Knowledge

Bockstein homomorphism

Source 📝

449: 592: 327: 201: 358: 95: 488: 350: 672: 495: 710: 744: 247: 121: 775: 770: 611: 444:{\displaystyle 0\to \mathbb {Z} /p\mathbb {Z} \to \mathbb {Z} /p^{2}\mathbb {Z} \to \mathbb {Z} /p\mathbb {Z} \to 0} 702: 215: 44: 56: 112: 48: 670:
Bockstein, Meyer (1958), "Sur la formule des coefficients universels pour les groupes d'homologie",
464: 20: 211: 740: 706: 455: 335: 238: 754: 720: 685: 663: 640: 750: 736: 716: 681: 659: 647: 636: 624: 28: 696: 650:(1943), "A complete system of fields of coefficients for the ∇-homological dimension", 219: 764: 728: 692: 231: 105: 101: 227: 587:{\displaystyle \beta (a\cup b)=\beta (a)\cup b+(-1)^{\dim a}a\cup \beta (b)} 230:
condition should enter). The construction of β is by the usual argument (
598:
in other words, it is a superderivation acting on the cohomology mod
218:, abelian groups, and the homology is of the complexes formed by 458:. This Bockstein homomorphism has the following two properties: 322:{\displaystyle \beta \colon H^{i}(C,R)\to H^{i+1}(C,P).} 196:{\displaystyle \beta \colon H_{i}(C,R)\to H_{i-1}(C,P).} 498: 467: 361: 338: 250: 124: 59: 241:, this time increasing degree by one. Thus we have 673:Comptes Rendus de l'Académie des Sciences, Série I 586: 482: 443: 344: 321: 195: 104:, when they are introduced as coefficients into a 89: 627:(1942), "Universal systems of ∇-homology rings", 115:groups as a homomorphism reducing degree by one, 8: 554: 497: 466: 454:is used as one of the generators of the 431: 430: 422: 418: 417: 410: 409: 403: 394: 390: 389: 382: 381: 373: 369: 368: 360: 337: 289: 261: 249: 163: 135: 123: 58: 40: 36: 32: 352:associated to the coefficient sequence 733:Algebraic topology. Corrected reprint 90:{\displaystyle 0\to P\to Q\to R\to 0} 7: 237:A similar construction applies to 14: 652:C. R. (Doklady) Acad. Sci. URSS 629:C. R. (Doklady) Acad. Sci. URSS 581: 575: 551: 541: 529: 523: 514: 502: 483:{\displaystyle \beta \beta =0} 435: 414: 386: 365: 313: 301: 282: 279: 267: 187: 175: 156: 153: 141: 81: 75: 69: 63: 1: 612:Bockstein spectral sequence 332:The Bockstein homomorphism 111:, and which appears in the 792: 703:Cambridge University Press 210:should be a complex of 45:connecting homomorphism 588: 484: 445: 346: 345:{\displaystyle \beta } 323: 197: 91: 25:Bockstein homomorphism 589: 485: 446: 347: 324: 198: 92: 739:, pp. xvi+528, 496: 465: 359: 336: 248: 206:To be more precise, 122: 57: 49:short exact sequence 776:Homological algebra 735:, New York-Berlin: 29:Meyer Bockstein 21:homological algebra 771:Algebraic topology 698:Algebraic Topology 584: 480: 441: 342: 319: 193: 87: 47:associated with a 729:Spanier, Edwin H. 712:978-0-521-79540-1 239:cohomology groups 783: 757: 723: 688: 666: 648:Bockstein, Meyer 643: 625:Bockstein, Meyer 593: 591: 590: 585: 565: 564: 489: 487: 486: 481: 456:Steenrod algebra 450: 448: 447: 442: 434: 426: 421: 413: 408: 407: 398: 393: 385: 377: 372: 351: 349: 348: 343: 328: 326: 325: 320: 300: 299: 266: 265: 202: 200: 199: 194: 174: 173: 140: 139: 96: 94: 93: 88: 27:, introduced by 791: 790: 786: 785: 784: 782: 781: 780: 761: 760: 747: 737:Springer-Verlag 727: 713: 691: 669: 646: 623: 620: 608: 550: 494: 493: 463: 462: 399: 357: 356: 334: 333: 285: 257: 246: 245: 159: 131: 120: 119: 55: 54: 17: 16:Homological map 12: 