Knowledge (XXG)

Born approximation

Source đź“ť

1986: 617: 291: 2170: 875: 1009: 1822: 1815:
that can be solved by some other method. For nuclear reactions, numerical optical model waves are used. For scattering of charged particles by charged particles, analytic solutions for coulomb scattering are used. This gives the non-Born preliminary equation
477: 145: 1997: 1536:
is the same as the Fourier transform of the scattering potential . Using this concept, the electronic analogue of Fourier optics has been theoretically studied in monolayer graphene. The Born approximation has also been used to calculate conductivity in
1283: 711: 2183:. For a charged-particle-induced direct nuclear reaction, the procedure is used twice. There are similar methods that do not use the Born approximations. In condensed-matter research, DWBA is used to analyze 1666: 1600: 668: 462: 414: 129: 1124: 1359: 890: 1981:{\displaystyle \vert {\Psi _{\mathbf {p} }^{1}}^{(\pm )}\rangle =\vert {\Psi _{\mathbf {p} }^{\circ }}\rangle +G^{\circ }(E_{p}\pm i0)V^{1}\vert {\Psi _{\mathbf {p} }^{1}}^{(\pm )}\rangle } 612:{\displaystyle \vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle =\vert {\Psi _{\mathbf {p} }^{\circ }}\rangle +G^{\circ }(E_{p}\pm i\epsilon )V\vert {\Psi _{\mathbf {p} }^{\circ }}\rangle ,} 286:{\displaystyle \vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle =\vert {\Psi _{\mathbf {p} }^{\circ }}\rangle +G^{\circ }(E_{p}\pm i\epsilon )V\vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle ,} 2165:{\displaystyle \vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle =\vert {\Psi _{\mathbf {p} }^{1}}^{(\pm )}\rangle +G^{1}(E_{p}\pm i0)V^{2}\vert {\Psi _{\mathbf {p} }^{1}}^{(\pm )}\rangle .} 1081: 1476: 1534: 1739: 1167: 1054: 1413: 321: 348: 2344: 1433: 1379: 1032: 1159: 1813: 1786: 1693: 1759: 703: 372: 870:{\displaystyle G^{(+)}(\mathbf {r} ,\mathbf {r} ')=-{\frac {2m}{\hbar ^{2}}}{\frac {e^{+ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}}} 45:
consists of taking the incident field in place of the total field as the driving field at each point in the scatterer. The Born approximation is named after
71:
that would be present at that point without the column, and then calculating the scattering as a radiation integral over that polarization distribution.
2411:
Gubernatis, J.E.; Domany, E.; Krumhansl, J.A.; Huberman, M. (1977). "The Born approximation in the theory of the scattering of elastic waves by flaws".
2184: 1502: 56:
method applied to scattering by an extended body. It is accurate if the scattered field is small compared to the incident field on the scatterer.
327: 1616: 20: 2519: 2497: 1563: 625: 419: 377: 86: 2358:
Koshino, Mikito; Ando, Tsuneya (2006). "Transport in bilayer graphene: Calculations within a self-consistent Born approximation".
2216: 2201: 80: 1086: 1004:{\displaystyle f_{B}(\theta )=-{\frac {m}{2\pi \hbar ^{2}}}\int d^{3}re^{i\mathbf {q} \cdot \mathbf {r} }V(\mathbf {r} )\;,} 1291: 2545: 1505:. Using the first Born approximation, it has been shown that the scattering amplitude for a scattering potential 2488: 2211: 1602:
are plane waves. That is, the scatterer is treated as a perturbation to free space or to a homogeneous medium.
1361:
In the Born approximation for centrally symmetric field, the scattering amplitude and thus the cross section
2278:
Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier.
