Knowledge (XXG)

Box counting

Source đź“ť

249: 54:, object, image, etc. into smaller and smaller pieces, typically "box"-shaped, and analyzing the pieces at each smaller scale. The essence of the process has been compared to zooming in or out using optical or computer based methods to examine how observations of detail change with scale. In box counting, however, rather than changing the magnification or resolution of a lens, the investigator changes the 24: 541:, including the minimum and maximum sizes to use and the method of incrementing between sizes. Many such details reflect practical matters such as the size of a digital image but also technical issues related to the specific analysis that will be performed on the data. Another issue that has received considerable attention is how to approximate the so-called "optimal covering" for determining 353: 343: 102:
where choosing boxes of the right relative sizes readily shows how the pattern repeats itself at smaller scales. In fractal analysis, however, the scaling factor is not always known ahead of time, so box counting algorithms attempt to find an optimized way of cutting a pattern up that will reveal the
482:
Box counting may also be used to determine local variation as opposed to global measures describing an entire pattern. Local variation can be assessed after the data have been gathered and analyzed (e.g., some software colour codes areas according to the fractal dimension for each subsample), but a
310:
Every box counting algorithm has a scanning plan that describes how the data will be gathered, in essence, how the box will be moved over the space containing the pattern. A variety of scanning strategies has been used in box counting algorithms, where a few basic approaches have been modified in
301:
is counted). For other types of analysis, the data sought may be the number of pixels that fall within the measuring box, the range or average values of colours or intensities, the spatial arrangement amongst pixels within each box, or properties such as average speed (e.g., from particle flow).
263:
The relevant features gathered during box counting depend on the subject being investigated and the type of analysis being done. Two well-studied subjects of box counting, for instance, are binary (meaning having only two colours, usually black and white) and gray-scale
1938: 580:
To address various methodological considerations, some software is written so users can specify many such details, and some includes methods such as smoothing the data after the fact to be more amenable to the type of analysis being done.
356:
Figure 4. It takes 12 green but 14 yellow boxes to completely cover the black pixels in these identical images. The difference is attributable to the position of the grid, illustrating the importance of grid placement in box
272:
from such still images in which case the raw information recorded is typically based on features of pixels such as a predetermined colour value or range of colours or intensities. When box counting is done to determine a
281:, the information recorded is usually either yes or no as to whether or not the box contained any pixels of the predetermined colour or range (i.e., the number of boxes containing relevant pixels at each 557:
One known issue in this respect is deciding what constitutes the edge of the useful information in a digital image, as the limits employed in the box counting strategy can affect the data gathered.
577:
illustrates, the overall positioning of the boxes also influences the results of a box count. One approach in this respect is to scan from multiple orientations and use averaged or optimized data.
370:
shows the typical pattern used in software that calculates box counting dimensions from patterns extracted into binary digital images of contours such as the fractal contour illustrated in
446:
illustrates the basic pattern of scanning using a sliding box. The fixed grid approach can be seen as a sliding box algorithm with the increments horizontally and vertically equal to
346:
Figure 3. Retinal vasculature revealed through box counting analysis; colour-coded local connected fractal dimension analysis done with FracLac freeware for biological image analysis.
62:). Computer based box counting algorithms have been applied to patterns in 1-, 2-, and 3-dimensional spaces. The technique is usually implemented in software for use on patterns 1065:
Plotnick, R. E.; Gardner, R. H.; Hargrove, W. W.; Prestegaard, K.; Perlmutter, M. (1996). "Lacunarity analysis: A general technique for the analysis of spatial patterns".
539: 209: 127: 505: 464: 420: 396: 299: 229: 187: 167: 147: 565:
The algorithm has to specify the type of increment to use between box sizes (e.g., linear vs exponential), which can have a profound effect on the results of a scan.
1016:
King, R. D.; George, A. T.; Jeon, T.; Hynan, L. S.; Youn, T. S.; Kennedy, D. N.; Dickerson, B.; the Alzheimer’s Disease Neuroimaging Initiative (2009).
899:
Landini, G.; Murray, P. I.; Misson, G. P. (1995). "Local connected fractal dimensions and lacunarity analyses of 60 degrees fluorescein angiograms".
