Knowledge (XXG)

Blocking set

Source 📝

43:-dimensional subspaces, or even more generally, objects of type 1 and objects of type 2 when some concept of intersection makes sense for these objects. A second way to generalize would be to move into more abstract settings than projective geometry. One can define a blocking set of a 94:
It is sometimes useful to drop the condition that a blocking set does not contain a line. Under this extended definition, and since, in a projective plane every pair of lines meet, every line would be a blocking set. Blocking sets which contained lines would be called
781:
was defined as a set of points containing no line but intersecting every line. In 1958, J. R. Isbell studied these games from a non-geometric viewpoint. Jane W. DiPaola studied the minimum blocking coalitions in all the projective planes of order
615: 87:. Every committee is a minimal blocking set, but not all minimal blocking sets are committees. Blocking sets exist in all projective planes except for the smallest projective plane of order 2, the 35:
that every line intersects and that does not contain an entire line. The concept can be generalized in several ways. Instead of talking about points and lines, one could deal with
1470: 1680: 1600: 676: 723: 1438:
that intersects every hyperplane non-trivially, i.e., every hyperplane is incident with some point of the set, is called an affine blocking set. Identify the space with
1370: 2094: 1814: 1511: 515: 1436: 1103: 849: 803: 1620: 1571: 1551: 1203: 1183: 1163: 1143: 1123: 1071: 1044: 1024: 1004: 969: 949: 929: 909: 889: 869: 486: 1235:, which can not be extended to a larger arc (thus, every point not on the arc is on a secant line of the arc–a line meeting the arc in two points.) 2138: 2148: 2119: 2048: 1472:
by fixing a coordinate system. Then it is easily shown that the set of points lying on the coordinate axes form a blocking set of size
542: 63:, a blocking set is a set of points of π that every line intersects and that contains no line completely. Under this definition, if 1517:
conference that this is the least possible size of a blocking set. This was proved by R. E. Jamison in 1977, and independently by
740:
is not a square less can be said about the smallest sized nontrivial blocking sets. One well known result due to Aart Blokhuis is:
2000: 1970: 1944: 1529:. Jamison proved the following general covering result from which the bound on affine blocking sets follows using duality: 1262: 2192: 983: 1218: 437:
are the field elements with absolute trace 0, the condition in the definition of a projective triad is satisfied.
1125:
into two subsets (color classes) such that no edge is monochromatic, i.e., no edge is contained entirely within
2187: 378: 2154: 271: 2177: 1441: 1388:). Not all blocking sets are of Rédei type, but many of the smaller ones are. These sets are named after 1526: 1392:
whose monograph on Lacunary polynomials over finite fields was influential in the study of these sets.
1389: 1625: 1576: 2182: 645: 695: 2103: 1522: 24: 1833: 521: 2099:
P. Duchet, Hypergraphs, Chapter 7 in: Handbook of Combinatorics, North-Holland, Amsterdam, 1995.
1340: 682:
is necessarily a square and the blocking set consists of the points in some Baer subplane of π.
119:+ 1 points), the points on the lines forming a triangle without the vertices of the triangle (3( 2144: 2115: 2070: 2054: 2044: 1475: 730: 491: 1403: 1076: 816: 2036: 2009: 1979: 1949: 1923: 1885: 1859: 1823: 1747: 1214: 785: 774: 629: 108: 56: 32: 1876:
DiPaola, Jane W. (1969), "On Minimum Blocking Coalitions in Small Projective Plane Games",
1518: 1998:
Brouwer, Andries; Schrijver, Alexander (1978), "The blocking number of an affine space",
2108: 1605: 1556: 1536: 1188: 1168: 1148: 1128: 1108: 1056: 1029: 1009: 989: 954: 934: 914: 894: 874: 854: 471: 1954: 468:
One typically searches for small blocking sets. The minimum size of a blocking set of
83:
leaves a set which is not a blocking set. A blocking set of smallest size is called a
2171: 2014: 1984: 1622:-dimensional cosets required to cover all vectors except the zero vector is at least 773:
in a 1956 paper by Moses Richardson. Players were identified with points in a finite
625: 1914:
Szőnyi, Tamás (1997), "Blocking Sets in Desarguesian Affine and Projective Planes",
2064: 979: 1863: 228:
of which lie on each of three concurrent lines such that the point of concurrency
1514: 975: 770: 382: 1372:
If for some line equality holds in this relation, the blocking set is called a
2040: 1968:
Jamison, Robert E. (1977), "Covering finite fields with cosets of subspaces",
1050: 88: 44: 2058: 189:
of the triangle are in β, and the following condition is satisfied: If point
1232: 729:
is necessarily a square and the blocking set consists of the points of some
413:). Three points, one from each of these lines, are collinear if and only if 143: 1928: 685:
An upper bound for the size of a minimal blocking set has the same flavor,
326:). Three points, one on each of these sides, are collinear if and only if 350:), the condition in the definition of a projective triangle is satisfied. 20: 138:, on a given line and then one point on each of the other lines through 1837: 1751: 130:
Another general construction in an arbitrary projective plane of order
127:= 2 this blocking set is trivial) which in general is not a committee. 761:
In these planes a projective triangle which meets this bound exists.