2338: 1438: 1278:{\displaystyle f_{B}(\theta )=-{\frac {2m}{\hbar ^{2}}}\int _{0}^{\infty }rV(r){\frac {\sin qr}{q}}dr} 2459: 2420: 2377: 2305:"Electronic analogue of Fourier optics with massless Dirac fermions scattered by quantum dot lattice" 2245: 2180: 1508: 881: 1494: 1741:
that is treated by some other method, either analytical or numerical. The interaction of interest
1698: 1498: 1059: 53: 1037: 2393: 2367: 2316: 2261: 1490: 136: 1384: 299: 622:
which is much easier to solve since the right hand side no longer depends on the unknown state
416:
is the corresponding free scattering solution sometimes called the incident field. The factor
333: 2550: 2515: 2493: 1542: 67:
column can be approximated by assuming that each part of the plastic is polarized by the same
38: 34: 1418: 1364: 1017: 2467: 2428: 2385: 2326: 2253: 1538: 1129: 1791: 1764: 1671: 2507: 2463: 2424: 2381: 2249: 2472: 2447: 2176: 1744: 688: 357: 68: 2539: 2397: 2265: 1549: 351: 324: 2206: 2196: 674: 2389: 2330: 2304: 60: 49:
who proposed this approximation in early days of quantum theory development.
64: 1493:, the first-order Born approximation is almost always adequate, except for 2372: 46: 2257: 1486:
The Born approximation is used in several different physical contexts.
27: 884:
from the Born approximation to the Lippmann–Schwinger equation above,
2432: 2321: 1548:
The same ideas have also been applied to studying the movements of
471:
Within the Born approximation, the above equation is expressed as
2448:"The use of the Born approximation in seismic scattering problems" 1126:
is the transferred momentum. In the centrally symmetric potential
685:
Using the outgoing free Green's function for a particle with mass
1661:{\displaystyle \vert {\Psi _{\mathbf {p} }^{1}}^{(\pm )}\rangle } 2303:
Partha Sarathi Banerjee, Rahul Marathe, Sankalpa Ghosh (2024).
1541:
and to approximate the propagation of long-wavelength waves in
1595:{\displaystyle \vert {\Psi _{\mathbf {p} }^{\circ }}\rangle } 663:{\displaystyle \vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle } 457:{\displaystyle \vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle } 409:{\displaystyle \vert {\Psi _{\mathbf {p} }^{\circ }}\rangle } 124:{\displaystyle \vert {\Psi _{\mathbf {p} }^{(\pm )}}\rangle } 26:"DWBA" redirects here. For the Philippine radio station, see 1560:
The Born approximation is simplest when the incident waves
2236:
Born, Max (1926). "Quantenmechanik der Stossvorgänge".
1119:{\displaystyle \mathbf {q} =\mathbf {k} '-\mathbf {k} } 2452:
Geophysical Journal of the Royal Astronomical Society
2000: 1825: 1794: 1767: 1747: 1701: 1674: 1619: 1566: 1511: 1441: 1421: 1387: 1367: 1294: 1170: 1132: 1089: 1062: 1040: 1020: 893: 714: 691: 628: 480: 422: 380: 360: 336: 302: 148: 89: 75:
Born approximation to the Lippmann–Schwinger equation
