Knowledge (XXG)

Borel–Weil–Bott theorem

Source 📝

1578: 1436: 3053:(1954) , "Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d'après Armand Borel et André Weil)" [Linear representations and Kähler homogeneous spaces of compact Lie groups (after Armand Borel and André Weil)], 2716: 2457: 1441: 1573:{\displaystyle {\begin{aligned}H&=x{\frac {\partial }{\partial x}}-y{\frac {\partial }{\partial y}},\\X&=x{\frac {\partial }{\partial y}},\\Y&=y{\frac {\partial }{\partial x}}.\end{aligned}}} 459: 1428: 1279: 1056: 2865: 968: 2225: 1829: 1690: 862: 787: 521: 1363: 1321: 1929: 324: 2555: 658: 1194: 897: 1951: 355: 111: 1724: 998: 716: 600: 1855: 1750: 1626: 1098: 690: 626: 574: 393: 3176: 1996:
of the group. The Borel–Weil–Bott theorem is its generalization to higher cohomology spaces. The theorem dates back to the early 1950s and can be found in
3181: 2632: 2359: 1373:. We even have a unified description of the action of the Lie algebra, derived from its realization as vector fields on the Riemann sphere: if 2977: 2930: 2267: 55:, dealing just with the space of sections (the zeroth cohomology group), the extension to higher cohomology groups being provided by 3089: 1873:
is an arbitrary integral weight, it is in fact a large unsolved problem in representation theory to describe the cohomology modules
2949: 2128: 136: 410: 3032: 2961: 2902: 2245: 2294:. (A holomorphic representation of a complex Lie group is one for which the corresponding Lie algebra representation is 1388: 1239: 1007: 3027: 2808: 906: 361:-module structure on these groups; and the Borel–Weil–Bott theorem gives an explicit description of these groups as 2953: 1970: 1599: 84: 64: 2174: 1770: 1631: 803: 728: 484: 1326: 1284: 3125: 1876: 271: 3022: 2741: 2732: 2497: 1989: 1757: 224: 2599:, with a Borel subgroup consisting of upper triangular matrices with determinant one. Integral weights for 2019: 1985: 1861:-module is simple in general, although it does contain the unique highest weight module of highest weight 1202: 1198: 88: 631: 3116: 28: 3160: 1166: 35:, showing how a family of representations can be obtained from holomorphic sections of certain complex 2589: 1981: 867: 261: 1934: 333: 94: 2609:, with dominant weights corresponding to nonnegative integers, and the corresponding characters 1703: 977: 695: 579: 3085: 3050: 2991: 2973: 2926: 2091: 1974: 183: 3134: 3005: 2965: 2078: 1834: 1729: 1605: 1163: 1077: 669: 605: 553: 375: 265: 205: 68: 40: 3146: 2987: 469:. It is straightforward to check that this defines a group action, although this action is 3142: 2983: 2351: 2118: 2034: 1978: 1370: 2044: 1137: 171: 121: 3170: 3015: 1993: 114: 52: 36: 3039: 1760:. However, the other statements of the theorem do not remain valid in this setting. 3067: 2711:{\displaystyle \chi _{n}{\begin{pmatrix}a&b\\0&a^{-1}\end{pmatrix}}=a^{n}.} 2068: 1594:
One also has a weaker form of this theorem in positive characteristic. Namely, let
48: 2452:{\displaystyle f:G\to \mathbb {C} _{\lambda }:f(gb)=\chi _{\lambda }(b^{-1})f(g)} 2312:
gives rise to a character (one-dimensional representation) of the Borel subgroup
3043: 246: 20: 3103:, Princeton Landmarks in Mathematics, Princeton, NJ: Princeton University Press 3156: 2969: 1584: 532: 369: 56: 2995: 32: 1953:, Mumford gave an example showing that it need not be the case for a fixed 3138: 3101:
Representation theory of semisimple groups: An overview based on examples
2606: 2964:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 2790:
and forms an irreducible representation under the standard action of
1114: 3084:, Graduate Texts in Mathematics, vol. 235, New York: Springer, 2012:
The theorem can be stated either for a complex semisimple Lie group
3155:
This article incorporates material from Borel–Bott–Weil theorem on
2764:
is identified with the space of homogeneous polynomials of degree
3010:
The Penrose Transform: its Interaction with Representation Theory
3074:, Acad. Roy. Belg. Cl. Sci. Mém. Coll. (in French), vol. 29 970:
is the dual of the irreducible highest-weight representation of
60: 43:
groups associated to such bundles. It is built on the earlier
1984:. These representations are realized in the spaces of global 1004:
It is worth noting that case (1) above occurs if and only if
1338: 1296: 1172: 3072:
Sur certaines classes d'espaces homogènes de groupes de Lie
473:
linear, unlike the usual Weyl group action. Also, a weight
1957:
that these modules are all zero except in a single degree
1767:
be a dominant integral weight; then it is still true that
147:
defines in a natural way a one-dimensional representation
2753:
and the space of the global sections of the line bundle
3119:(1998). "Borel–Weil–Bott theory on the moduli stack of 1236:
This gives us at a stroke the representation theory of
1140:, an integral weight is specified simply by an integer 357:
by bundle automorphisms, this action naturally gives a
16:
Basic result in the representation theory of Lie groups
2651: 2329:. Holomorphic sections of the holomorphic line bundle 2090:. The flag variety can also be described as a compact 602:
is dominant, equivalently, there exists a nonidentity
2811: 2635: 2500: 2362: 2177: 1969:
The Borel–Weil theorem provides a concrete model for
1937: 1879: 1837: 1773: 1732: 1706: 1634: 1608: 1439: 1391: 1329: 1287: 1242: 1169: 1080: 1010: 980: 909: 870: 806: 731: 698: 672: 634: 608: 582: 556: 487: 454:{\displaystyle w*\lambda :=w(\lambda +\rho )-\rho \,} 413: 378: 336: 274: 97: 722:The theorem states that in the first case, we have 2925:(second ed.). American Mathematical Society. 2859: 2710: 2549: 2451: 2219: 1945: 1923: 1849: 1823: 1744: 1718: 1684: 1620: 1572: 1423:{\displaystyle {\mathfrak {sl}}_{2}(\mathbf {C} )} 1422: 1357: 1315: 1274:{\displaystyle {\mathfrak {sl}}_{2}(\mathbf {C} )} 1273: 1188: 1092: 1051:{\displaystyle (\lambda +\rho )(\beta ^{\vee })=0} 1050: 992: 962: 891: 856: 781: 710: 684: 652: 620: 594: 568: 515: 453: 387: 349: 318: 105: 2282:, and each irreducible unitary representation of 3161:Creative Commons Attribution/Share-Alike License 2860:{\displaystyle X^{i}Y^{n-i},\quad 0\leq i\leq n} 963:{\displaystyle H^{\ell (w)}(G/B,\,L_{\lambda })} 1977:and irreducible holomorphic representations of 2288:is obtained in this way for a unique value of 2240:integral weight then this representation is a 8: 2220:{\displaystyle \Gamma (G/B,L_{\lambda }).\ } 1066:as a special case of this theorem by taking 1824:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 1685:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 857:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 782:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 516:{\displaystyle \mu (\alpha ^{\vee })\geq 0} 190:. Since we can think of the projection map 1358:{\displaystyle \Gamma ({\mathcal {O}}(n))} 1316:{\displaystyle \Gamma ({\mathcal {O}}(1))} 465:denotes the half-sum of positive roots of 2826: 2816: 2810: 2699: 2675: 2646: 2640: 2634: 2532: 2499: 2425: 2412: 2381: 2377: 2376: 2361: 2202: 2187: 2176: 1939: 1938: 1936: 1924:{\displaystyle H^{i}(G/B,\,L_{\lambda })} 1912: 1907: 1896: 1884: 1878: 1836: 1806: 1801: 1790: 1778: 1772: 1756:is "close to zero". This is known as the 1731: 1705: 1667: 1662: 1651: 1639: 1633: 1607: 1548: 1513: 1478: 1457: 1440: 