1889: 1828: 377:
The construction is similar to the above, but since the field is of
2067:, Graphs and hypergraphs, North-Holland, Amsterdam, 1973. (Defines 1738:
Blokhuis, Aart (1994), "On the size of a blocking set in PG(2,p)",
632:
and the upper bound comes from the complement of a Baer subplane.
610:{\displaystyle q+{\sqrt {q}}+1\leq |B|\leq q^{2}-{\sqrt {q}}.} 381:, squares and non-squares need to be replaced by elements of 232:
is in δ and the following condition is satisfied: If a point
240:
on another line are in δ, then the point of intersection of
688:
Any minimal blocking set in a projective plane π of order
1305:|, the size of the blocking set) consider a line meeting 1812:
Richardson, Moses (1956), "On Finite Projective Games",
1400:
A set of points in the finite Desarguesian affine space
286:= (0,0,1). The points, other than the vertices, on side 725:
points. Moreover, if this upper bound is reached, then
67:
is a blocking set, then complementary set of points, π\
2073: 1628: 1608: 1579: 1559: 1539: 1478: 1444: 1406: 1343: 1191: 1171: 1151: 1131: 1111: 1079: 1059: 1032: 1012: 992: 957: 937: 917: 897: 877: 857: 819: 788: 698: 648: 545: 494: 474: 971:
that has nonempty intersection with each hyperedge.
769:
Blocking sets originated in the context of economic
150:= 2.) This produces a minimal blocking set of size 2 678:points. Moreover, if this lower bound is met, then 425:. By selecting all the points on these lines where 177:on each side of a triangle, such that the vertices 2107: 2088: 1674: 1614: 1594: 1565: 1545: 1505: 1464: 1430: 1384:will be the largest number of collinear points in 1364: 1197: 1177: 1157: 1137: 1117: 1097: 1065: 1038: 1018: 998: 963: 943: 923: 903: 883: 863: 843: 797: 717: 670: 638:Any blocking set in a projective plane π of order 609: 509: 480: 452:a prime, there exists a projective triad of side ( 986:" is used, but in some contexts a transversal of 258:odd, there exists a projective triangle of side ( 205:are both in β, then the point of intersection of 47:as a set that meets all edges of the hypergraph. 1942:Szőnyi, Tamás (1999), "Around Rédei's theorem", 1850:Isbell, J.R. (1958), "A Class of Simple Games", 1815:Proceedings of the American Mathematical Society 1046:that meets each hyperedge in exactly one point. 365:even, there exists a projective triad of side ( 1733: 1731: 409:have coordinates which may be written as (1,1, 777:and minimal winning coalitions were lines. A 146:(this last condition can not be satisfied if 123:- 1) points) form a minimal blocking set (if 8: 1787: 1775: 1092: 1080: 142:, making sure that these points are not all 2140:Current Research Topics in Galois Geometry 1901: 1763: 1722: 1710: 1698: 385:0 and absolute trace 1. Specifically, let 2072: 2013: 1983: 1953: 1927: 1827: 1633: 1627: 1607: 1586: 1582: 1581: 1578: 1558: 1538: 1477: 1456: 1451: 1447: 1446: 1443: 1405: 1342: 1190: 1170: 1150: 1130: 1110: 1078: 1058: 1031: 1011: 991: 974:Blocking sets are sometimes also called " 956: 936: 916: 911:, called (hyper)edges. A blocking set of 896: 876: 856: 818: 787: 702: 697: 655: 647: 597: 588: 576: 568: 552: 544: 493: 473: 