1354:{\displaystyle q=|\mathbf {q} |=2k\sin(\theta /2).} 673:The obtained solution is the starting point of the 2164: 1980: 1807: 1780: 1753: 1733: 1687: 1660: 1594: 1528: 1470: 1427: 1407: 1373: 1353: 1277: 1153: 1118: 1075: 1048: 1026: 1003: 869: 697: 662: 611: 456: 408: 366: 342: 315: 285: 123: 464:on the right hand side is sometimes called the 1497:phenomena like internal total reflection in a 880:one can extract the Born approximation to the 681:Born approximation to the scattering amplitude 1034:is the angle between the incident wavevector 8: 2343:: CS1 maint: multiple names: authors list ( 2156: 2121: 2070: 2035: 2029: 2001: 1975: 1940: 1889: 1867: 1861: 1826: 1655: 1620: 1589: 1567: 657: 629: 603: 581: 537: 515: 509: 481: 451: 423: 403: 381: 277: 249: 205: 183: 177: 149: 118: 90: 997: 2471: 2371: 2320: 2144: 2137: 2131: 2130: 2125: 2115: 2093: 2080: 2058: 2051: 2045: 2044: 2039: 2016: 2010: 2009: 2004: 1999: 1963: 1956: 1950: 1949: 1944: 1934: 1912: 1899: 1882: 1876: 1875: 1870: 1849: 1842: 1836: 1835: 1830: 1824: 1799: 1793: 1772: 1766: 1746: 1725: 1712: 1700: 1679: 1673: 1643: 1636: 1630: 1629: 1624: 1618: 1582: 1576: 1575: 1570: 1565: 1518: 1510: 1457: 1440: 1420: 1397: 1386: 1366: 1337: 1311: 1306: 1301: 1293: 1248: 1227: 1222: 1210: 1196: 1175: 1169: 1131: 1111: 1099: 1090: 1088: 1064: 1061: 1041: 1039: 1019: 989: 976: 968: 964: 951: 935: 919: 898: 892: 859: 850: 841: 836: 822: 813: 804: 799: 789: 783: 775: 761: 743: 734: 719: 713: 690: 644: 638: 637: 632: 627: 596: 590: 589: 584: 560: 547: 530: 524: 523: 518: 496: 490: 489: 484: 479: 438: 432: 431: 426: 421: 396: 390: 389: 384: 379: 359: 335: 307: 301: 264: 258: 257: 252: 228: 215: 198: 192: 191: 186: 164: 158: 157: 152: 147: 105: 99: 98: 93: 88: 2512:Scattering Theory of Waves and Particles 2185:grazing-incidence small-angle scattering 1503:grazing-incidence small-angle scattering 135:and out-going (+) or in-going (−) 2288:Sakurai, J. J.; Napolitano, J. (2020). 2228: 1402: 1207: 932: 772: 2336: 2446:Hudson, J.A.; Heritage, J.R. (1980). 7: 1613:), the incident waves are solutions 1161:, the scattering amplitude becomes 2473:10.1111/j.1365-246x.1981.tb05954.x 2127: 2041: 2006: 1946: 1872: 1832: 1626: 1572: 1228: 634: 586: 520: 486: 428: 386: 254: 188: 154: 95: 14: 1607:distorted-wave Born approximation 1556:Distorted-wave Born approximation 2132: 2046: 2011: 1951: 1877: 1837: 1631: 1577: 1519: 1471:{\displaystyle p\sin(\theta /2)} 1307: 1112: 1100: 1091: 1065: 1042: 990: 977: 969: 851: 842: 814: 805: 744: 735: 639: 591: 525: 491: 433: 391: 259: 193: 159: 100: 1529:{\displaystyle V(\mathbf {r} )} 59:For example, the scattering of 2151: 2145: 2108: 2086: 2065: 2059: 2023: 2017: 1970: 1964: 1927: 1905: 1856: 1850: 1650: 1644: 1523: 1515: 1465: 1451: 1345: 1331: 1312: 1302: 1245: 1239: 1187: 1181: 1148: 1142: 994: 986: 910: 904: 860: 837: 823: 800: 752: 731: 726: 720: 651: 645: 575: 553: 503: 497: 445: 439: 271: 265: 243: 221: 171: 165: 112: 106: 21:Born–Oppenheimer approximation 1: 2315:(9). IOP Publishing: 095602. 