Knowledge (XXG)

Borel conjecture

Source đź“ť

266:—in particular, to a homeomorphism. The Borel conjecture is a topological reformulation of Mostow rigidity, weakening the hypothesis from hyperbolic manifolds to aspherical manifolds, and similarly weakening the conclusion from an isometry to a homeomorphism. 192:. Since aspherical manifolds with isomorphic fundamental groups are homotopy equivalent, the Borel conjecture implies that aspherical closed manifolds are determined, up to homeomorphism, by their fundamental groups. 473: 312: 155: 247:
A basic question is the following: if two closed manifolds are homotopy equivalent, are they homeomorphic? This is not true in general: there are homotopy equivalent
500: 404: 377: 346: 186: 108: 88: 605: 254:
Nevertheless, there are classes of manifolds for which homotopy equivalences between them can be homotoped to homeomorphisms. For instance, the
680: 231:
raised the question whether two aspherical manifolds with isomorphic fundamental groups are homeomorphic. A positive answer to the question "
546: 236: 613: 16:
This article is about Armand Borel's conjecture in geometric topology. For Émile Borel's conjecture in analysis/measure theory, see
412: 665: 596: 685: 670: 255: 17: 318: 55: 675: 282: 196: 128: 259: 555: 276: 28: 233:
Is every homotopy equivalence between closed aspherical manifolds homotopic to a homeomorphism?
609: 592: 525: 224: 47: 645: 564: 115: 40: 623: 578: 478: 382: 355: 324: 619: 574: 200: 111: 43: 641: 204: 171: 93: 73: 659: 569: 550: 212: 208: 189: 51: 529: 521: 228: 36: 595:(2002). "The Borel conjecture". In Farrell, F.T.; Goettshe, L.; Lueck, W. (eds.). 24: 652:
Geometry and algebra. Oberwolfach Seminars, 33. Birkhäuser Verlag, Basel, 2005.
248: 58:
conjecture, asserting that a weak, algebraic notion of equivalence (namely,
349: 263: 161: 119: 59: 551:"C-algebras, positive scalar curvature, and the Novikov conjecture. III" 235:" is referred to as the "so-called Borel Conjecture" in a 1986 paper of 62:) should imply a stronger, topological notion (namely, homeomorphism). 407: 598:
Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001)
406:
is not aspherical. Nevertheless, the Borel conjecture for the
379:. This is not a special case of the Borel conjecture, because 606:
Abdus Salam International Centre for Theoretical Physics
321:
asserts that a closed manifold homotopy equivalent to
481: 415: 385: 358: 327: 285: 174: 131: 96: 76: 468:{\displaystyle T^{3}=S^{1}\times S^{1}\times S^{1}} 494: 467: 398: 371: 340: 306: 258:states that a homotopy equivalence between closed 180: 149: 102: 82: 207:; counterexamples can be constructed by taking a 279:for the special case in which the reference map 8: 604:. ICTP Lecture Notes. Vol. 9. Trieste: 568: 486: 480: 459: 446: 433: 420: 414: 390: 384: 363: 357: 332: 326: 284: 173: 130: 95: 75: 512: 66:Precise formulation of the conjecture 7: 475:implies the PoincarĂ© conjecture for 530:"The birth of the Borel conjecture" 199:and homeomorphisms are replaced by 14: 275:The Borel conjecture implies the 270:Relationship to other conjectures 307:{\displaystyle f\colon M\to BG} 295: 150:{\displaystyle f\colon M\to N} 141: 1: 681:Unsolved problems in geometry 243:Motivation for the conjecture 570:10.1016/0040-9383(86)90047-9 251:which are not homeomorphic. 219:The origin of the conjecture 195:This conjecture is false if 520:Extract from a letter from 702: 314:is a homotopy equivalence. 15: 628:See remark, pp. 233–234. 223:In a May 1953 letter to 650:The Novikov conjecture. 256:Mostow rigidity theorem 18:Strong measure zero set 496: 469: 400: 373: 342: 308: 182: 151: 104: 84: 497: 495:{\displaystyle S^{3}} 470: 401: 399:{\displaystyle S^{3}} 374: 372:{\displaystyle S^{3}} 352:, is homeomorphic to 343: 341:{\displaystyle S^{3}} 309: 197:topological manifolds 183: 152: 105: 85: 46:is determined by its 608:. pp. 225–298. 