1438: 1412: 1403: 1394: 1393: 1390: 1337: 1336: 1328: 1295: 1294: 1286: 1263: 1254: 1245: 1244: 1241: 1171: 1170: 1168: 1079: 1033: 1009: 979: 951: 946: 935: 914: 908: 869: 839: 834: 823: 811: 805: 764: 759: 748: 736: 730: 697: 671: 633: 607: 581: 555: 498: 486: 450: 412: 377: 341: 335: 319:{\displaystyle H^{i}(G/B,\,L_{\lambda })} 307: 302: 291: 279: 273: 264:of holomorphic sections, we consider the 99: 98: 96: 2802:. Weight vectors are given by monomials 1598:be a semisimple algebraic group over an 162:, by pulling back the representation on 59:. One can equivalently, through Serre's 2913: 3040:A Proof of the Borel–Weil–Bott Theorem 2550:{\displaystyle g\cdot f(h)=f(g^{-1}h)} 2230:The Borel–Weil theorem states that if 2168:acts on its space of global sections, 330:acts on the total space of the bundle 245:(note the sign), which is obviously a 2958:Representation theory. A first course 1997: 1857:, but it is no longer true that this 7: 2350:may be described more concretely as 2001: 1323:is the standard representation, and 3177:Representation theory of Lie groups 2923:Representations of algebraic groups 1398: 1395: 1249: 1246: 1225:, and is canonically isomorphic to 653:{\displaystyle w*\lambda =\lambda } 39:, and, more generally, from higher 2268:irreducible unitary representation 2178: 1554: 1550: 1519: 1515: 1484: 1480: 1463: 1459: 1330: 1288: 14: 3182:Theorems in representation theory 1217:, the sections can be written as 1189:{\displaystyle {\mathcal {O}}(n)} 2881:, and the highest weight vector 1413: 1264: 1062:. Also, we obtain the classical 797:and in the second case, we have 3105:. Reprint of the 1986 original. 2841: 2491:on these sections is given by 1385:are the standard generators of 3159:, which is licensed under the 2921:Jantzen, Jens Carsten (2003). 2544: 2525: 2516: 2510: 2446: 2440: 2434: 2418: 2402: 2393: 2372: 2208: 2181: 2037:complex semisimple Lie group, 1918: 1890: 1812: 1784: 1673: 1645: 1417: 1409: 1352: 1349: 1343: 1333: 1310: 1307: 1301: 1291: 1268: 1260: 1183: 1177: 1039: 1026: 1023: 1011: 957: 929: 924: 918: 892:{\displaystyle i\neq \ell (w)} 886: 880: 845: 817: 770: 742: 504: 491: 441: 429: 368:We first need to describe the 313: 285: 1: 3046:. Retrieved on Jul. 13, 2014. 2962:Graduate Texts in Mathematics 2903:Theorem of the highest weight 2246:highest weight representation 2081:and a nonsingular algebraic 1946:{\displaystyle \mathbb {C} } 1628:. Then it remains true that 350:{\displaystyle L_{\lambda }} 106:{\displaystyle \mathbb {C} } 3028:Encyclopedia of Mathematics 2783:, this space has dimension 2731:may be identified with the 1971:irreducible representations 1074:to be the identity element 63:, view this as a result in 3198: 3099:Knapp, Anthony W. (2001), 3080:Sepanski, Mark R. (2007), 2796:on the polynomial algebra 1719:{\displaystyle w*\lambda } 1600:algebraically closed field 1582: 1213:). As a representation of 993:{\displaystyle w*\lambda } 711:{\displaystyle w*\lambda } 595:{\displaystyle w*\lambda } 546:, one of two cases occur: 395:. For any integral weight 65:complex algebraic geometry 3023:"Bott–Borel–Weil theorem" 3012:, Oxford University Press 2970:10.1007/978-1-4612-0979-9 542:Given an integral weight 27:is a basic result in the 3126:Inventiones Mathematicae 3123:-bundles over a curve". 