2292:. Cambridge University Press. 1761:is treated as a perturbation 1734:{\displaystyle V=V^{1}+V^{2}} 1435:only through the combination 1415:and the scattering amplitude 1076:{\displaystyle \mathbf {k} '} 1056:and the scattered wavevector 2530:Quantum Theory of Scattering 1049:{\displaystyle \mathbf {k} } 19:Not to be confused with the 2514:. Dover Publications, inc. 2217:Rayleigh–Gans approximation 2202:Lippmann–Schwinger equation 2175:Other applications include 1991:and the Born approximation 374:the interaction potential. 81:Lippmann–Schwinger equation 2567: 2413:Journal of Applied Physics 2390:10.1103/physrevb.73.245403 1408:{\displaystyle p=k/\hbar } 316:{\displaystyle G^{\circ }} 25: 18: 343:{\displaystyle \epsilon } 83:for the scattering state 2489:Modern Quantum Mechanics 2331:10.1088/2040-8986/ad645b 2290:Modern Quantum Mechanics 2212:Electromagnetic modeling 1381:depends on the momentum 2486:Sakurai, J. J. (1994). 1428:{\displaystyle \theta } 1374:{\displaystyle \sigma } 1027:{\displaystyle \theta } 2238:Zeitschrift fĂĽr Physik 2166: 1982: 1809: 1782: 1755: 1735: 1689: 1662: 1596: 1530: 1472: 1429: 1409: 1375: 1355: 1279: 1155: 1154:{\displaystyle V=V(r)} 1120: 1077: 1050: 1028: 1005: 871: 699: 664: 613: 458: 410: 368: 344: 317: 287: 125: 2532:, Prentice Hall, 1962 2167: 1983: 1810: 1808:{\displaystyle V^{1}} 1783: 1781:{\displaystyle V^{2}} 1756: 1736: 1690: 1688:{\displaystyle V^{1}} 1663: 1597: 1531: 1473: 1430: 1410: 1376: 1356: 1280: 1156: 1121: 1078: 1051: 1029: 1006: 872: 705:in coordinate space, 700: 665: 614: 459: 411: 369: 345: 318: 288: 126: 37:and in particular in 2181:photoelectric effect 1998: 1823: 1792: 1765: 1745: 1699: 1672: 1617: 1564: 1509: 1439: 1419: 1385: 1365: 1292: 1168: 1130: 1087: 1060: 1038: 1018: 891: 882:scattering amplitude 712: 689: 626: 478: 420: 378: 358: 334: 300: 146: 87: 2464:1981GeoJ...66..221H 2425:1977JAP....48.2812G 2382:2006PhRvB..73x5403K 2250:1926ZPhy...38..803B 2142: 2056: 2027: 1961: 1887: 1847: 1641: 1587: 1552:through the Earth. 1232: 655: 601: 535: 507: 449: 401: 275: 203: 175: 137:boundary conditions 116: 2492:. Addison Wesley. 2258:10.1007/BF01397184 2244:(11–12): 803–827. 2162: 2126: 2040: 2005: 1978: 1945: 1871: 1831: 1805: 1778: 1751: 1731: 1685: 1658: 1625: 1592: 1571: 1526: 1491:neutron scattering 1468: 1425: 1405: 1371: 1351: 1275: 1218: 1151: 1116: 1073: 1046: 1024: 1001: 867: 695: 660: 633: 609: 585: 519: 485: 454: 427: 406: 385: 364: 340: 313: 283: 253: 187: 153: 121: 94: 43:Born approximation 2546:Scattering theory 2360:Physical Review B 2309:Journal of Optics 1754:{\displaystyle V} 1267: 1216: 942: 865: 781: 698:{\displaystyle m} 367:{\displaystyle V} 39:quantum mechanics 35:scattering theory 16:Scattering theory 2558: 2525: 2508:Newton, Roger G. 2503: 2478: 2477: 2475: 2443: 2437: 2436: 2433:10.1063/1.324142 2419:(7): 2812–2819. 