456:+ 1)/2 which is a blocking set of size (3 369:+ 2)/2 which is a blocking set of size (3 262:+ 3)/2 which is a blocking set of size 3( 2110:Projective Geometries over Finite Fields 1333:must each contain at least one point of 628:the lower bound is achieved by any Baer 1691: 71:is also a blocking set. A blocking set 1799: 1313:points. Since no line is contained in 401:= 0 have coordinates of the form (1,0, 393:= 0 have coordinates of the form (0,1, 334:. By choosing all of the points where 274:, let the vertices of the triangle be 2130:Blocking Sets of Conics, Ph.D. thesis 635:A more general result can be proved, 134:is to take all except one point, say 7: 2031:Barwick, Susan; Ebert, Gary (2008), 1916:Finite Fields and Their Applications 1465:{\displaystyle \mathbb {F} _{q}^{n}} 746:: A nontrivial blocking set in PG(2, 322:are elements of the finite field GF( 2137:De Beule, Jan; Storme, Leo (2011), 2114:, Oxford: Oxford University Press, 1878:SIAM Journal on Applied Mathematics 1513:. Jean Doyen conjectured in a 1976 1265:in Π of the set of secant lines of 1293:, for any nontrivial blocking set 14: 1289:In any projective plane of order 1682:. Moreover, this bound is sharp. 1675:{\displaystyle q^{n-k}-1+k(q-1)} 1595:{\displaystyle \mathbb {F} _{q}} 236:on one of the lines and a point 99:blocking sets, in this setting. 2132:, University of Colorado Denver 2001:Journal of Combinatorial Theory 1971:Journal of Combinatorial Theory 1380:of the blocking set (note that 1321:, on this line which is not in 671:{\displaystyle n+{\sqrt {n}}+1} 290:have coordinates of the form (- 79:if the removal of any point of 2083: 2077: 1669: 1657: 1573:dimensional vector space over 1500: 1488: 1425: 1413: 1337:in order to be blocked. Thus, 891:is a collection of subsets of 838: 826: 718:{\displaystyle n{\sqrt {n}}+1} 577: 569: 532:), the size of a blocking set 504: 498: 389:= (0,0,1). Points on the line 16:Concept in projective geometry 1: 1955:10.1016/s0012-365x(99)00097-7 1864:10.1215/s0012-7094-58-02537-7 1525:in 1978 using the so-called 754:a prime, has size at least 3( 522:Desarguesian projective plane 244:with the third line is in δ. 2033:Unitals in Projective Planes 2015:10.1016/0097-3165(78)90013-4 1985:10.1016/0097-3165(77)90001-2 2143:, Nova Science Publishers, 39:-dimensional subspaces and 2209: 2128:Holder, Leanne D. (2001), 1374:blocking set of Rédei type 1365:{\displaystyle b\geq n+q.} 871:is a set of elements, and 346:are nonzero squares of GF( 2041:10.1007/978-0-387-76366-8 1852:Duke Mathematical Journal 1317:, there must be a point, 851:be a hypergraph, so that 397:), and those on the line 220:δ of side m is a set of 3 2089:{\displaystyle \tau (H)} 1904:, p. 366, Theorem 13.1.2 1788:Barwick & Ebert 2008 1776:Barwick & Ebert 2008 1766:, p. 376, Theorem 13.3.3 1725:, p. 377, Theorem 13.4.2 1713:, p. 376, Theorem 13.4.1 1506:{\displaystyle 1+n(q-1)} 510:{\displaystyle \tau (H)} 31:is a set of points in a 1431:{\displaystyle AG(n,q)} 1098:{\displaystyle \{C,D\}} 844:{\displaystyle H=(X,E)} 272:homogeneous coordinates 2090: 2035:, New York: Springer, 1929:10.1006/ffta.1996.0176 1676: 1616: 1596: 