2145:holomorphic line bundle 2008:Statement of the theorem 1990:holomorphic line bundles 1931:in general. Unlike over 1726:is non-dominant for all 2742:homogeneous coordinates 2733:complex projective line 2605:may be identified with 1758:Kempf vanishing theorem 1590:Positive characteristic 1203:homogeneous polynomials 1058:for some positive root 225:associated fiber bundle 25:Borel–Weil–Bott theorem 2861: 2712: 2551: 2453: 2221: 1947: 1925: 1851: 1850:{\displaystyle i>0} 1825: 1746: 1745:{\displaystyle w\in W} 1720: 1700:is a weight such that 1686: 1622: 1621:{\displaystyle p>0} 1574: 1424: 1359: 1317: 1275: 1190: 1108:For example, consider 1094: 1093:{\displaystyle e\in W} 1052: 994: 964: 893: 858: 783: 712: 686: 685:{\displaystyle w\in W} 654: 622: 621:{\displaystyle w\in W} 596: 570: 569:{\displaystyle w\in W} 517: 455: 389: 388:{\displaystyle -\rho } 351: 320: 107: 3139:10.1007/s002220050257 2862: 2713: 2552: 2454: 2260:. Its restriction to 2222: 1982:semisimple Lie groups 1948: 1926: 1852: 1826: 1763:More explicitly, let 1747: 1721: 1687: 1623: 1583:Further information: 1575: 1425: 1360: 1318: 1276: 1191: 1095: 1053: 995: 965: 894: 859: 784: 713: 687: 655: 623: 597: 571: 523:for all simple roots 518: 456: 390: 352: 321: 108: 29:representation theory 3006:Eastwood, Michael G. 2809: 2633: 2590:special linear group 2498: 2360: 2302:Concrete description 2276:with highest weight 2254:with highest weight 2175: 2071:. In this scenario, 1935: 1877: 1835: 1771: 1730: 1704: 1632: 1606: 1437: 1389: 1327: 1285: 1240: 1167: 1078: 1008: 978: 974:with highest weight 907: 868: 804: 729: 696: 670: 632: 606: 580: 554: 485: 411: 376: 334: 272: 95: 3117:Teleman, Constantin 3082:Compact Lie groups. 3004:Baston, Robert J.; 2318:, which is denoted 1070:to be dominant and 372:action centered at 3055:Séminaire Bourbaki 3051:Serre, Jean-Pierre 2857: 2708: 2686: 2547: 2449: 2217: 1975:compact Lie groups 1965:Borel–Weil theorem 1943: 1921: 1847: 1821: 1742: 1716: 1682: 1618: 1602:of characteristic 1570: 1568: 1420: 1355: 1313: 1271: 1186: 1151:. The line bundle 1090: 1064:Borel–Weil theorem 1048: 990: 960: 889: 854: 779: 708: 682: 650: 618: 592: 566: 513: 451: 403:in the Weyl group 385: 347: 316: 103: 45:Borel–Weil theorem 2979:978-0-387-97495-8 2932:978-0-8218-3527-2 2721:The flag variety 2216: 2092:homogeneous space 1561: 1526: 1491: 1470: 184:unipotent radical 3189: 3150: 3104: 3094: 3075: 3062: 3036: 3013: 2999: 2937: 2936: 2918: 2892: 2886: 2880: 2866: 2864: 2863: 2858: 2837: 2836: 2821: 2820: 2801: 2795: 2789: 2782: 2775: 2769: 2763: 2752: 2739: 2730: 2717: 2715: 2714: 2709: 2704: 2703: 2691: 2690: 2683: 2682: 2645: 2644: 2625: 2619: 2604: 2598: 2587: 2573: 2556: 2554: 2553: 2548: 2540: 2539: 2490: 2481: 2471: 2458: 2456: 2455: 2450: 2433: 2432: 2417: 2416: 2386: 2385: 2380: 2352:holomorphic maps 2349: 2339: 2328: 2317: 2311: 2293: 2287: 2281: 2275: 2265: 2259: 2253: 2235: 2226: 2224: 2223: 2218: 2214: 2207: 2206: 2191: 2167: 2161: 2155: 2144: 2142: 2135: 2126: 2116: 2102: 2089: 2087: 2079:complex manifold 2076: 2066: 2052: 2042: 2032: 2026: 2017: 1960: 1956: 1952: 1950: 1949: 1944: 1942: 1930: 1928: 1927: 1922: 1917: 1916: 1900: 1889: 1888: 1872: 1868: 1864: 1860: 1856: 1854: 1853: 1848: 1830: 1828: 1827: 1822: 1811: 1810: 1794: 1783: 1782: 1766: 1755: 1751: 1749: 1748: 1743: 1725: 1723: 1722: 1717: 1699: 1695: 1691: 1689: 1688: 1683: 1672: 1671: 1655: 1644: 1643: 1627: 1625: 1624: 1619: 1597: 1579: 1577: 1576: 1571: 1569: 1562: 1560: 1549: 1527: 1525: 1514: 1492: 1490: 1479: 1471: 1469: 1458: 1429: 1427: 1426: 1421: 1416: 1408: 1407: 1402: 1401: 1384: 1380: 1376: 1368: 1364: 1362: 1361: 1356: 1342: 1341: 1322: 1320: 1319: 1314: 1300: 1299: 1280: 1278: 1277: 1272: 1267: 1259: 1258: 1253: 1252: 1232: 1224: 1216: 1208: 1195: 1193: 1192: 1187: 1176: 1175: 1161: 1150: 1143: 1135: 1125: 1099: 1097: 1096: 1091: 1073: 1069: 1061: 1057: 1055: 1054: 1049: 1038: 1037: 999: 997: 996: 991: 973: 969: 967: 966: 961: 956: 955: 939: 928: 