2408: 2402: 2401: 2375: 2373:cond-mat/0606166 2355: 2349: 2348: 2342: 2334: 2324: 2300: 2294: 2293: 2285: 2279: 2276: 2270: 2269: 2233: 2171: 2169: 2168: 2163: 2155: 2154: 2143: 2141: 2136: 2135: 2120: 2119: 2098: 2097: 2085: 2084: 2069: 2068: 2057: 2055: 2050: 2049: 2028: 2026: 2015: 2014: 1987: 1985: 1984: 1979: 1974: 1973: 1962: 1960: 1955: 1954: 1939: 1938: 1917: 1916: 1904: 1903: 1888: 1886: 1881: 1880: 1860: 1859: 1848: 1846: 1841: 1840: 1814: 1812: 1811: 1806: 1804: 1803: 1787: 1785: 1784: 1779: 1777: 1776: 1760: 1758: 1757: 1752: 1740: 1738: 1737: 1732: 1730: 1729: 1717: 1716: 1694: 1692: 1691: 1686: 1684: 1683: 1667: 1665: 1664: 1659: 1654: 1653: 1642: 1640: 1635: 1634: 1601: 1599: 1598: 1593: 1588: 1586: 1581: 1580: 1539:bilayer graphene 1535: 1533: 1532: 1527: 1522: 1477: 1475: 1474: 1469: 1461: 1434: 1432: 1431: 1426: 1414: 1412: 1411: 1406: 1401: 1380: 1378: 1377: 1372: 1360: 1358: 1357: 1352: 1341: 1315: 1310: 1305: 1284: 1282: 1281: 1276: 1268: 1263: 1249: 1231: 1226: 1217: 1215: 1214: 1205: 1197: 1180: 1179: 1160: 1158: 1157: 1152: 1125: 1123: 1122: 1117: 1115: 1107: 1103: 1094: 1082: 1080: 1079: 1074: 1072: 1068: 1055: 1053: 1052: 1047: 1045: 1033: 1031: 1030: 1025: 1010: 1008: 1007: 1002: 993: 982: 981: 980: 972: 956: 955: 943: 941: 940: 939: 920: 903: 902: 876: 874: 873: 868: 866: 864: 863: 858: 854: 845: 840: 828: 827: 826: 821: 817: 808: 803: 784: 782: 780: 779: 770: 762: 751: 747: 738: 730: 729: 704: 702: 701: 696: 669: 667: 666: 661: 656: 654: 643: 642: 618: 616: 615: 610: 602: 600: 595: 594: 565: 564: 552: 551: 536: 534: 529: 528: 508: 506: 495: 494: 463: 461: 460: 455: 450: 448: 437: 436: 415: 413: 412: 407: 402: 400: 395: 394: 373: 371: 370: 365: 349: 347: 346: 341: 328:Green's function 322: 320: 319: 314: 312: 311: 292: 290: 289: 284: 276: 274: 263: 262: 233: 232: 220: 219: 204: 202: 197: 196: 176: 174: 163: 162: 131:with a momentum 130: 128: 127: 122: 117: 115: 104: 103: 2566: 2565: 2561: 2560: 2559: 2557: 2556: 2555: 2536: 2535: 2528:Wu and Ohmura, 2522: 2506: 2500: 2485: 2482: 2481: 2445: 2444: 2440: 2410: 2409: 2405: 2357: 2356: 2352: 2335: 2302: 2301: 2297: 2287: 2286: 2282: 2277: 2273: 2235: 2234: 2230: 2225: 2193: 2124: 2111: 2089: 2076: 2038: 1996: 1995: 1943: 1930: 1908: 1895: 1829: 1821: 1820: 1795: 1790: 1789: 1788:to some system 1768: 1763: 1762: 1743: 1742: 1721: 1708: 1697: 1696: 1695:of the problem 1675: 1670: 1669: 1623: 1615: 1614: 1562: 1561: 1558: 1507: 1506: 1495:neutron optical 1484: 1437: 1436: 1417: 1416: 1383: 1382: 1363: 1362: 1290: 1289: 1250: 1206: 1198: 1171: 1166: 1165: 1128: 1127: 1098: 1085: 1084: 1063: 1058: 1057: 1036: 1035: 1016: 1015: 960: 947: 931: 924: 894: 889: 888: 849: 829: 812: 785: 771: 763: 742: 715: 710: 709: 687: 686: 683: 624: 623: 556: 543: 476: 475: 418: 417: 376: 375: 356: 355: 332: 331: 303: 298: 297: 224: 211: 144: 143: 85: 84: 77: 31: 24: 17: 12: 11: 5: 2564: 2562: 2554: 2553: 2548: 2538: 2537: 2534: 2533: 2526: 2520: 2504: 2498: 2480: 2479: 2458:(1): 221–240. 