1956: 789: 757: 442:
Another approach that has been used is a sliding box algorithm, in which each box is slid over the image overlapping the previous placement.
378:. The strategy simulates repeatedly laying a square box as though it were part of a grid overlaid on the image, such that the box for each 252:
Figure 2. The sequence above shows basic steps in extracting a binary contour pattern from an original colour digital image of a neuron.
1402: 845:
Karperien, Audrey; Jelinek, Herbert F.; Leandro, Jorge de Jesus Gomes; Soares, JoĂŁo V. B.; Cesar Jr, Roberto M.; Luckie, Alan (2008).
1435: 600: 323: 317: 519:
The implementation of any box counting algorithm has to specify certain details such as how to determine the actual values in
1962: 331: 1818: 1775: 98:
scaling, but from a practical perspective this would require that the scaling be known ahead of time. This can be seen in
1896: 1978: 1462: 211:, a measuring element that is typically a 2-dimensional square or 3-dimensional box with side length corresponding to 483:
third approach to box counting is to move the box according to some feature related to the pixels of interest. In
2016: 1628: 969:"Signal attenuation and box-counting fractal analysis of optical coherence tomography images of arterial tissue" 1484: 1108:
Plotnick, R. E.; Gardner, R. H.; O'Neill, R. V. (1993). "Lacunarity indices as measures of landscape texture".
484: 1370: 1921: 1143:
McIntyre, N. E.; Wiens, J. A. (2000). "A novel use of the lacunarity index to discern landscape function".
1970: 1529: 1395: 810:
Li, J.; Du, Q.; Sun, C. (2009). "An improved box-counting method for image fractal dimension estimation".
542: 427: 375: 278: 366:
The traditional approach is to scan in a non-overlapping regular grid or lattice pattern. To illustrate,
1755: 1447: 546: 471: 1330:"The Use of Fractal Analysis and Photometry to Estimate the Accuracy of Bulbar Redness Grading Scales" 1916: 1911: 1701: 1633: 1236: 1074: 819: 643: 1674: 1651: 1586: 1534: 1519: 1452: 1227:
Chhabra, A.; Jensen, R. V. (1989). "Direct determination of the f( alpha ) singularity spectrum".
522: 192: 110: 1901: 1881: 1845: 1840: 1603: 1295: 1160: 1125: 949: 721: 374:
or the classic example of the coastline of Britain often used to explain the method of finding a
1018:"Characterization of Atrophic Changes in the Cerebral Cortex Using Fractal Dimensional Analysis" 694:"Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals" 490: 449: 405: 381: 284: 214: 172: 152: 132: 74:
can be used to investigate some patterns physically. The technique arose out of and is used in
2011: 1944: 1906: 1830: 1738: 1643: 1549: 1524: 1514: 1457: 1440: 1430: 1425: 1388: 1351: 1287: 1252: 1209: 1090: 1047: 998: 908: 878: 785: 753: 713: 669: 595: 274: 231:
is used to scan a pattern or data set (e.g., an image or object) according to a predetermined
103:
scaling factor. The fundamental method for doing this starts with a set of measuring elements—
1861: 1728: 1711: 1539: 1341: 1279: 1244: 1199: 1191: 1152: 1117: 1082: 1037: 1029: 988: 980: 941: 868: 858: 827: 705: 659: 651: 590: 75: 1876: 1813: 1474: 47: 32: 1571: 1270:
Fernández, E.; Bolea, J. A.; Ortega, G.; Louis, E. (1999). "Are neurons multifractals?".
1240: 1078: 823: 647: 248: 1891: 1835: 1823: 1794: 1750: 1733: 1716: 1669: 1613: 1598: 1566: 1504: 1204: 1179: 1042: 1017: 993: 968: 873: 846: 664: 631: 352: 1283: 709: 655: 2005: 1745: 1721: 1591: 1561: 1544: 1509: 1494: 1195: 953: 929: 746: 334:
Figure 2c. Boxes laid over an image concentrically focused on each pixel of interest.