927: 898: 896: 895: 890: 863: 861: 860: 855: 844: 843: 827: 816: 815: 792: 788: 786: 785: 780: 769: 768: 752: 741: 740: 717: 715: 714: 709: 691: 689: 688: 683: 659: 657: 656: 651: 627: 625: 624: 619: 601: 599: 598: 593: 575: 573: 572: 567: 545: 538: 530: 526: 522: 520: 519: 514: 503: 502: 476: 468: 464: 460: 458: 457: 452: 406: 402: 398: 394: 392: 391: 386: 364: 360: 356: 354: 353: 348: 346: 345: 329: 325: 323: 322: 317: 312: 311: 295: 284: 283: 266:sheaf cohomology 259: 244: 234: 222: 209: 203: 189: 181: 177: 161: 157: 146: 142: 134: 130: 126: 119: 112: 110: 109: 104: 102: 82: 69:Zariski topology 41:sheaf cohomology 3197: 3196: 3192: 3191: 3190: 3188: 3187: 3186: 3167: 3166: 3115: 3112: 3110:Further reading 3098: 3092: 3079: 3066: 3049: 3021: 3003: 2980: 2950:Fulton, William 2948: 2945: 2940: 2933: 2920: 2919: 2915: 2911: 2899: 2888: 2882: 2871: 2822: 2812: 2807: 2806: 2797: 2791: 2784: 2777: 2771: 2765: 2762: 2754: 2744: 2735: 2722: 2695: 2685: 2684: 2671: 2669: 2663: 2662: 2657: 2647: 2636: 2631: 2630: 2621: 2618: 2610: 2600: 2592: 2588:be the complex 2583: 2580: 2561: 2528: 2496: 2495: 2486: 2473: 2463: 2421: 2408: 2375: 2358: 2357: 2341: 2338: 2330: 2327: 2319: 2313: 2307: 2304: 2289: 2283: 2277: 2271: 2261: 2255: 2249: 2231: 2198: 2173: 2172: 2163: 2157: 2154: 2146: 2138: 2137: 2131: 2129:integral weight 2122: 2119:Cartan subgroup 2117:is a (compact) 2104: 2094: 2083: 2082: 2072: 2054: 2048: 2038: 2028: 2022: 2013: 2010: 1967: 1958: 1954: 1933: 1932: 1908: 1880: 1875: 1874: 1870: 1869:-submodule. If 1866: 1862: 1858: 1833: 1832: 1802: 1774: 1769: 1768: 1764: 1753: 1728: 1727: 1702: 1701: 1697: 1693: 1663: 1635: 1630: 1629: 1604: 1603: 1595: 1592: 1587: 1567: 1566: 1553: 1538: 1532: 1531: 1518: 1503: 1497: 1496: 1483: 1462: 1447: 1435: 1434: 1392: 1387: 1386: 1382: 1378: 1374: 1371:symmetric power 1366: 1325: 1324: 1283: 1282: 1243: 1238: 1237: 1226: 1218: 1214: 1206: 1165: 1164: 1160: 1152: 1145: 1141: 1127: 1118: 1109: 1106: 1076: 1075: 1071: 1067: 1059: 1029: 1006: 1005: 976: 975: 971: 947: 910: 905: 904: 866: 865: 835: 807: 802: 801: 790: 760: 732: 727: 726: 694: 693: 668: 667: 630: 629: 604: 603: 578: 577: 552: 551: 543: 536: 533:length function 528: 524: 494: 483: 482: 474: 466: 462: 409: 408: 404: 400: 396: 374: 373: 362: 358: 337: 332: 331: 327: 303: 275: 270: 269: 258: 250: 236: 233: 227: 221: 213: 207: 191: 187: 179: 163: 159: 156: 148: 144: 140: 137:integral weight 132: 128: 127:which contains 124: 117: 93: 92: 89:algebraic group 80: 77: 17: 12: 11: 5: 3195: 3193: 3185: 3184: 3179: 3169: 3168: 3152: 3151: 3111: 3108: 3107: 3106: 3096: 3090: 3077: 3064: 3061:(100): 447–454 3047: 3037: 3019: 3001: 2978: 2944: 2941: 2939: 2938: 2931: 2912: 2910: 2907: 2906: 2905: 2898: 2895: 2868: 2867: 2856: 2853: 2850: 2847: 2844: 2840: 2835: 2832: 2829: 2825: 2819: 2815: 2758: 2719: 2718: 2707: 2702: 2698: 2694: 2689: 2681: 2678: 2674: 2670: 2668: 2665: 2664: 2661: 2658: 2656: 2653: 2652: 2650: 2643: 2639: 2626:have the form 2614: 2579: 2576: 2558: 2557: 2546: 2543: 2538: 2535: 2531: 2527: 2524: 2521: 2518: 2515: 2512: 2509: 2506: 2503: 2485:The action of 2460: 2459: 2448: 2445: 2442: 2439: 2436: 2431: 2428: 2424: 2420: 2415: 2411: 2407: 2404: 2401: 2398: 2395: 2392: 2389: 2384: 2379: 2374: 2371: 2368: 2365: 2334: 2323: 2303: 2300: 2228: 2227: 2213: 2210: 2205: 2201: 2197: 2194: 2190: 2186: 2183: 2180: 2162:and the group 2150: 2045:Borel subgroup 2009: 2006: 1966: 1963: 1941: 1920: 1915: 1911: 1906: 1903: 1899: 1895: 1892: 1887: 1883: 1846: 1843: 1840: 1820: 1817: 1814: 1809: 1805: 1800: 1797: 1793: 1789: 1786: 1781: 1777: 1741: 1738: 1735: 1715: 1712: 1709: 1681: 1678: 