1567: 1547: 1507: 1466: 1432: 1366: 1199: 1179: 1159: 1139: 1119: 1099: 1067: 1040: 1020: 1000: 965: 945: 925: 905: 885: 865: 845: 799: 798:{\displaystyle \leq 9} 719: 672: 611: 511: 482: 405:). Points of the line 306:have coordinates (1,0, 298:have coordinates (0,1, 2091: 1790:, p. 30, Theorem 2.16 1778:, p. 30, Theorem 2.15 1677: 1617: 1602:. Then the number of 1597: 1568: 1548: 1508: 1467: 1433: 1367: 1200: 1180: 1160: 1140: 1120: 1100: 1068: 1041: 1021: 1001: 966: 946: 926: 906: 886: 866: 846: 800: 720: 673: 612: 512: 483: 2071: 1948:, 208/209: 557–575, 1945:Discrete Mathematics 1626: 1606: 1577: 1557: 1537: 1476: 1442: 1404: 1396:Affine blocking sets 1341: 1189: 1169: 1149: 1129: 1109: 1077: 1057: 1030: 1010: 990: 955: 935: 915: 895: 875: 855: 817: 786: 696: 646: 543: 492: 472: 115:(each line contains 2193:Projective geometry 1461: 1329:other lines though 1285:Rédei blocking sets 1269:is a blocking set, 1205:are blocking sets. 159:projective triangle 25:projective geometry 2104:Hirschfeld, J.W.P. 2086: 1752:10.1007/bf01305953 1672: 1612: 1592: 1563: 1543: 1503: 1462: 1445: 1428: 1362: 1195: 1175: 1155: 1135: 1115: 1095: 1063: 1036: 1016: 996: 982:". Also the term " 961: 941: 921: 901: 881: 861: 841: 795: 779:blocking coalition 715: 668: 607: 507: 478: 294:, 1, 0), those on 2150:978-1-61209-523-3 2121:978-0-19-853526-3 2050:978-0-387-76364-4 1615:{\displaystyle k} 1566:{\displaystyle n} 1546:{\displaystyle V} 1527:polynomial method 1249:-arc in Π = PG(2, 1231:points, no three 1198:{\displaystyle D} 1178:{\displaystyle C} 1158:{\displaystyle D} 1138:{\displaystyle C} 1118:{\displaystyle X} 1066:{\displaystyle H} 1039:{\displaystyle X} 1019:{\displaystyle T} 999:{\displaystyle H} 964:{\displaystyle X} 944:{\displaystyle S} 924:{\displaystyle H} 904:{\displaystyle X} 884:{\displaystyle E} 864:{\displaystyle X} 707: 660: 602: 557: 481:{\displaystyle H} 2200: 2164: 2163: 2162: 2153:, archived from 2133: 2124: 2113: 2095: 2093: 2092: 2087: 2061: 2019: 2018: 2017: 1995: 1989: 1988: 1987: 1965: 1959: 1958: 1957: 1939: 1933: 1932: 1931: 1911: 1905: 1899: 1893: 1892: 1873: 1867: 1866: 1847: 1841: 1840: 1831: 1809: 1803: 1797: 1791: 1785: 1779: 1773: 1767: 1761: 1755: 1754: 1735: 1726: 1720: 1714: 1708: 1702: 1696: 1681: 1679: 1678: 1673: 1644: 1643: 1621: 1619: 1618: 1613: 1601: 1599: 1598: 1593: 1591: 1590: 1585: 1572: 1570: 1569: 1564: 1552: 1550: 1549: 1544: 1512: 1510: 1509: 1504: 1471: 1469: 1468: 1463: 1460: 1455: 1450: 1437: 1435: 1434: 1429: 1371: 1369: 1368: 1363: 1215:projective plane 1204: 1202: 1201: 1196: 1184: 1182: 1181: 1176: 1164: 1162: 1161: 1156: 1144: 1142: 1141: 1136: 1124: 1122: 1121: 1116: 1104: 1102: 1101: 1096: 1072: 1070: 1069: 1064: 1045: 1043: 1042: 1037: 1025: 1023: 1022: 1017: 1005: 1003: 1002: 997: 970: 968: 967: 962: 950: 948: 947: 942: 930: 928: 927: 922: 910: 908: 907: 902: 890: 888: 887: 882: 870: 868: 867: 862: 850: 848: 847: 842: 804: 802: 801: 796: 775:projective plane 724: 722: 721: 716: 708: 703: 677: 675: 674: 669: 661: 656: 616: 614: 613: 608: 603: 598: 593: 592: 580: 572: 558: 553: 516: 514: 513: 508: 487: 485: 484: 479: 379:characteristic 2 