Knowledge (XXG)

Boerdijk–Coxeter helix

Source 📝

58: 112:, the Boerdijk–Coxeter helix is not rotationally repetitive in 3-dimensional space. Even in an infinite string of stacked tetrahedra, no two tetrahedra will have the same orientation, because the helical pitch per cell is not a rational fraction of the circle. However, modified forms of this helix have been found which are rotationally repetitive, and in 4-dimensional space this helix repeats in rings of exactly 30 tetrahedral cells that tessellate the 650: 1303: 643: 33: 27: 727: 743: 673: 47: 696: 531: 327: 481: 208: 252: 365: 520: 51:
Edges can be colored into 6 groups, 3 main helixes (cyan), with the concave edges forming a slow forward helix (magenta), and two backwards helixes (yellow and orange)
405: 425: 385: 804:, p. 314, §4.2.2 The Boerdijk-Coxeter helix and the PPII helix; the helix of tetrahedra occurs in a left- or right-spiraling form, but each form contains 554:
curvature it becomes periodic, with a period of ten vertices, encompassing all 30 cells. The collective of such helices in the 600-cell represent a discrete
1120: 1076: 971: 257: 434: 1241: 981:
Sadler, Garrett; Fang, Fang; Kovacs, Julio; Klee, Irwin (2013). "Periodic modification of the Boerdijk-Coxeter helix (tetrahelix)".
1086:
Banchoff, Thomas F. (1988). "Geometry of the Hopf Mapping and Pinkall's Tori of Given Conformal Type". In Tangora, Martin (ed.).
142:
The coordinates of vertices of Boerdijk–Coxeter helix composed of tetrahedrons with unit edge length can be written in the form
925: 570:. They spiral around each other naturally due to the Hopf fibration. The collective of edges forms another discrete Hopf 148: 1173: 1376: 1028:
Zhu, Yihan; He, Jiating; Shang, Cheng; Miao, Xiaohe; Huang, Jianfeng; Liu, Zhipan; Chen, Hongyu; Han, Yu (2014).
1095:
Banchoff, Thomas F. (2013). "Torus Decompostions of Regular Polytopes in 4-space". In Senechal, Marjorie (ed.).
1499: 105: 86: 1494: 1292: 1234: 216: 100:, arranged so that the edges of the complex that belong to only one tetrahedron form three intertwined 332: 1443: 1139: 1008: 714: 490: 91: 1504: 772: 57: 1540: 1475: 1423: 1190: 1155: 982: 948: 734: 718: 567: 127: 1460: 1104: 1438: 1428: 1386: 1282: 1116: 1072: 1051: 967: 921: 649: 70: 390: 1535: 1337: 1227: 1214: 1182: 1147: 1108: 1096: 1064: 1041: 1016: 846: 642: 82: 833: 32: 1470: 1322: 1272: 109: 952: 1143: 1012: 997: 108:
forms, with either clockwise or counterclockwise windings. Unlike any other stacking of
1401: 1287: 914: 909: 879: 875: 782: 755: 710: 555: 410: 370: 62: 26: 874:, studied the decomposition of regular 4-polytopes into honeycombs of tori tiling the 1529: 1480: 1209: 1194: 1168: 1097: 1020: 407:
correspond to two chiral forms. All vertices are located on the cylinder with radius
1159: 862:, pp. 577–578, §2.5 The 30/11 symmetry: an example of other kind of symmetries. 726: 1455: 1450: 1396: 1342: 742: 672: 46: 1130:
Sadoc, J.F.; Rivier, N. (1999). "Boerdijk-Coxeter helix and biological helices".
1112: 935:
Boerdijk, A.H. (1952). "Some remarks concerning close-packing of equal spheres".
1514: 1366: 1317: 737:
can be chained with 3 vertex configurations, 3.3.5, 3.5.3.5, and 3.3.3.5.3.3.5:
695: 547: 530: 97: 1488: 1391: 1371: 1219: 777: 121: 1509: 1433: 1358: 1332: 1277: 1055: 73:
of the Coxeter helix. Each sphere is in contact with 6 neighboring spheres.