1675: 1670: 1666: 1661: 1658: 1654: 1650: 1647: 1642: 1638: 1617: 1614: 1611: 1591: 1588: 1581: 1580: 1565: 1559: 1556: 1552: 1547: 1544: 1541: 1539: 1537: 1534: 1533: 1530: 1524: 1521: 1517: 1512: 1509: 1506: 1504: 1502: 1499: 1498: 1495: 1489: 1486: 1482: 1477: 1474: 1468: 1465: 1461: 1456: 1453: 1450: 1448: 1446: 1443: 1442: 1419: 1415: 1411: 1406: 1400: 1397: 1354: 1351: 1348: 1345: 1340: 1335: 1332: 1312: 1309: 1306: 1303: 1298: 1293: 1290: 1270: 1266: 1262: 1257: 1251: 1248: 1185: 1182: 1179: 1174: 1156: 1138:Riemann sphere 1116: 1105: 1102: 1089: 1086: 1083: 1047: 1044: 1041: 1036: 1032: 1028: 1025: 1022: 1019: 1016: 1013: 1002: 1001: 989: 986: 983: 959: 954: 950: 945: 942: 938: 934: 931: 926: 923: 920: 917: 913: 901: 900: 888: 885: 882: 879: 876: 873: 853: 850: 847: 842: 838: 833: 830: 826: 822: 819: 814: 810: 795: 794: 778: 775: 772: 767: 763: 758: 755: 751: 747: 744: 739: 735: 720: 719: 707: 704: 701: 681: 678: 675: 661: 649: 646: 643: 640: 637: 617: 614: 611: 591: 588: 585: 565: 562: 559: 512: 509: 506: 501: 497: 493: 490: 477:is said to be 449: 446: 443: 440: 437: 434: 431: 428: 425: 422: 419: 416: 384: 381: 344: 340: 315: 310: 306: 301: 298: 294: 290: 287: 282: 278: 254: 249:. Identifying 231: 217: 152: 122:Borel subgroup 101: 76: 73: 37:vector bundles 15: 13: 10: 9: 6: 4: 3: 2: 3194: 3183: 3180: 3178: 3175: 3174: 3172: 3165: 3164: 3162: 3158: 3148: 3144: 3140: 3136: 3132: 3128: 3127: 3122: 3118: 3114: 3113: 3109: 3102: 3097: 3093: 3091:9780387302638 3087: 3083: 3078: 3073: 3069: 3068:Tits, Jacques 3065: 3060: 3057:(in French), 3056: 3052: 3048: 3045: 3041: 3038: 3034: 3030: 3029: 3024: 3020: 3017: 3011: 3007: 3002: 2997: 2993: 2989: 2985: 2981: 2975: 2971: 2967: 2963: 2959: 2955: 2951: 2947: 2946: 2942: 2934: 2928: 2924: 2917: 2914: 2908: 2904: 2901: 2900: 2896: 2894: 2891: 2885: 2879: 2875: 2854: 2851: 2848: 2845: 2842: 2838: 2833: 2830: 2827: 2823: 2817: 2813: 2805: 2804: 2803: 2800: 2794: 2787: 2780: 2774: 2768: 2761: 2757: 2751: 2747: 2743: 2738: 2734: 2729: 2725: 2705: 2700: 2696: 2692: 2687: 2679: 2676: 2672: 2666: 2659: 2654: 2648: 2641: 2637: 2629: 2628: 2627: 2624: 2617: 2613: 2608: 2603: 2596: 2591: 2586: 2577: 2575: 2572: 2568: 2564: 2541: 2536: 2533: 2529: 2522: 2519: 2513: 2507: 2504: 2501: 2494: 2493: 2492: 2489: 2483: 2480: 2476: 2470: 2466: 2443: 2437: 2429: 2426: 2422: 2413: 2409: 2405: 2399: 2396: 2390: 2387: 2382: 2369: 2366: 2363: 2356: 2355: 2354: 2353: 2348: 2344: 2337: 2333: 2326: 2322: 2316: 2310: 2301: 2299: 2297: 2292: 2286: 2280: 2274: 2269: 2264: 2258: 2252: 2247: 2243: 2239: 2234: 2211: 2203: 2199: 2195: 2192: 2188: 2184: 2171: 2170: 2169: 2166: 2160: 2153: 2149: 2141: 2136:determines a 2134: 2130: 2125: 2120: 2115: 2111: 2107: 2101: 2097: 2093: 2086: 2080: 2075: 2070: 2065: 2061: 2057: 2051: 2046: 2041: 2036: 2031: 2025: 2021: 2016: 2007: 2005: 2003: 1999: 1995: 1994:flag manifold 1991: 1987: 1983: 1980: 1976: 1972: 1964: 1962: 1913: 1909: 1904: 1901: 1897: 1893: 1885: 1881: 1844: 1841: 1838: 1818: 1815: 1807: 1803: 1798: 1795: 1791: 1787: 1779: 1775: 1761: 1759: 1739: 1736: 1733: 1713: 1710: 1707: 1679: 1676: 1668: 1664: 1659: 1656: 1652: 1648: 1640: 1636: 1615: 1612: 1609: 1601: 1589: 1586: 1563: 1557: 1545: 1542: 1540: 1535: 1528: 1522: 1510: 1507: 1505: 1500: 1493: 1487: 1475: 1472: 1466: 1454: 1451: 1449: 1444: 1433: 1432: 1431: 1404: 1372: 1346: 1304: 1255: 1234: 1230: 1222: 1212: 1204: 1200: 1196: 1180: 1159: 1155: 1148: 1139: 1134: 1130: 1124: 1122: 1112: 1103: 1101: 1087: 1084: 1081: 1065: 1045: 1042: 1034: 1030: 1020: 1017: 1014: 987: 984: 981: 952: 948: 943: 940: 936: 932: 921: 915: 911: 903: 902: 883: 877: 874: 871: 