218:projective triad 169:) consists of 3( 109:projective plane 57:projective plane 33:projective plane 2208: 2207: 2203: 2202: 2201: 2199: 2198: 2197: 2188:Finite geometry 2168: 2167: 2160: 2158: 2151: 2136: 2127: 2122: 2102: 2069: 2068: 2051: 2030: 2027: 2022: 1997: 1996: 1992: 1967: 1966: 1962: 1941: 1940: 1936: 1913: 1912: 1908: 1902:Hirschfeld 1979 1900: 1896: 1890:10.1137/0117036 1875: 1874: 1870: 1849: 1848: 1844: 1829:10.2307/2032754 1811: 1810: 1806: 1798: 1794: 1786: 1782: 1774: 1770: 1764:Hirschfeld 1979 1762: 1758: 1737: 1736: 1729: 1723:Hirschfeld 1979 1721: 1717: 1711:Hirschfeld 1979 1709: 1705: 1699:Hirschfeld 1979 1697: 1693: 1689: 1629: 1624: 1623: 1604: 1603: 1580: 1575: 1574: 1555: 1554: 1535: 1534: 1474: 1473: 1440: 1439: 1402: 1401: 1398: 1376:and the line a 1339: 1338: 1287: 1211: 1209:Complete k-arcs 1187: 1186: 1167: 1166: 1147: 1146: 1127: 1126: 1107: 1106: 1075: 1074: 1073:is a partition 1055: 1054: 1028: 1027: 1008: 1007: 988: 987: 953: 952: 933: 932: 913: 912: 893: 892: 873: 872: 853: 852: 815: 814: 811: 784: 783: 767: 733:embedded in π. 694: 693: 644: 643: 584: 541: 540: 490: 489: 470: 469: 466: 302:) and those on 105: 53: 23:, specifically 17: 12: 11: 5: 2206: 2204: 2196: 2195: 2190: 2185: 2180: 2170: 2169: 2166: 2165: 2149: 2134: 2125: 2120: 2100: 2097: 2085: 2082: 2079: 2076: 2062: 2049: 2026: 2023: 2021: 2020: 2008:(2): 251–253, 1990: 1978:(3): 253–266, 1960: 1934: 1922:(3): 187–202, 1906: 1894: 1884:(2): 378–392, 1868: 1858:(3): 425–436, 1842: 1822:(3): 458–465, 1804: 1792: 1780: 1768: 1756: 1727: 1715: 1703: 1690: 1688: 1685: 1671: 1668: 1665: 1662: 1659: 1656: 1653: 1650: 1647: 1642: 1639: 1636: 1632: 1611: 1589: 1584: 1562: 1542: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1481: 1459: 1454: 1449: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1397: 1394: 1361: 1358: 1355: 1352: 1349: 1346: 1286: 1283: 1245:be a complete 1210: 1207: 1194: 1174: 1154: 1134: 1114: 1094: 1091: 1088: 1085: 1082: 1062: 1035: 1015: 995: 960: 940: 920: 900: 880: 860: 840: 837: 834: 831: 828: 825: 822: 810: 809:In hypergraphs 807: 794: 791: 766: 763: 714: 711: 706: 701: 667: 664: 659: 654: 651: 618: 617: 606: 601: 596: 591: 587: 583: 579: 575: 571: 567: 564: 561: 556: 551: 548: 506: 503: 500: 497: 477: 465: 462: 439: 438: 383:absolute trace 352: 351: 282:= (0,1,0) and 104: 101: 52: 49: 15: 13: 10: 9: 6: 4: 3: 2: 2205: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2178:Combinatorics 2176: 2175: 2173: 2157:on 2016-01-29 2156: 2152: 2146: 2142: 2141: 2135: 2131: 2126: 2123: 2117: 2112: 2111: 2105: 2101: 2098: 2080: 2074: 2066: 2063: 2060: 2056: 2052: 2046: 2042: 2038: 2034: 2029: 2028: 2024: 2016: 2011: 2007: 2003: 2002: 1994: 1991: 1986: 1981: 1977: 1973: 1972: 1964: 1961: 1956: 1951: 1947: 1946: 1938: 1935: 1930: 1925: 1921: 1917: 1910: 1907: 1903: 1898: 1895: 1891: 1887: 1883: 1879: 1872: 1869: 1865: 1861: 1857: 1853: 1846: 1843: 1839: 1835: 1830: 1825: 1821: 1817: 1816: 1808: 1805: 1801: 1796: 1793: 1789: 1784: 1781: 1777: 1772: 1769: 1765: 1760: 1757: 1753: 1749: 1745: 1741: 1740:Combinatorica 1734: 1732: 1728: 1724: 1719: 1716: 1712: 1707: 1704: 1700: 1695: 