2438: 2403: 2366:(24): 245403. 2350: 2295: 2280: 2271: 2227: 2226: 2224: 2221: 2220: 2219: 2214: 2209: 2204: 2199: 2192: 2189: 2177:bremsstrahlung 2173: 2172: 2161: 2158: 2153: 2150: 2147: 2140: 2134: 2129: 2123: 2118: 2114: 2110: 2107: 2104: 2101: 2096: 2092: 2088: 2083: 2079: 2075: 2072: 2067: 2064: 2061: 2054: 2048: 2043: 2037: 2034: 2031: 2025: 2022: 2019: 2013: 2008: 2003: 1989: 1988: 1977: 1972: 1969: 1966: 1959: 1953: 1948: 1942: 1937: 1933: 1929: 1926: 1923: 1920: 1915: 1911: 1907: 1902: 1898: 1894: 1891: 1885: 1879: 1874: 1869: 1866: 1863: 1858: 1855: 1852: 1845: 1839: 1834: 1828: 1802: 1798: 1775: 1771: 1750: 1728: 1724: 1720: 1715: 1711: 1707: 1704: 1682: 1678: 1657: 1652: 1649: 1646: 1639: 1633: 1628: 1622: 1591: 1585: 1579: 1574: 1569: 1557: 1554: 1525: 1521: 1517: 1514: 1483: 1480: 1467: 1464: 1460: 1456: 1453: 1450: 1447: 1444: 1424: 1404: 1400: 1396: 1393: 1390: 1370: 1350: 1347: 1344: 1340: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1314: 1309: 1304: 1300: 1297: 1286: 1285: 1274: 1271: 1266: 1262: 1259: 1256: 1253: 1247: 1244: 1241: 1238: 1235: 1230: 1225: 1221: 1213: 1209: 1204: 1201: 1195: 1192: 1189: 1186: 1183: 1178: 1174: 1150: 1147: 1144: 1141: 1138: 1135: 1114: 1110: 1106: 1102: 1097: 1093: 1071: 1067: 1044: 1023: 1012: 1011: 1000: 996: 992: 988: 985: 979: 975: 971: 967: 963: 959: 954: 950: 946: 938: 934: 930: 927: 923: 918: 915: 912: 909: 906: 901: 897: 878: 877: 862: 857: 853: 848: 844: 839: 835: 832: 825: 820: 816: 811: 807: 802: 798: 795: 792: 788: 778: 774: 769: 766: 760: 757: 754: 750: 746: 741: 737: 733: 728: 725: 722: 718: 694: 682: 679: 659: 653: 650: 647: 641: 636: 631: 620: 619: 608: 605: 599: 593: 588: 583: 580: 577: 574: 571: 568: 563: 559: 555: 550: 546: 542: 539: 533: 527: 522: 517: 514: 511: 505: 502: 499: 493: 488: 483: 453: 447: 444: 441: 435: 430: 425: 405: 399: 393: 388: 383: 363: 354:quantity, and 350:is a positive 339: 310: 306: 294: 293: 282: 279: 273: 270: 267: 261: 256: 251: 248: 245: 242: 239: 236: 231: 227: 223: 218: 214: 210: 207: 201: 195: 190: 185: 182: 179: 173: 170: 167: 161: 156: 151: 120: 114: 111: 108: 102: 97: 92: 76: 73: 69:electric field 15: 13: 10: 9: 6: 4: 3: 2: 2563: 2552: 2549: 2547: 2544: 2543: 2541: 2531: 2527: 2523: 2521:0-486-42535-5 2517: 2513: 2509: 2505: 2501: 2499:0-201-53929-2 2495: 2491: 2490: 2484: 2483: 2474: 2469: 2465: 2461: 2457: 2453: 2449: 2442: 2439: 2434: 2430: 2426: 2422: 2418: 2414: 2407: 2404: 2399: 2395: 2391: 2387: 2383: 2379: 2374: 2369: 2365: 2361: 2354: 2351: 2346: 2340: 2332: 2328: 