265: 67: 1299: 1164: 725: 1990: 1985: 1886: 1866: 1623: 1556: 1129: 605: 83: 23: 831: 1951: 1871: 1581: 1576: 1248: 1804: 1789: 1784: 1765: 1499: 1156: 1033: 945: 632:"Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging" 611: 467: 402:). This is done until the entire area of interest has been scanned using each 79: 1086: 1760: 1706: 1618: 1469: 1355: 1291: 1256: 1213: 1180:"Error estimation of the fractal dimension measurements of cranial sutures" 1051: 1002: 882: 673: 1094: 912: 717: 169:-sized boxes are applied to the pattern and counted. To do this, for each 129:
here for convenience, of sizes or calibres, which we will call the set of
1661: 1346: 1329: 984: 51: 342: 1691: 1608: 1411: 1121: 863: 847:"Automated detection of proliferative retinopathy in clinical practice" 322: 316: 268:(i.e., jpegs, tiffs, etc.). Box counting is generally done on patterns 95: 28: 967:
Popescu, D. P.; Flueraru, C.; Mao, Y.; Chang, S.; Sowa, M. G. (2010).
1679: 1315:
Defining Microglial Morphology: Form, Function, and Fractal Dimension
693: 31:
viewed through "boxes" of different sizes. The pattern illustrates
466:. Sliding box algorithms are often used for analyzing textures in 351: 341: 329: 321: 315: 247: 22: 311:
order to address issues such as sampling, analysis methods, etc.
1384: 330: 326:
Figure 2b. Boxes slid over an image in an overlapping pattern.
235:
to cover the relevant part of the data set, recording, i.e.,
1380: 932:(1997). "Multifractal Modeling and Lacunarity Analysis". 94:
Theoretically, the intent of box counting is to quantify
507:
is centred on each pixel of interest, as illustrated in
487:
box counting algorithms, for instance, the box for each
1328:
Schulze, M. M.; Hutchings, N.; Simpson, T. L. (2008).
525: 493: 452: 408: 384: 320:
Figure 2a. Boxes laid over an image as a fixed grid.
287: 217: 195: 175: 155: 135: 113: 78:. It also has application in related fields such as 1930: 1854: 1803: 1774: 1690: 1660: 1642: 1483: 1418: 745: 630:Liu, Jing Z.; Zhang, Lu D.; Yue, Guang H. (2003). 533: 499: 458: 414: 390: 293: 223: 203: 181: 161: 141: 121: 692:Smith, T. G.; Lange, G. D.; Marks, W. B. (1996). 398:never overlaps where it has previously been (see 1334:Investigative Ophthalmology & Visual Science 901:Investigative Ophthalmology & Visual Science 1396: 8: 739: 737: 735: 107:—consisting of an arbitrary number, called 58:used to inspect the object or pattern (see 1403: 1389: 1381: 1345: 1203: 1041: 992: 894: 892: 872: 862: 663: 526: 524: 492: 451: 407: 383: 286: 216: 196: 194: 174: 154: 134: 114: 112: 426:has been recorded. When used to find a 269: 63: 1957:List of fractals by Hausdorff dimension 687: 685: 683: 622: 470:analysis and have also been applied to 243:captured within the measuring element. 71: 1317:. Charles Sturt University, Australia. 805: 803: 801: 782:Fractal Geometry in Biological Systems 775: 773: 771: 769: 423: 7: 924: 922: 430:, the method is modified to find an 1178:Gorski, A. Z.; Skrzat, J. (2006). 527: 197: 115: 14: 1939:How Long Is the Coast of Britain? 