1186: 1151: 1465: 1381: 767: 627: 579: 575: 571: 563: 559: 551: 543: 539: 117: 113: 657: 590: 586: 558:. While in 3 dimensions the edges are helices, in the imposed 3-sphere 1046: 1029: 1250: 680: 598: 594: 134:
and considered them with regular and irregular tetrahedral elements.
66: 987: 322:{\displaystyle \theta =\pm \cos ^{-1}(-2/3)\approx 131.81^{\circ }} 1258: 1254: 529: 101: 56: 18: 476:{\displaystyle 2\theta -{\frac {4}{3}}\pi \approx 23.62^{\circ }} 427:
along z-axis. Given how the tetrahedra alternate, this gives an
1223: 962:
Pugh, Anthony (1976). "5. Joining polyhedra §5.36 Tetrahelix".
717:, 3.4.3.4 and 3.3.4.3.3.4. This helix exists as finite ring of 1169:"Helices and helix packings derived from the {3,3,5} polytope" 1030:"Chiral Gold Nanowires with Boerdijk–Coxeter–Bernal Structure" 550:, each a Boerdijk–Coxeter helix. When superimposed onto the 487:
tetrahedra. There is another inscribed cylinder with radius
1063:
Lord, Eric A.; Mackay, Alan L.; Ranganathan, S. (2006).
16:
Linear stacking of regular tetrahedra that form helices
998:"The γ-brass structure and the Boerdijk–Coxeter helix" 493: 437: 413: 393: 387:
is an arbitrary integer. The two different values of
373: 335: 260: 219: 151: 1090:. New York and Basel: Marcel Dekker. pp. 57–62. 817: 1416: 1351: 1310: 1265: 913: 808:left- and right-spiraling helices of linked edges. 713:can also be chained together as a helix, with two 514: 475: 419: 399: 379: 359: 321: 246: 203:{\displaystyle (r\cos n\theta ,r\sin n\theta ,nh)} 202: 783:Skew apeirogon#Helical apeirogons in 3-dimensions 966:. University of California Press. p. 53. 1235: 8: 534:30 tetrahedral ring from 600-cell projection 801: 574:with 10 vertices each. These correspond to 1348: 1242: 1228: 1220: 1071:. Cambridge University Press. p. 64. 603: 1045: 986: 504: 497: 492: 467: 447: 436: 412: 392: 372: 350: 345: 334: 313: 295: 274: 259: 236: 229: 218: 150: 891: 871: 20:Coxeter helices from regular tetrahedra 794: 719:30 pyramids in a 4-dimensional polytope 829: 758:is based on a Boerdijk–Coxeter helix. 859: 7: 996:Lord, E.A.; Ranganathan, S. (2004). 597:partitions into a single degenerate 96:, is a linear stacking of regular 14: 1065:"§4.5 The Boerdijk–Coxeter helix" 1005:Journal of Non-Crystalline Solids 247:{\displaystyle r=3{\sqrt {3}}/10} 1301: 1210:Boerdijk-Coxeter helix animation 1069:New Geometries for New Materials 1021:10.1016/j.jnoncrysol.2003.11.069 951:(1975). Applewhite, E.J. (ed.). 741: 725: 694: 671: 648: 641: 360:{\displaystyle h=1/{\sqrt {10}}} 120:, one of the six regular convex 45: 31: 25: 1132:The European Physical Journal B 515:{\displaystyle 3{\sqrt {2}}/20} 1103:. Springer New York. pp.  920:. Cambridge University Press. 303: 286: 197: 152: 1: 1167:Sadoc, Jean-Francois (2001). 