1692: 1686: 1684: 1683: 1666: 1663: 1660: 1654: 1651: 1648: 1645: 1640: 1637: 1634: 1630: 1609: 1587: 1560: 1540: 1530: 1528: 1524: 1520: 1519:A. E. Brouwer 1516: 1497: 1494: 1491: 1485: 1482: 1479: 1457: 1452: 1422: 1419: 1416: 1410: 1407: 1395: 1393: 1391: 1387: 1383: 1379: 1375: 1359: 1356: 1353: 1350: 1347: 1344: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1284: 1282: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1234: 1230: 1226: 1225: 1223: 1216: 1208: 1206: 1192: 1172: 1152: 1132: 1112: 1089: 1086: 1083: 1060: 1052: 1047: 1033: 1013: 993: 985: 981: 980:vertex covers 977: 972: 958: 938: 918: 898: 878: 858: 835: 832: 829: 823: 820: 808: 806: 792: 789: 780: 776: 772: 764: 762: 759: 757: 753: 749: 745: 741: 739: 734: 732: 728: 712: 709: 704: 699: 691: 686: 683: 681: 665: 662: 657: 652: 649: 642:has at least 641: 636: 633: 631: 627: 623: 604: 599: 594: 589: 585: 581: 573: 565: 562: 559: 554: 549: 546: 539: 538: 537: 535: 531: 527: 523: 518: 501: 495: 475: 463: 461: 459: 455: 451: 447: 443: 436: 432: 428: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 375: 374: 372: 368: 364: 360: 356: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 269: 268: 267: 265: 261: 257: 253: 249: 245: 243: 239: 235: 231: 227: 223: 219: 214: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 173:- 1) points, 172: 168: 164: 160: 155: 153: 149: 145: 141: 137: 133: 128: 126: 122: 118: 114: 110: 102: 100: 98: 92: 90: 86: 82: 78: 74: 70: 66: 62: 58: 50: 48: 46: 42: 38: 34: 30: 26: 22: 2159:, retrieved 2155:the original 2139: 2129: 2109: 2032: 2005: 2004:, Series A, 1999: 1993: 1975: 1974:, Series A, 1969: 1963: 1943: 1937: 1919: 1915: 1909: 1897: 1881: 1877: 1871: 1855: 1851: 1845: 1819: 1813: 1807: 1795: 1783: 1771: 1759: 1743: 1739: 1718: 1706: 1694: 1532: 1531: 1523:A. Schrijver 1399: 1390:László Rédei 1385: 1381: 1377: 1373: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1288: 1278: 1274: 1270: 1266: 1258: 1254: 1250: 1246: 1242: 1238: 1237: 1228: 1227:is a set of 1221: 1219: 1212: 1051:two-coloring 1048: 1006:is a subset 976:hitting sets 973: 931:is a subset 812: 778: 768: 760: 755: 751: 747: 743: 742: 737: 735: 726: 692:has at most 689: 687: 684: 679: 639: 637: 634: 621: 619: 536:is bounded: 533: 529: 525: 519: 467: 457: 453: 449: 445: 441: 440: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 386: 370: 366: 362: 358: 354: 353: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 263: 259: 255: 251: 247: 246: 241: 237: 233: 229: 225: 224:- 2 points, 221: 217: 215: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 156: 151: 147: 139: 135: 131: 129: 124: 120: 116: 112: 106: 96: 93: 84: 80: 76: 72: 68: 64: 60: 55:In a finite 54: 40: 36: 29:blocking set 28: 18: 2183:Hypergraphs 1800:Holder 2001 1746:: 111–114, 1515:Oberwolfach 1273:, of size 1165:. Now both 984:transversal 771:game theory 278:= (1,0,0), 59:π of order 2172:Categories 2161:2016-01-23 2025:References 1378:Rédei line 1145:or within 488:is called 444:: In PG(2, 357:: In PG(2, 250:: In PG(2, 197:and point 89:Fano plane 51:Definition 45:hypergraph 2075:τ 2059:1439-7382 1664:− 1646:− 1638:− 1495:− 1348:≥ 1261:+ 2. The 1233:collinear 1220:complete 805:in 1969. 