851: 848: 840: 836: 831: 828: 824: 820: 812: 808: 800: 799: 798: 776: 773: 765: 761: 756: 753: 749: 745: 737: 733: 725: 724: 723: 705: 702: 699: 679: 676: 673: 666: 662: 647: 644: 641: 638: 635: 615: 612: 609: 589: 586: 583: 563: 560: 557: 549: 548: 547: 540: 534: 510: 507: 499: 495: 488: 480: 472: 447: 444: 438: 435: 432: 426: 423: 420: 417: 414: 382: 379: 371: 366: 342: 338: 308: 304: 299: 296: 292: 288: 280: 276: 267: 263: 257: 253: 248: 243: 239: 230: 226: 220: 216: 211: 202: 198: 194: 185: 176: 173: 170: 166: 155: 151: 138: 123: 120:along with a 116: 115:maximal torus 90: 87:Lie group or 86: 74: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 3154: 3153: 3130: 3124: 3120: 3100: 3081: 3071: 3058: 3054: 3026: 3009: 2957: 2922: 2916: 2889: 2883: 2877: 2873: 2869: 2798: 2792: 2785: 2778: 2772: 2766: 2759: 2755: 2749: 2745: 2736: 2727: 2723: 2720: 2622: 2615: 2611: 2601: 2594: 2584: 2581: 2570: 2566: 2562: 2559: 2487: 2484: 2478: 2474: 2468: 2464: 2461: 2346: 2342: 2335: 2331: 2324: 2320: 2314: 2308: 2305: 2295: 2290: 2284: 2278: 2272: 2262: 2256: 2250: 2244:irreducible 2241: 2237: 2232: 2229: 2164: 2158: 2151: 2147: 2143:-equivariant 2139: 2132: 2123: 2113: 2109: 2105: 2099: 2095: 2084: 2073: 2069:flag variety 2063: 2059: 2055: 2049: 2039: 2029: 2023: 2020:compact form 2014: 2011: 1998:Serre (1954) 1968: 1762: 1593: 1235: 1228: 1220: 1211:binary forms 1210: 1157: 1153: 1146: 1132: 1128: 1126:, for which 1120: 1110: 1107: 1063: 1003: 796: 721: 718:is dominant. 664: 550:There is no 541: 478: 470: 367: 255: 251: 241: 237: 228: 218: 214: 200: 196: 192: 174: 168: 164: 153: 149: 113:, and fix a 78: 49:Armand Borel 44: 24: 18: 3133:(1): 1–57. 3044:Jacob Lurie 2954:Harris, Joe 2887:has weight 2870:of weights 2306:The weight 2242:holomorphic 2018:or for its 2002:Tits (1955) 1752:as long as 663:There is a 531:denote the 247:line bundle 212:, for each 75:Formulation 21:mathematics 3171:Categories 3157:PlanetMath 2943:References 1585:Jordan map 1209:(i.e. the 1205:of degree 692:such that 628:such that 576:such that 370:Weyl group 365:-modules. 223:we get an 206:principal 85:semisimple 57:Raoul Bott 53:André Weil 33:Lie groups 3033:EMS Press 3018:by Dover) 3016:reprinted 2996:246650103 2852:≤ 2846:≤ 2831:− 2781:≥ 0 2677:− 2638:χ 2534:− 2505:⋅ 2427:− 2414:λ 2410:χ 2383:λ 2373:→ 2298:linear.) 2204:λ 2179:Γ 2035:connected 1914:λ 1808:λ 1737:∈ 1714:λ 1711:∗ 1669:λ 1555:∂ 1551:∂ 1520:∂ 1516:∂ 1485:∂ 1481:∂ 1473:− 1464:∂ 1460:∂ 1331:Γ 1289:Γ 1085:∈ 1035:∨ 1031:β 1021:ρ 1015:λ 988:λ 985:∗ 953:λ 916:ℓ 878:ℓ 875:≠ 841:λ 766:λ 706:λ 703:∗ 677:∈ 648:λ 642:λ 639:∗ 613:∈ 590:λ 587:∗ 561:∈ 508:≥ 500:∨ 496:α 489:μ 448:ρ 445:− 439:ρ 433:λ 421:λ 418:∗ 407:, we set 383:ρ 380:− 343:λ 309:λ 260:with its 178:, where 3070:(1955), 3008:(1989), 2956:(1991). 2897:See also 2876:− 2607:integers 2569:∈ 2477:∈ 2467:∈ 2462:for all 2238:dominant 2112:∩ 2103:, where 2088:-variety 1986:sections 1831:for all 1692:for all 1430:, then 1201:are the 1199:sections 1197:, whose 864:for all 789:for all 529:ℓ 479:dominant 461:, where 326:. Since 3147:1646586 3035:, 2001 2988:1153249 2578:Example 2296:complex 1992:on the 1979:complex 1365:is its 1136:is the 1104:Example 899:, while 268:groups 210:-bundle 182:is the 67:in the 3145:  3088:  2994:  2986:  2976:  2929:  2776:. For 2593:SL(2, 2266:is an 2215:  2053:, and 2027:. Let 1144:, and 665:unique 527:. Let 135:be an 131:. Let 23:, the 3042:, by 2909:Notes 2740:with 2340:over 2236:is a 2127:. An 2077:is a 2033:be a 1865:as a 262:sheaf 204:as a 91:over 83:be a 3086:ISBN 2992:OCLC 2974:ISBN 2927:ISBN 2582:Let 2560:for 2472:and 2067:the 2000:and 1842:> 1613:> 1227:Sym( 1219:Sym( 660:; or 399:and 79:Let 61:GAGA 51:and 3135:doi 3131:134 3014:. ( 2966:doi 2788:+ 1 2770:on 2620:of 2270:of 2248:of 2156:on 2121:of 2047:of 1988:of 1973:of 1696:if 1369:th 1233:. 