1113:10.1007/978-0-387-92714-5_20 964:Polyhedra: A visual approach 768:Clifford parallel cell rings 678: 655: 625: 43: 38: 23: 1174:European Physical Journal E 778:Line group#Helical symmetry 593:, four edges long, and the 526:Higher-dimensional geometry 1557: 705:Related polyhedral helixes 1299: 916:Regular Complex Polytopes 693: 670: 576:rings of 10 dodecahedrons 802:Sadoc & Rivier 1999 400:{\displaystyle \theta } 535: 516: 477: 421: 401: 381: 361: 323: 248: 204: 87:Arie Hendrick Boerdijk 79:Boerdijk–Coxeter helix 74: 1187:10.1007/s101890170040 1152:10.1007/s100510051009 949:Fuller, R.Buckminster 715:vertex configurations 572:fibration of 12 rings 533: 517: 478: 422: 402: 382: 362: 324: 249: 205: 60: 1088:Computers in Algebra 878:which correspond to 589:partitions into two 491: 435: 411: 391: 371: 333: 258: 217: 149: 1144:1999EPJB...12..309S 1013:2004JNCS..334..121L 773:Toroidal polyhedron 735:pentagonal pyramids 591:8-tetrahedron rings 61:A Boerdijk helical 40:CCW and CW turning 21: 1007:. 334–335: 123–5. 818:Sadler et al. 2013 599:5-tetrahedron ring 536: 522:inside the helix. 512: 473: 417: 397: 377: 357: 319: 244: 200: 128:Buckminster Fuller 75: 19: 1523: 1522: 1412: 1411: 1122:978-0-387-92713-8 1078:978-0-521-86104-5 1047:10.1021/ja506554j 973:978-0-520-03056-5 910:Coxeter, H. S. M. 847:"Tetrahelix Data" 834:930.00 Tetrahelix 702: 701: 585:In addition, the 502: 455: 420:{\displaystyle r} 380:{\displaystyle n} 355: 234: 55: 54: 1548: 1349: 1328:Boerdijk–Coxeter 1305: 1304: 1244: 1237: 1230: 1221: 1198: 1163: 1126: 1102: 1091: 1082: 1059: 1049: 1040:(36): 12746–52. 1034:J. Am. Chem. Soc 1024: 1002: 992: 990: 977: 958: 944: 937:Philips Res. Rep 931: 919: 895: 889: 883: 869: 863: 857: 851: 850: 843: 837: 827: 821: 815: 809: 799: 745: 733:And equilateral 729: 698: 675: 652: 645: 604: 542:partitions into 521: 519: 518: 513: 508: 503: 498: 482: 480: 479: 474: 472: 471: 456: 448: 426: 424: 423: 418: 406: 404: 403: 398: 386: 384: 383: 378: 366: 364: 363: 358: 356: 351: 349: 328: 326: 325: 320: 318: 317: 299: 282: 281: 253: 251: 250: 245: 240: 235: 230: 209: 207: 206: 201: 104:. There are two 95: 83:H. S. M. Coxeter 49: 35: 29: 22: 1556: 1555: 1551: 1550: 1549: 1547: 1546: 1545: 1526: 1525: 1524: 1519: 1408: 1362: 1347: 1306: 1302: 1297: 1261: 1248: 1215:Tetrahelix Data 1206: 1201: 1166: 1129: 1123: 1094: 1085: 1079: 1062: 1027: 1000: 995: 980: 974: 961: 947: 934: 928: 908: 904: 899: 898: 890: 886: 880:Hopf fibrations 870: 866: 858: 854: 845: 844: 840: 828: 824: 816: 812: 800: 796: 791: 764: 752: 750:In architecture 711:square pyramids 707: 613:Tetrahedra/ring 528: 489: 488: 463: 433: 432: 409: 408: 389: 388: 369: 368: 331: 330: 309: 270: 256: 255: 215: 214: 147: 146: 140: 116:surface of the 110:Platonic solids 89: 50: 30: 17: 12: 11: 5: 1554: 1552: 1544: 1543: 1538: 1528: 1527: 1521: 1520: 1518: 1517: 1512: 1507: 1502: 1497: 1492: 1485: 1484: 1483: 1473: 1468: 1463: 1458: 1453: 1448: 1447: 1446: 1441: 1436: 1426: 1420: 1418: 1414: 1413: 1410: 1409: 1407: 1406: 1405: 1404: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1360: 1355: 1353: 1346: 1345: 1340: 1335: 1330: 1325: 1320: 1314: 1312: 1308: 1307: 1300: 1298: 1296: 1295: 1290: 1285: 1280: 1275: 1269: 1267: 1263: 1262: 1249: 1247: 1246: 1239: 1232: 1224: 1218: 1217: 1212: 1205: 1204:External links 1202: 1200: 1199: 1164: 1138:(2): 309–318. 