1196:10.1111/j.1469-7580.2006.00529.x 478:Subsampling and local dimensions 1272:Journal of Neuroscience Methods 698:Journal of Neuroscience Methods 508: 443: 367: 1963:The Fractal Geometry of Nature 748:The Fractal Geometry of Nature 1: 1284:10.1016/s0165-0270(99)00066-7 710:10.1016/S0165-0270(96)00080-5 656:10.1016/S0006-3495(03)74817-6 601:Minkowski–Bouligand dimension 515:Methodological considerations 832:10.1016/j.patcog.2009.03.001 534:{\displaystyle \mathrm {E} } 239:, for each step in the scan 204:{\displaystyle \mathrm {E} } 122:{\displaystyle \mathrm {E} } 55: 1979:Chaos: Making a New Science 1249:10.1103/PhysRevLett.62.1327 780:Iannaccone, Khokha (1996). 2033: 1022:Brain Imaging and Behavior 784:. CRC Press. p. 143. 752:. Henry Holt and Company. 574: 431: 399: 371: 99: 59: 16:Fractal analysis technique 1034:10.1007/s11682-008-9057-9 973:Biomedical Optics Express 500:{\displaystyle \epsilon } 485:local connected dimension 459:{\displaystyle \epsilon } 415:{\displaystyle \epsilon } 391:{\displaystyle \epsilon } 294:{\displaystyle \epsilon } 240: 232: 224:{\displaystyle \epsilon } 182:{\displaystyle \epsilon } 162:{\displaystyle \epsilon } 142:{\displaystyle \epsilon } 43: 42:is a method of gathering 1087:10.1103/physreve.53.5461 1229:Physical Review Letters 1157:10.1023/A:1008148514268 946:10.1023/A:1022355723781 543:box counting dimensions 27:Figure 1. A 32-segment 1971:The Beauty of Fractals 851:Clinical Ophthalmology 535: 501: 460: 428:box counting dimension 416: 392: 376:box counting dimension 358: 347: 337: 335: 327: 295: 279:box counting dimension 253: 225: 205: 183: 163: 143: 123: 36: 536: 502: 472:multifractal analysis 461: 417: 393: 355: 345: 333: 325: 319: 296: 251: 226: 206: 184: 164: 144: 124: 26: 1917:Lewis Fry Richardson 1912:Hamid Naderi Yeganeh 1702:Burning Ship fractal 1634:Weierstrass function 1347:10.1167/iovs.07-1306 985:10.1364/boe.1.000268 934:Mathematical Geology 547:multifractal scaling 523: 491: 450: 424:relevant information 406: 382: 285: 215: 193: 173: 153: 133: 111: 1675:Space-filling curve 1652:Multifractal system 1535:Space-filling curve 1520:Sierpinski triangle 1241:1989PhRvL..62.1327C 1079:1996PhRvE..53.5461P 824:2009PatRe..42.2460L 812:Pattern Recognition 744:Mandelbrot (1983). 648:2003BpJ....85.4041L 636:Biophysical Journal 56:size of the element 1902:Aleksandr Lyapunov 1882:Desmond Paul Henry 1846:Self-avoiding walk 1841:Percolation theory 1485:Iterated function 1426:Fractal dimensions 1369:Karperien (2002), 1313:Karperien (2004). 1184:Journal of Anatomy 1122:10.1007/BF00125351 864:10.2147/OPTH.S1579 531: 497: 456: 412: 388: 359: 348: 338: 336: 328: 291: 254: 221: 201: 179: 159: 139: 119: 72:fundamental method 37: 1999: 1998: 1945:Coastline paradox 1922:WacĹ‚aw SierpiĹ„ski 1907:Benoit Mandelbrot 1831:Fractal landscape 1739:Misiurewicz point 1644:Strange attractor 1525:Apollonian gasket 1515:Sierpinski carpet 1235:(12): 1327–1330. 1145:Landscape Ecology 1110:Landscape Ecology 1067:Physical Review E 907:(13): 2749–2755. 818:(11): 2460–2469. 791:978-0-8493-7636-8 759:978-0-7167-1186-5 596:Fractal dimension 438:Sliding box scans 275:fractal dimension 241:relevant features 2024: 2017:Dimension theory 1862:Michael Barnsley 1729:Lyapunov fractal 1587:SierpiĹ„ski curve 1540:Blancmange curve 1405: 1398: 1391: 1382: 1376: 1375: 1366: 1360: 1359: 1349: 1340:(4): 1398–1406. 