479: 413: 383: 356: 325: 283: 260:hyperbolic manifolds 172: 168:states that the map 162:homotopy equivalence 129: 94: 74: 60:homotopy equivalence 547:Rosenberg, Jonathan 319:PoincarĂ© conjecture 262:is homotopic to an 666:Geometric topology 492: 465: 396: 369: 338: 304: 277:Novikov conjecture 237:Jonathan Rosenberg 188:is homotopic to a 178: 147: 100: 80: 39:) asserts that an 29:geometric topology 526:Jean-Pierre Serre 225:Jean-Pierre Serre 181:{\displaystyle f} 103:{\displaystyle N} 83:{\displaystyle M} 48:fundamental group 693: 629: 627: 603: 589: 583: 582: 572: 543: 537: 536: 534: 517: 501: 499: 498: 493: 491: 490: 474: 472: 471: 466: 464: 463: 451: 450: 438: 437: 425: 424: 405: 403: 402: 397: 395: 394: 378: 376: 375: 370: 368: 367: 347: 345: 344: 339: 337: 336: 313: 311: 310: 305: 201:smooth manifolds 187: 185: 184: 179: 166:Borel conjecture 156: 154: 153: 148: 109: 107: 106: 101: 89: 87: 86: 81: 33:Borel conjecture 701: 700: 696: 695: 694: 692: 691: 690: 656: 655: 638: 636:Further reading 633: 632: 616: 601: 591: 590: 586: 545: 544: 540: 532: 519: 518: 514: 509: 482: 477: 476: 455: 442: 429: 416: 411: 410: 386: 381: 380: 359: 354: 353: 328: 323: 322: 281: 280: 272: 245: 221: 205:diffeomorphisms 170: 169: 127: 126: 92: 91: 72: 71: 68: 44:closed manifold 27:, specifically 21: 12: 11: 5: 699: 697: 689: 688: 686:Surgery theory 683: 678: 673: 671:Homeomorphisms 668: 658: 657: 654: 653: 642:Matthias Kreck 637: 634: 631: 630: 614: 593:Farrell, F. T. 584: 563:(3): 319–336. 538: 528:(2 May 1953). 511: 510: 508: 505: 504: 503: 489: 485: 462: 458: 454: 449: 445: 441: 436: 432: 428: 423: 419: 393: 389: 366: 362: 335: 331: 315: 303: 300: 297: 294: 291: 288: 271: 268: 244: 241: 220: 217: 177: 158: 157: 146: 143: 140: 137: 134: 99: 79: 67: 64: 13: 10: 9: 6: 4: 3: 2: 698: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 663: 661: 651: 647: 646:Wolfgang LĂĽck 643: 640: 639: 635: 625: 621: 617: 615:92-95003-12-8 611: 607: 600: 599: 594: 588: 585: 580: 576: 571: 566: 562: 558: 557: 552: 548: 542: 539: 531: 527: 523: 516: 513: 506: 487: 483: 460: 456: 452: 447: 443: 439: 434: 430: 426: 421: 417: 409: 391: 387: 364: 360: 351: 333: 329: 320: 316: 301: 298: 292: 289: 286: 278: 274: 273: 269: 267: 265: 261: 257: 252: 250: 242: 240: 238: 234: 230: 226: 218: 216: 214: 213:exotic sphere 210: 209:connected sum 206: 202: 198: 193: 191: 190:homeomorphism 175: 167: 163: 144: 138: 135: 132: 125: 124: 123: 121: 117: 113: 97: 77: 65: 63: 61: 57: 53: 52:homeomorphism 49: 45: 42: 38: 34: 30: 26: 19: 649: 597: 587: 560: 554: 541: 522:Armand Borel 515: 253: 246: 232: 229:Armand Borel 222: 194: 165: 159: 118:topological 69: 37:Armand Borel 32: 22: 676:Conjectures 249:lens spaces 54:. It is a 35:(named for 25:mathematics 660:Categories 507:References 122:, and let 116:aspherical 41:aspherical 453:× 440:× 296:→ 290:: 142:→ 136:: 120:manifolds 556:Topology 549:(1986). 350:3-sphere 264:isometry 211:with an 56:rigidity 50:, up to 624:1937017 579:0842428 408:3-torus 164:. The 644:, and 622:  612:  577:  348:, the 112:closed 31:, the 602:(PDF) 533:(PDF) 160:be a 610:ISBN 317:The 203:and 114:and 90:and 70:Let 565:doi 524:to 110:be 23:In 662:: 648:, 620:MR 618:. 575:MR 573:. 561:25 559:. 553:. 239:. 227:, 215:. 626:. 581:. 567:: 535:. 502:. 488:3 484:S 461:1 457:S 448:1 444:S 435:1 431:S 427:= 422:3 418:T 392:3 388:S 365:3 361:S 334:3 330:S 302:G 299:B 293:M 287:f 176:f 145:N 139:M 133:f 98:N 78:M 20:.

Index

Strong measure zero set
mathematics
geometric topology
Armand Borel
aspherical
closed manifold
fundamental group
homeomorphism
rigidity
homotopy equivalence
closed
aspherical
manifolds
homotopy equivalence
homeomorphism
topological manifolds
smooth manifolds
diffeomorphisms
connected sum
exotic sphere
Jean-Pierre Serre
Armand Borel
Jonathan Rosenberg
lens spaces
Mostow rigidity theorem
hyperbolic manifolds
isometry
Novikov conjecture
Poincaré conjecture
3-sphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