1127: 1121: 1092: 1083: 1077: 1060: 1025: 993: 978: 972: 959: 945: 932: 926: 905: 903: 900: 897: 896: 884: 876:Clifford torus 864: 852: 838: 822: 810: 793: 792: 790: 787: 786: 785: 780: 775: 770: 763: 760: 756:Art Tower Mito 751: 748: 747: 746: 731: 730: 706: 703: 700: 699: 692: 689: 686: 683: 677: 676: 669: 666: 663: 660: 654: 653: 646: 639: 636: 633: 630: 624: 623: 620: 617: 614: 611: 608: 556:Hopf fibration 527: 524: 511: 507: 501: 496: 470: 466: 462: 459: 454: 451: 446: 443: 440: 416: 396: 376: 354: 348: 344: 341: 338: 316: 312: 308: 305: 302: 298: 294: 291: 288: 285: 280: 277: 273: 269: 266: 263: 243: 239: 233: 228: 225: 222: 211: 210: 199: 196: 193: 190: 187: 184: 181: 178: 175: 172: 169: 166: 163: 160: 157: 154: 139: 136: 81:, named after 69:centered at a 63:sphere packing 53: 52: 42: 41: 37: 36: 15: 13: 10: 9: 6: 4: 3: 2: 1553: 1542: 1539: 1537: 1534: 1533: 1531: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1490: 1486: 1482: 1479: 1478: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1430: 1427: 1425: 1422: 1421: 1419: 1415: 1403: 1400: 1399: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1357: 1356: 1354: 1350: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1315: 1313: 1309: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1270: 1268: 1264: 1260: 1256: 1252: 1245: 1240: 1238: 1233: 1231: 1226: 1225: 1222: 1216: 1213: 1211: 1208: 1207: 1203: 1196: 1192: 1188: 1184: 1180: 1176: 1175: 1170: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1128: 1124: 1118: 1114: 1110: 1106: 1101: 1100: 1099:Shaping Space 1093: 1089: 1084: 1080: 1074: 1070: 1066: 1061: 1057: 1053: 1048: 1043: 1039: 1035: 1031: 1026: 1022: 1018: 1014: 1010: 1006: 999: 994: 989: 984: 979: 975: 969: 965: 960: 956: 955: 950: 946: 942: 938: 933: 929: 923: 918: 917: 911: 907: 906: 901: 893: 892:Banchoff 1988 888: 885: 881: 877: 873: 872:Banchoff 2013 868: 865: 861: 856: 853: 848: 842: 839: 835: 831: 826: 823: 819: 814: 811: 807: 803: 798: 795: 788: 784: 781: 779: 776: 774: 771: 769: 766: 765: 761: 759: 757: 749: 744: 740: 739: 738: 736: 728: 724: 723: 722: 720: 716: 712: 704: 697: 690: 687: 684: 682: 679: 674: 667: 664: 661: 659: 656: 651: 647: 644: 640: 637: 634: 631: 629: 626: 621: 618: 616:Cycle lengths 615: 612: 609: 606: 605: 602: 600: 596: 592: 588: 583: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 541: 532: 525: 523: 509: 505: 499: 494: 486: 468: 464: 460: 457: 452: 449: 444: 441: 438: 430: 414: 394: 374: 352: 346: 342: 339: 336: 314: 310: 306: 300: 296: 292: 289: 283: 278: 275: 271: 267: 264: 261: 241: 237: 231: 226: 223: 220: 194: 191: 188: 185: 182: 179: 176: 173: 170: 167: 164: 161: 158: 155: 145: 144: 143: 137: 135: 133: 129: 125: 123: 119: 115: 111: 107: 103: 99: 93: 88: 84: 80: 72: 68: 64: 59: 48: 44: 39: 34: 28: 24: 1487: 1352:Biochemistry 1327: 1178: 1172: 1135: 1131: 1098: 1087: 1068: 1037: 1033: 1004: 963: 957:. Macmillan. 