1325: 1319: 1318: 1310: 1304: 1303: 1267: 1261: 1260: 1224: 1218: 1217: 1207: 1175: 1169: 1168: 1140: 1134: 1133: 1105: 1099: 1098: 1073:(5): 5461–5468. 1062: 1056: 1055: 1045: 1013: 1007: 1006: 996: 964: 958: 957: 926: 917: 916: 896: 887: 886: 876: 866: 842: 836: 835: 807: 796: 795: 777: 764: 763: 751: 741: 730: 729: 689: 678: 677: 667: 642:(6): 4041–4046. 627: 591:Fractal analysis 569:Grid orientation 561:Scaling box size 540: 538: 537: 532: 530: 506: 504: 503: 498: 465: 463: 462: 457: 432:optimal covering 421: 419: 418: 413: 397: 395: 394: 389: 362:Fixed grid scans 300: 298: 297: 292: 230: 228: 227: 222: 210: 208: 207: 202: 200: 188: 186: 185: 180: 168: 166: 165: 160: 148: 146: 145: 140: 128: 126: 125: 120: 118: 76:fractal analysis 48:complex patterns 2032: 2031: 2027: 2026: 2025: 2023: 2022: 2021: 2002: 2001: 2000: 1995: 1926: 1877:Felix Hausdorff 1850: 1814:Brownian motion 1799: 1770: 1693: 1686: 1656: 1638: 1629:Pythagoras tree 1486: 1479: 1475:Self-similarity 1419:Characteristics 1414: 1409: 1379: 1368: 1367: 1363: 1327: 1326: 1322: 1312: 1311: 1307: 1269: 1268: 1264: 1226: 1225: 1221: 1177: 1176: 1172: 1142: 1141: 1137: 1107: 1106: 1102: 1064: 1063: 1059: 1015: 1014: 1010: 966: 965: 961: 928: 927: 920: 898: 897: 890: 844: 843: 839: 809: 808: 799: 792: 779: 778: 767: 760: 743: 742: 733: 691: 690: 681: 629: 628: 624: 620: 587: 571: 563: 555: 521: 520: 517: 489: 488: 480: 448: 447: 440: 404: 403: 380: 379: 364: 308: 283: 282: 261: 213: 212: 191: 190: 171: 170: 151: 150: 131: 130: 109: 108: 92: 70:, although the 33:self similarity 29:quadric fractal 17: 12: 11: 5: 2030: 2028: 2020: 2019: 2014: 2004: 2003: 1997: 1996: 1994: 1993: 1988: 1983: 1975: 1967: 1959: 1954: 1949: 1948: 1947: 1934: 1932: 1928: 1927: 1925: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1892:Helge von Koch 1889: 1884: 1879: 1874: 1869: 1864: 1858: 1856: 1852: 1851: 1849: 1848: 1843: 1838: 1833: 1828: 1827: 1826: 1824:Brownian motor 1821: 1810: 1808: 1801: 1800: 1798: 1797: 1795:Pickover stalk 1792: 1787: 1781: 1779: 1772: 1771: 1769: 1768: 1763: 1758: 1753: 1751:Newton fractal 1748: 1743: 1742: 1741: 1734:Mandelbrot set 1731: 1726: 1725: 1724: 1719: 1717:Newton fractal 1714: 1704: 1698: 1696: 1688: 1687: 1685: 1684: 1683: 1682: 1672: 1670:Fractal canopy 1666: 1664: 1658: 1657: 1655: 1654: 1648: 1646: 1640: 1639: 1637: 1636: 1631: 1626: 1621: 1616: 1614:Vicsek fractal 1611: 1606: 1601: 1596: 1595: 1594: 1589: 1584: 1579: 1574: 1569: 1564: 1559: 1554: 1553: 1552: 1542: 1532: 1530:Fibonacci word 1527: 1522: 1517: 1512: 1507: 1505:Koch snowflake 1502: 1497: 1491: 1489: 1481: 1480: 1478: 1477: 1472: 1467: 1466: 1465: 1460: 1455: 1450: 1445: 1444: 1443: 1433: 1422: 1420: 1416: 1415: 1410: 1408: 1407: 1400: 1393: 1385: 1378: 1377: 1361: 1320: 1305: 1278:(2): 151–157. 1262: 1219: 1190:(3): 353–359. 1170: 1151:(4): 313–321. 1135: 1116:(3): 201–211. 1100: 1057: 1028:(2): 154–166. 1008: 979:(1): 268–277. 959: 940:(7): 919–932. 930:Cheng, Qiuming 918: 888: 857:(1): 109–122. 837: 797: 790: 765: 758: 731: 704:(2): 123–136. 