11: 5: 789: 787: 779: 778: 773: 763: 762: 759: 758: 745: 725: 711: 693:Hatcher, Allen 689: 667: 654:, New Series, 644: 631:, New Series, 619: 616: 615: 614: 607: 604: 596: 595: 583: 580: 577: 574: 571: 568: 563: 560: 557: 553: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 510: 507: 504: 501: 491: 479: 476: 473: 470: 452: 451: 440: 437: 433: 429: 425: 420: 416: 412: 406: 402: 397: 392: 388: 384: 380: 376: 371: 367: 364: 341: 330: 329: 318: 315: 312: 309: 306: 303: 298: 295: 292: 288: 284: 281: 278: 275: 272: 269: 264: 260: 256: 253: 220:tensor product 214:, or at least 204: 203: 192: 189: 186: 183: 180: 177: 172: 169: 166: 162: 158: 155: 152: 149: 146: 143: 138: 134: 130: 127: 102:abelian groups 98: 97: 86: 83: 80: 77: 74: 71: 68: 65: 62: 15: 13: 10: 9: 6: 4: 3: 2: 788: 777: 774: 772: 769: 768: 766: 756: 752: 748: 746:0-387-90646-0 742: 738: 734: 730: 726: 722: 718: 714: 708: 704: 700: 699: 694: 690: 687: 683: 679: 675: 674: 668: 665: 661: 657: 653: 649: 645: 642: 638: 634: 630: 626: 622: 621: 617: 613: 610: 609: 605: 603: 601: 578: 572: 569: 566: 561: 558: 555: 547: 544: 538: 535: 532: 526: 520: 517: 511: 508: 505: 499: 492: 477: 474: 471: 468: 461: 460: 459: 457: 438: 427: 423: 404: 400: 395: 378: 374: 362: 355: 354: 353: 339: 316: 310: 307: 304: 296: 293: 290: 286: 276: 273: 270: 262: 258: 254: 251: 244: 243: 242: 240: 235: 233: 229: 225: 221: 217: 213: 209: 190: 184: 181: 178: 170: 167: 164: 160: 150: 147: 144: 136: 132: 128: 125: 118: 117: 116: 114: 110: 107: 106:chain complex 103: 84: 78: 72: 66: 60: 53: 52: 51: 50: 46: 42: 38: 34: 30: 26: 22: 732: 697: 677: 671: 655: 651: 632: 628: 602:of a space. 599: 597: 453: 331: 236: 223: 216:torsion-free 207: 205: 108: 99: 24: 18: 680:: 396–398, 658:: 187–189, 635:: 243–245, 232:snake lemma 228:flat module 765:Categories 618:References 573:β 570:∪ 559:⁡ 545:− 533:∪ 521:β 509:∪ 500:β 472:β 469:β 436:→ 415:→ 387:→ 366:→ 340:β 283:→ 255:: 252:β 168:− 157:→ 129:: 126:β 82:→ 76:→ 70:→ 64:→ 731:(1981), 695:(2002), 606:See also 113:homology 43:), is a 755:0666554 721:1867354 686:0103918 664:0009115 641:0008701 31: ( 753:  743:  719:  709:  684:  662:  639:  226:(some 23:, the 222:with 741:ISBN 707:ISBN 212:free 41:1958 37:1943 33:1942 19:In 678:247 556:dim 234:). 100:of 767:: 751:MR 749:, 717:MR 715:, 705:, 701:, 682:MR 676:, 660:MR 656:38 637:MR 633:37 39:, 35:, 724:. 600:p 594:; 582:) 579:b 576:( 567:a 562:a 552:) 548:1 542:( 539:+ 536:b 530:) 527:a 524:( 518:= 515:) 512:b 506:a 503:( 490:, 478:0 475:= 439:0 432:Z 428:p 424:/ 419:Z 411:Z 405:2 401:p 396:/ 391:Z 383:Z 379:p 375:/ 370:Z 363:0 317:. 314:) 311:P 308:, 305:C 302:( 297:1 294:+ 291:i 287:H 280:) 277:R 274:, 271:C 268:( 263:i 259:H 224:C 208:C 191:. 188:) 185:P 182:, 179:C 176:( 171:1 165:i 161:H 154:) 151:R 148:, 145:C 142:( 137:i 133:H 109:C 85:0 79:R 73:Q 67:P 61:0

Index

homological algebra
Meyer Bockstein
1942
1943
1958
connecting homomorphism
short exact sequence
abelian groups
chain complex
homology
free
torsion-free
tensor product
flat module
snake lemma
cohomology groups
Steenrod algebra
Bockstein spectral sequence
Bockstein, Meyer
MR
0008701
Bockstein, Meyer
MR
0009115
Comptes Rendus de l'Académie des Sciences, Série I
MR
0103918
Hatcher, Allen
Algebraic Topology
Cambridge University Press

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.