305: 249:Stock Prediction 149:Image processing 21: 1259: 1258: 1252: 1251: 1250: 1248: 1247: 1246: 1227: 1226: 1203: 1198: 1197: 1185: 1181: 1169: 1165: 1157: 1153: 1145: 1141: 1089: 1088: 1084: 1075: 1066: 1058: 1054: 1049: 1026:Factorial codes 1002: 947: 906: 853: 852: 829: 810: 782: 759: 758: 729: 710: 696: 695: 667: 666: 615: 614: 587: 586: 561: 560: 541: 540: 521: 520: 499: 480: 452: 429: 428: 399: 380: 366: 365: 344: 325: 297: 274: 273: 262: 240: 224: 208: 196:magnetic fields 188:medical imaging 184: 182:Medical imaging 151: 142: 136: 123: 77:underdetermined 35: 28: 23: 22: 15: 12: 11: 5: 1257: 1256: 1253: 1245: 1244: 1239: 1229: 1228: 1225: 1224: 1219: 1214: 1209: 1202: 1201:External links 1199: 1196: 1195: 1179: 1163: 1151: 1139: 1082: 1064: 1051: 1050: 1048: 1045: 1044: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1001: 998: 997: 996: 991: 986: 981: 976: 971: 966: 961: 956: 946: 943: 905: 902: 890: 887: 884: 881: 878: 875: 872: 869: 866: 863: 860: 836: 832: 828: 825: 822: 817: 813: 809: 806: 803: 800: 797: 794: 789: 785: 781: 778: 775: 772: 769: 766: 744: 741: 738: 733: 728: 725: 720: 717: 713: 709: 706: 703: 683: 680: 677: 674: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 600: 597: 594: 574: 571: 568: 548: 528: 506: 502: 498: 495: 492: 487: 483: 479: 476: 473: 470: 467: 464: 459: 455: 451: 448: 445: 442: 439: 436: 414: 411: 408: 403: 398: 395: 390: 387: 383: 379: 376: 373: 351: 347: 343: 340: 337: 332: 328: 324: 321: 318: 315: 312: 309: 304: 300: 296: 293: 290: 287: 284: 281: 261: 258: 257: 256: 253: 250: 247: 246:Communications 239: 236: 223: 220: 207: 204: 183: 180: 168:Shogun toolbox 150: 147: 135: 132: 122: 119: 70:cocktail party 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1255: 1254: 1243: 1240: 1238: 1235: 1234: 1232: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1204: 1200: 1193: 1189: 1183: 1180: 1177: 1173: 1167: 1164: 1161: 1155: 1152: 1149: 1143: 1140: 1135: 1131: 1127: 1123: 1119: 1115: 1110: 1105: 1101: 1097: 1093: 1086: 1083: 1079: 1073: 1071: 1069: 1065: 1062: 1056: 1053: 1046: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1021:Deconvolution 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1003: 999: 995: 992: 990: 987: 985: 982: 980: 977: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 951: 950: 944: 942: 940: 936: 932: 928: 924: 921:or maximally 920: 916: 912: 903: 901: 885: 879: 876: 873: 870: 864: 858: 850: 834: 823: 815: 811: 807: 804: 801: 795: 787: 783: 776: 770: 764: 742: 739: 736: 726: 718: 715: 711: 704: 701: 678: 672: 663: 647: 641: 638: 635: 632: 626: 620: 612: 598: 595: 592: 572: 569: 566: 546: 526: 504: 493: 485: 481: 477: 474: 471: 465: 457: 453: 446: 440: 434: 412: 409: 406: 396: 388: 385: 381: 374: 371: 349: 338: 330: 326: 322: 319: 316: 310: 302: 298: 291: 285: 279: 266: 259: 254: 251: 248: 245: 244: 243: 237: 235: 233: 229: 221: 219: 217: 213: 205: 203: 201: 197: 193: 189: 181: 179: 177: 173: 169: 165: 155: 148: 146: 141: 133: 127: 120: 118: 116: 112: 107: 105: 101: 97: 92: 90: 86: 82: 78: 73: 71: 67: 63: 59: 55: 51: 47: 43: 39: 33: 19: 1182: 1166: 1154: 1142: 1099: 1095: 1085: 1055: 1016:Colin Cherry 948: 907: 851: 664: 613: 539:is equal to 271: 241: 225: 209: 185: 160: 143: 121:Applications 108: 93: 74: 49: 45: 41: 37: 36: 923:independent 915:independent 1231:Categories 1047:References 919:correlated 904:Approaches 214:(EEG) and 138:See also: 83:, such as 1192:1404.2986 1109:0812.0494 911:principal 877:⋅ 805:… 740:× 727:∈ 639:⋅ 475:… 410:× 397:∈ 320:… 232:artifacts 1126:18993114 1000:See also 937:in some 935:sparsity 234:remain. 166:and the 1134:5835843 945:Methods 228:musical 113:or the 89:tensors 62:signals 54:signals 1174:  1132:  1124:  238:Others 164:Python 85:images 1188:arXiv 1130:S2CID 1104:arXiv 939:basis 559:. If 222:Music 48:) or 1172:ISBN 1122:PMID 913:and 596:> 570:> 172:JADE 98:and 87:and 1114:doi 1100:119 210:In 206:EEG 46:BSS 1233:: 1128:. 1120:. 1112:. 1098:. 1094:. 1067:^ 849:. 117:. 40:, 1190:: 1136:. 1116:: 1106:: 889:) 886:t 883:( 880:x 874:B 871:= 868:) 865:t 862:( 859:y 835:T 831:) 827:) 824:t 821:( 816:n 812:y 808:, 802:, 799:) 796:t 793:( 788:1 784:y 780:( 777:= 774:) 771:t 768:( 765:y 743:m 737:n 732:R 724:] 719:j 716:i 712:B 708:[ 705:= 702:B 682:) 679:t 676:( 673:x 651:) 648:t 645:( 642:s 636:A 633:= 630:) 627:t 624:( 621:x 599:m 593:n 573:n 567:m 547:m 527:n 505:T 501:) 497:) 494:t 491:( 486:m 482:x 478:, 472:, 469:) 466:t 463:( 458:1 454:x 450:( 447:= 444:) 441:t 438:( 435:x 413:n 407:m 402:R 394:] 389:j 386:i 382:a 378:[ 375:= 372:A 350:T 346:) 342:) 339:t 336:( 331:n 327:s 323:, 317:, 314:) 311:t 308:( 303:1 299:s 295:( 292:= 289:) 286:t 283:( 280:s 44:( 34:. 20:)

Index

Blind source separation
Source separation (disambiguation)
signals
digital signal processing
signals
cocktail party problem
cocktail party
underdetermined
multidimensional data
images
tensors
principal components analysis
independent component analysis
computational auditory scene analysis
auditory scene analysis
cocktail party effect

Cocktail party effect

Python
Shogun toolbox
JADE
independent component analysis
medical imaging
magnetoencephalography
magnetic fields
electromagnetic fields
electroencephalogram
magnetoencephalography
musical

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