2323: 2318: 2314: 2310: 2306: 2299: 2296: 2291: 2284: 2281: 2275: 2272: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2232: 2229: 2222: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2194: 2190: 2188: 2186: 2182: 2178: 2159: 2148: 2138: 2116: 2112: 2105: 2102: 2099: 2094: 2090: 2081: 2077: 2073: 2062: 2052: 2032: 2020: 1994: 1993: 1992: 1967: 1957: 1935: 1931: 1924: 1921: 1918: 1913: 1909: 1900: 1896: 1892: 1883: 1864: 1853: 1843: 1819: 1818: 1817: 1800: 1796: 1773: 1769: 1748: 1726: 1722: 1718: 1713: 1709: 1705: 1702: 1680: 1676: 1647: 1637: 1612: 1608: 1603: 1583: 1555: 1553: 1551: 1550:seismic waves 1546: 1544: 1543:elastic media 1540: 1512: 1504: 1500: 1499:neutron guide 1496: 1492: 1487: 1481: 1479: 1462: 1458: 1454: 1448: 1445: 1442: 1422: 1398: 1394: 1391: 1388: 1368: 1348: 1342: 1338: 1334: 1328: 1325: 1322: 1319: 1316: 1298: 1295: 1272: 1269: 1264: 1260: 1257: 1254: 1251: 1242: 1236: 1233: 1223: 1219: 1211: 1202: 1199: 1193: 1190: 1184: 1176: 1172: 1164: 1163: 1162: 1145: 1139: 1136: 1133: 1108: 1104: 1095: 1069: 1021: 998: 983: 973: 965: 961: 957: 952: 948: 944: 936: 928: 925: 921: 916: 913: 907: 899: 895: 887: 886: 885: 883: 855: 846: 833: 830: 818: 809: 796: 793: 790: 786: 776: 767: 764: 758: 755: 748: 739: 723: 716: 708: 707: 706: 692: 680: 678: 676: 671: 648: 606: 597: 578: 572: 569: 566: 561: 557: 548: 544: 540: 531: 512: 500: 474: 473: 472: 469: 467: 466:driving field 442: 397: 361: 353: 352:infinitesimal 337: 329: 326: 325:free particle 308: 304: 280: 268: 246: 240: 237: 234: 229: 225: 216: 212: 208: 199: 180: 168: 142: 141: 140: 138: 134: 109: 82: 74: 72: 70: 66: 62: 57: 55: 50: 48: 44: 40: 36: 33:Generally in 29: 22: 2529: 2511: 2487: 2455: 2451: 2441: 2416: 2412: 2406: 2363: 2359: 2353: 2339:cite journal 2312: 2308: 2298: 2289: 2283: 2274: 2241: 2237: 2231: 2207:Dyson series 2174: 1990: 1610: 1606: 1604: 1559: 1547: 1488: 1485: 1482:Applications 1287: 1013: 879: 684: 672: 621: 470: 465: 295: 132: 78: 58: 54:perturbation 51: 42: 32: 2197:Born series 675:Born series 63:by a light 61:radio waves 2540:Categories 2322:2402.11259 2223:References 1668:to a part 52:It is the 2398:119415260 2266:126244962 2157:⟩ 2149:± 2128:Ψ 2100:± 2071:⟩ 2063:± 2042:Ψ 2030:⟩ 2021:± 2007:Ψ 1976:⟩ 1968:± 1947:Ψ 1919:± 1901:∘ 1890:⟩ 1884:∘ 1873:Ψ 1862:⟩ 1854:± 1833:Ψ 1656:⟩ 1648:± 1627:Ψ 1590:⟩ 1584:∘ 1573:Ψ 1455:θ 1449:⁡ 1423:θ 1403:ℏ 1369:σ 1335:θ 1329:⁡ 1255:⁡ 1229:∞ 1220:∫ 1208:ℏ 1194:− 1185:θ 1109:− 1022:θ 974:⋅ 945:∫ 933:ℏ 929:π 917:− 908:θ 847:− 834:π 810:− 773:ℏ 759:− 658:⟩ 649:± 635:Ψ 604:⟩ 598:∘ 587:Ψ 573:ϵ 567:± 549:∘ 538:⟩ 532:∘ 521:Ψ 510:⟩ 501:± 487:Ψ 452:⟩ 443:± 429:Ψ 404:⟩ 398:∘ 387:Ψ 338:ϵ 309:∘ 278:⟩ 269:± 255:Ψ 241:ϵ 235:± 217:∘ 206:⟩ 200:∘ 189:Ψ 178:⟩ 169:± 155:Ψ 119:⟩ 110:± 96:Ψ 65:styrofoam 2551:Max Born 2510:(2002). 