790:≤ 595:− 582:≤ 566:≤ 524:of order 496:τ 213:is in β. 144:collinear 111:of order 85:committee 2106:(1979), 2065:C. Berge 1701:, p. 366 1281:- 1)/2. 758:+ 1)/2. 630:subplane 460:+ 1)/2. 448:), with 373:+ 2)/2. 310:) where 266:+ 1)/2. 201:on line 193:on line 165:in PG(2, 103:Examples 21:geometry 1838:2032754 1802:, p. 45 1253:) with 1239:Theorem 765:History 744:Theorem 528:, PG(2, 520:In the 442:Theorem 361:) with 355:Theorem 254:) with 248:Theorem 107:In any 97:trivial 77:minimal 2147:  2118:  2057:  2047:  1836:  1553:be an 1325:. The 1297:(with 1241:: Let 978:" or " 731:unital 626:square 270:Using 163:side m 1834:JSTOR 1687:Notes 1257:< 1213:In a 1053:" of 736:When 624:is a 620:When 407:X = Y 161:β of 2145:ISBN 2116:ISBN 2055:ISSN 2045:ISBN 1533:Let 1263:dual 1224:-arc 1185:and 813:Let 464:Size 433:and 342:and 318:and 209:and 185:and 27:, a 2037:doi 2010:doi 1980:doi 1950:doi 1924:doi 1886:doi 1860:doi 1824:doi 1748:doi 1309:in 1301:= | 1105:of 1049:A " 1026:of 951:of 750:), 75:is 19:In 2174:: 2096:.) 2053:, 2043:, 2006:24 1976:22 1918:, 1882:17 1880:, 1856:25 1854:, 1832:, 1818:, 1744:14 1742:, 1730:^ 1521:, 1217:a 517:. 429:, 421:+ 417:= 338:, 332:bc 330:= 314:, 304:AC 296:BC 288:AB 242:PQ 216:A 211:AC 207:PQ 203:BC 195:AB 181:, 157:A 154:. 91:. 2084:) 2081:H 2078:( 2039:: 2012:: 1982:: 1952:: 1926:: 1920:3 1888:: 1862:: 1826:: 1820:7 1750:: 1670:) 1667:1 1661:q 1658:( 1655:k 1652:+ 1649:1 1641:k 1635:n 1631:q 1610:k 1588:q 1583:F 1561:n 1541:V 1501:) 1498:1 1492:q 1489:( 1486:n 1483:+ 1480:1 1458:n 1453:q 1448:F 1426:) 1423:q 1420:, 1417:n 1414:( 1411:G 1408:A 1386:B 1382:n 1360:. 1357:q 1354:+ 1351:n 1345:b 1335:B 1331:P 1327:q 1323:B 1319:P 1315:B 1311:n 1307:B 1303:B 1299:b 1295:B 1291:q 1279:k 1277:( 1275:k 1271:B 1267:K 1259:q 1255:k 1251:q 1247:k 1243:K 1229:k 1222:k 1193:D 1173:C 1153:D 1133:C 1113:X 1093:} 1090:D 1087:, 1084:C 1081:{ 1061:H 1034:X 1014:T 994:H 959:X 939:S 919:H 899:X 879:E 859:X 839:) 836:E 833:, 830:X 827:( 824:= 821:H 793:9 756:p 752:p 748:p 738:n 727:n 713:1 710:+ 705:n 700:n 690:n 680:n 666:1 663:+ 658:n 653:+ 650:n 640:n 622:q 605:. 600:q 590:2 586:q 578:| 574:B 570:| 563:1 560:+ 555:q 550:+ 547:q 534:B 530:q 526:q 505:) 502:H 499:( 476:H 458:p 454:p 450:p 446:p 435:c 431:b 427:a 423:c 419:b 415:a 411:c 403:b 399:Y 395:a 391:X 387:C 371:q 367:q 363:q 359:q 348:q 344:c 340:b 336:a 328:a 324:q 320:c 316:b 312:a 308:b 300:a 292:c 284:C 280:B 276:A 264:q 260:q 256:q 252:q 238:Q 234:P 230:C 226:m 222:m 199:Q 191:P 187:C 183:B 179:A 175:m 171:m 167:q 152:n 148:n 140:P 136:P 132:n 125:n 121:n 117:n 113:n 81:B 73:B 69:B 65:B 61:n 41:m 37:n

Index

geometry
projective geometry
projective plane
hypergraph
projective plane
Fano plane
projective plane
collinear
homogeneous coordinates
characteristic 2
absolute trace
Desarguesian projective plane
square
subplane
unital
game theory
projective plane
hitting sets
vertex covers
transversal
two-coloring
projective plane
complete k-arc
collinear
dual
László Rédei
Oberwolfach
A. E. Brouwer
A. Schrijver
polynomial method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.