1162:is 1149:= 1 535:on 481:if 471:not 235:on 186:of 158:of 139:of 47:of 31:of 19:In 3173:: 3143:MR 3141:. 3129:. 3031:, 3025:, 2990:. 2984:MR 2982:. 2972:. 2960:. 2952:; 2893:. 2748:, 2737:CP 2574:. 2565:, 2482:. 2108:= 2058:= 2043:a 2004:. 1961:. 1381:, 1377:, 1281:: 1223:)* 1115:SL 1113:= 1100:. 539:. 424::= 232:−λ 195:→ 167:= 143:; 71:. 3163:. 3149:. 3137:: 3121:G 3095:. 3076:. 3063:. 3059:2 3000:. 2998:. 2968:: 2935:. 2890:n 2884:X 2878:n 2874:i 2872:2 2855:n 2849:i 2843:0 2839:, 2834:i 2828:n 2824:Y 2818:i 2814:X 2799:C 2793:G 2786:n 2779:n 2773:C 2767:n 2760:n 2756:L 2750:Y 2746:X 2728:B 2726:/ 2724:G 2706:. 2701:n 2697:a 2693:= 2688:) 2680:1 2673:a 2667:0 2660:b 2655:a 2649:( 2642:n 2623:B 2616:n 2612:χ 2602:G 2597:) 2595:C 2585:G 2571:G 2567:h 2563:g 2545:) 2542:h 2537:1 2530:g 2526:( 2523:f 2520:= 2517:) 2514:h 2511:( 2508:f 2502:g 2488:G 2479:B 2475:b 2469:G 2465:g 2447:) 2444:g 2441:( 2438:f 2435:) 2430:1 2423:b 2419:( 2406:= 2403:) 2400:b 2397:g 2394:( 2391:f 2388:: 2378:C 2370:G 2367:: 2364:f 2347:B 2345:/ 2343:G 2336:λ 2332:L 2325:λ 2321:χ 2315:B 2309:λ 2291:λ 2285:K 2279:λ 2273:K 2263:K 2257:λ 2251:G 2233:λ 2212:. 2209:) 2200:L 2196:, 2193:B 2189:/ 2185:G 2182:( 2165:G 2159:X 2152:λ 2148:L 2140:G 2133:λ 2124:K 2114:B 2110:K 2106:T 2100:T 2098:/ 2096:K 2085:G 2074:X 2064:B 2062:/ 2060:G 2056:X 2050:G 2040:B 2030:G 2024:K 2015:G 1959:i 1955:λ 1940:C 1919:) 1910:L 1905:, 1902:B 1898:/ 1894:G 1891:( 1886:i 1882:H 1871:λ 1867:G 1863:λ 1859:G 1845:0 1839:i 1819:0 1816:= 1813:) 1804:L 1799:, 1796:B 1792:/ 1788:G 1785:( 1780:i 1776:H 1765:λ 1754:λ 1740:W 1734:w 1708:w 1698:λ 1694:i 1680:0 1677:= 1674:) 1665:L 1660:, 1657:B 1653:/ 1649:G 1646:( 1641:i 1637:H 1616:0 1610:p 1596:G 1564:. 1558:x 1546:y 1543:= 1536:Y 1529:, 1523:y 1511:x 1508:= 1501:X 1494:, 1488:y 1476:y 1467:x 1455:x 1452:= 1445:H 1418:) 1414:C 1410:( 1405:2 1399:l 1396:s 1383:Y 1379:X 1375:H 1367:n 1353:) 1350:) 1347:n 1344:( 1339:O 1334:( 1311:) 1308:) 1305:1 1302:( 1297:O 1292:( 1269:) 1265:C 1261:( 1256:2 1250:l 1247:s 1231:) 1229:C 1221:C 1215:G 1207:n 1184:) 1181:n 1178:( 1173:O 1158:n 1154:L 1147:ρ 1142:n 1133:B 1131:/ 1129:G 1123:) 1121:C 1119:( 1117:2 1111:G 1088:W 1082:e 1072:w 1068:λ 1060:β 1046:0 1043:= 1040:) 1027:( 1024:) 1018:+ 1012:( 1000:. 982:w 972:G 958:) 949:L 944:, 941:B 937:/ 933:G 930:( 925:) 922:w 919:( 912:H 887:) 884:w 881:( 872:i 852:0 849:= 846:) 837:L 832:, 829:B 825:/ 821:G 818:( 813:i 809:H 793:; 791:i 777:0 774:= 771:) 762:L 757:, 754:B 750:/ 746:G 743:( 738:i 734:H 700:w 680:W 674:w 645:= 636:w 616:W 610:w 584:w 564:W 558:w 544:λ 537:W 525:α 511:0 505:) 492:( 475:μ 467:G 463:ρ 442:) 436:+ 430:( 427:w 415:w 405:W 401:w 397:λ 363:G 359:G 339:L 328:G 314:) 305:L 300:, 297:B 293:/ 289:G 286:( 281:i 277:H 256:λ 252:L 242:B 240:/ 238:G 229:L 219:λ 215:C 208:B 201:B 199:/ 197:G 193:G 188:B 180:U 175:U 172:/ 169:B 165:T 160:B 154:λ 150:C 145:λ 141:T 133:λ 129:T 125:B 118:T 100:C 81:G

Index

mathematics
representation theory
Lie groups
vector bundles
sheaf cohomology
Armand Borel
André Weil
Raoul Bott
GAGA
complex algebraic geometry
Zariski topology
semisimple
algebraic group
maximal torus
Borel subgroup
integral weight
/
unipotent radical
principal B-bundle
associated fiber bundle
line bundle
sheaf
sheaf cohomology
Weyl group
length function
SL2(C)
Riemann sphere
O ( n ) {\displaystyle {\mathcal {O}}(n)}
sections
homogeneous polynomials

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.