953: 940: 936: 915: 887: 867: 855: 841: 825: 813: 805: 797: 753: 732: 709:Equilateral 708: 584: 578:in the dual 566:and have no 537: 484: 428: 212: 141: 131: 126: 78: 76: 1500:Pitch angle 1476:Logarithmic 1424:Archimedean 1387:Polyproline 1181:: 575–582. 988:1302.1174v1 954:Synergetics 830:Fuller 1975 622:Projection 130:named it a 90: [ 1530:Categories 1489:On Spirals 1439:Hyperbolic 943:: 303–313. 927:052120125X 902:References 860:Sadoc 2001 638:30, 10, 15 607:4-polytope 548:tetrahedra 132:tetrahelix 98:tetrahedra 1541:Polyhedra 1510:Spirangle 1505:Theodorus 1444:Poinsot's 1434:Epispiral 1278:Curvature 1273:Algebraic 1195:121229939 691:(5, 5), 5 564:geodesics 562:they are 469:∘ 461:≈ 458:π 445:− 442:θ 431:twist of 395:θ 315:∘ 307:≈ 290:− 284:⁡ 276:− 268:± 262:θ 186:θ 180:⁡ 168:θ 162:⁡ 122:polychora 65:has each 1466:Involute 1461:Fermat's 1402:Collagen 1338:Symmetry 1160:92684626 1056:25126894 912:(1974). 762:See also 628:600-cell 580:120-cell 560:topology 552:3-sphere 544:20 rings 540:600-cell 429:apparent 138:Geometry 118:600-cell 114:3-sphere 1536:Helices 1495:Padovan 1429:Cotes's 1417:Spirals 1323:Antenna 1311:Helices 1283:Gallery 1259:helices 1251:Spirals 1140:Bibcode 1009:Bibcode 668:8, 8, 4 658:16-cell 587:16-cell 568:torsion 102:helices 1481:Golden 1397:Triple 1377:Double 1343:Triple 1293:Topics 1266:Curves 1255:curves 1193:  1158:  1119:  1107:–266. 1075:  1054:  970:  924:  681:5-cell 595:5-cell 546:of 30 483:every 311:131.81 213:where 106:chiral 71:vertex 67:sphere 1456:Euler 1451:Doyle 1392:Super 1367:Alpha 1318:Angle 1191:S2CID 1156:S2CID 1001:(PDF) 983:arXiv 789:Notes 610:Rings 465:23.62 94:] 1515:Ulam 1471:List 1372:Beta 1333:Hemi 1288:List 1257:and 1117:ISBN 1073:ISBN 1052:PMID 968:ISBN 922:ISBN 806:both 754:The 538:The 367:and 85:and 77:The 1183:doi 1148:doi 1109:doi 1105:257 1042:doi 1038:136 1017:doi 619:Net 485:two 272:cos 177:sin 159:cos 1532:: 1382:Pi 1361:10 1253:, 1189:. 1177:. 1171:. 1154:. 1146:. 1136:12 1134:. 1115:. 1067:. 1050:. 1036:. 1032:. 1015:. 1003:. 939:. 832:, 721:. 635:30 632:20 601:. 582:. 510:20 353:10 329:, 254:, 242:10 124:. 92:es 1359:3 1243:e 1236:t 1229:v 1197:. 1185:: 1179:5 1162:. 1150:: 1142:: 1125:. 1111:: 1081:. 1058:. 1044:: 1023:. 1019:: 1011:: 991:. 985:: 976:. 941:7 930:. 894:. 882:. 849:. 836:. 820:. 688:5 685:1 665:8 662:2 506:/ 500:2 495:3 453:3 450:4 439:2 415:r 375:n 347:/ 343:1 340:= 337:h 304:) 301:3 297:/ 293:2 287:( 279:1 265:= 238:/ 232:3 227:3 224:= 221:r 198:) 195:h 192:n 189:, 183:n 174:r 171:, 165:n 156:r 153:(

Index





sphere packing
sphere
vertex
H. S. M. Coxeter
Arie Hendrick Boerdijk
es
tetrahedra
helices
chiral
Platonic solids
3-sphere
600-cell
polychora
Buckminster Fuller

600-cell
20 rings
tetrahedra
3-sphere
Hopf fibration
topology
geodesics
torsion
fibration of 12 rings
rings of 10 dodecahedrons
120-cell

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.