2191:See also 2179:and the 1105:′ 1070:′ 856:′ 819:′ 749:′ 47:Max Born 2460:Bibcode 2421:Bibcode 2378:Bibcode 2246:Bibcode 1605:In the 323:is the 28:DWBA-FM 2518:  2496:  2396:  2264:  1288:where 1014:where 296:where 41:, the 2394:S2CID 2368:arXiv 2317:arXiv 2262:S2CID 1501:, or 2516:ISBN 2494:ISBN 2345:link 1611:DWBA 79:The 2468:doi 2429:doi 2386:doi 2327:doi 2254:doi 1489:In 1446:sin 1326:sin 1252:sin 139:is 2542:: 2466:. 2456:66 2454:. 2450:. 2427:. 2417:48 2415:. 2392:. 2384:. 2376:. 2364:73 2362:. 2341:}} 2337:{{ 2325:. 2313:26 2311:. 2307:. 2260:. 2252:. 2242:38 2240:. 2187:. 1545:. 1478:. 1083:, 677:. 670:. 468:. 330:, 2524:. 2502:. 2476:. 2470:: 2462:: 2435:. 2431:: 2423:: 2400:. 2388:: 2380:: 2370:: 2347:) 2333:. 2329:: 2319:: 2268:. 2256:: 2248:: 2160:. 2152:) 2146:( 2139:1 2133:p 2122:| 2117:2 2113:V 2109:) 2106:0 2103:i 2095:p 2091:E 2087:( 2082:1 2078:G 2074:+ 2066:) 2060:( 2053:1 2047:p 2036:| 2033:= 2024:) 2018:( 2012:p 2002:| 1971:) 1965:( 1958:1 1952:p 1941:| 1936:1 1932:V 1928:) 1925:0 1922:i 1914:p 1910:E 1906:( 1897:G 1893:+ 1878:p 1868:| 1865:= 1857:) 1851:( 1844:1 1838:p 1827:| 1801:1 1797:V 1774:2 1770:V 1749:V 1727:2 1723:V 1719:+ 1714:1 1710:V 1706:= 1703:V 1681:1 1677:V 1651:) 1645:( 1638:1 1632:p 1621:| 1609:( 1578:p 1568:| 1524:) 1520:r 1516:( 1513:V 1466:) 1463:2 1459:/ 1452:( 1443:p 1399:/ 1395:k 1392:= 1389:p 1349:. 1346:) 1343:2 1339:/ 1332:( 1323:k 1320:2 1317:= 1313:| 1308:q 1303:| 1299:= 1296:q 1273:r 1270:d 1265:q 1261:r 1258:q 1246:) 1243:r 1240:( 1237:V 1234:r 1224:0 1212:2 1203:m 1200:2 1191:= 1188:) 1182:( 1177:B 1173:f 1149:) 1146:r 1143:( 1140:V 1137:= 1134:V 1113:k 1101:k 1096:= 1092:q 1066:k 1043:k 999:, 995:) 991:r 987:( 984:V 978:r 970:q 966:i 962:e 958:r 953:3 949:d 937:2 926:2 922:m 914:= 911:) 905:( 900:B 896:f 861:| 852:r 843:r 838:| 831:4 824:| 815:r 806:r 801:| 797:k 794:i 791:+ 787:e 777:2 768:m 765:2 756:= 753:) 745:r 740:, 736:r 732:( 727:) 724:+ 721:( 717:G 693:m 652:) 646:( 640:p 630:| 607:, 592:p 582:| 579:V 576:) 570:i 562:p 558:E 554:( 545:G 541:+ 526:p 516:| 513:= 504:) 498:( 492:p 482:| 446:) 440:( 434:p 424:| 392:p 382:| 362:V 305:G 281:, 272:) 266:( 260:p 250:| 247:V 244:) 238:i 230:p 226:E 222:( 213:G 209:+ 194:p 184:| 181:= 172:) 166:( 160:p 150:| 133:p 113:) 107:( 101:p 91:| 30:. 23:.

Index

Born–Oppenheimer approximation
DWBA-FM
scattering theory
quantum mechanics
Max Born
perturbation
radio waves
styrofoam
electric field
Lippmann–Schwinger equation
boundary conditions
free particle
Green's function
infinitesimal
Born series
scattering amplitude
neutron scattering
neutron optical
neutron guide
grazing-incidence small-angle scattering
bilayer graphene
elastic media
seismic waves
bremsstrahlung
photoelectric effect
grazing-incidence small-angle scattering
Born series
Lippmann–Schwinger equation
Dyson series
Electromagnetic modeling

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