679: 621: 619: 616: 615: 614: 609: 603: 598: 593: 586: 583: 570: 567: 562: 559: 554: 551: 545:and assessing 529: 516: 513: 496: 479: 476: 455: 439: 436: 411: 387: 363: 360: 307: 304: 290: 266:digital images 260: 257: 220: 199: 178: 158: 149:s. Then these 138: 117: 91: 88: 50:by breaking a 46:for analyzing 15: 13: 10: 9: 6: 4: 3: 2: 2029: 2018: 2015: 2013: 2010: 2009: 2007: 1992: 1989: 1987: 1984: 1981: 1980: 1976: 1973: 1972: 1968: 1965: 1964: 1960: 1958: 1955: 1953: 1950: 1946: 1943: 1942: 1940: 1936: 1935: 1933: 1929: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1859: 1857: 1853: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1825: 1822: 1820: 1819:Brownian tree 1817: 1816: 1815: 1812: 1811: 1809: 1806: 1802: 1796: 1793: 1791: 1788: 1786: 1783: 1782: 1780: 1777: 1773: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1746:Multibrot set 1744: 1740: 1737: 1736: 1735: 1732: 1730: 1727: 1723: 1722:Douady rabbit 1720: 1718: 1715: 1713: 1710: 1709: 1708: 1705: 1703: 1700: 1699: 1697: 1695: 1689: 1681: 1678: 1677: 1676: 1673: 1671: 1668: 1667: 1665: 1663: 1659: 1653: 1650: 1649: 1647: 1645: 1641: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1593: 1592:Z-order curve 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1562:Hilbert curve 1560: 1558: 1555: 1551: 1548: 1547: 1546: 1545:De Rham curve 1543: 1541: 1538: 1537: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1510:Menger sponge 1508: 1506: 1503: 1501: 1498: 1496: 1495:Barnsley fern 1493: 1492: 1490: 1488: 1482: 1476: 1473: 1471: 1468: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1442: 1439: 1438: 1437: 1434: 1432: 1429: 1428: 1427: 1424: 1423: 1421: 1417: 1413: 1406: 1401: 1399: 1394: 1392: 1387: 1386: 1383: 1374: 1373: 1365: 1362: 1357: 1353: 1348: 1343: 1339: 1335: 1331: 1324: 1321: 1316: 1309: 1306: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1266: 1263: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1223: 1220: 1215: 1211: 1206: 1201: 1197: 1193: 1189: 1185: 1181: 1174: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1101: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1058: 1053: 1049: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1009: 1004: 1000: 995: 990: 986: 982: 978: 974: 970: 963: 960: 955: 951: 947: 943: 939: 935: 931: 925: 923: 919: 914: 910: 906: 902: 895: 893: 889: 884: 880: 875: 870: 865: 860: 856: 852: 848: 841: 838: 833: 829: 825: 821: 817: 813: 806: 804: 802: 798: 793: 787: 783: 776: 774: 772: 770: 766: 761: 755: 750: 749: 740: 738: 736: 732: 727: 723: 719: 715: 711: 707: 703: 699: 695: 688: 686: 684: 680: 675: 671: 666: 661: 657: 653: 649: 645: 641: 637: 633: 626: 623: 617: 613: 610: 607: 604: 602: 599: 597: 594: 592: 589: 588: 584: 582: 578: 576: 568: 566: 560: 558: 552: 550: 548: 544: 514: 512: 510: 494: 486: 477: 475: 473: 469: 453: 445: 437: 435: 433: 429: 425: 409: 401: 385: 377: 373: 369: 361: 354: 350: 344: 340: 332: 324: 318: 314: 312: 305: 303: 288: 280: 277:known as the 276: 271: 267: 258: 256: 250: 246: 244: 242: 238: 234: 233:scanning plan 218: 176: 156: 136: 106: 101: 97: 89: 87: 85: 81: 77: 73: 69: 68:digital media 65: 61: 57: 53: 49: 45: 41: 34: 30: 25: 21: 19: 1991:Chaos theory 1986:Kaleidoscope 1977: 1969: 1961: 1887:Gaston Julia 1867:Georg Cantor 1692:Escape-time 1624:Gosper curve 1572:LĂ©vy C curve 1557:Dragon curve 1436:Box-counting 1372:Box Counting 1371: 1364: 1337: 1333: 1323: 1314: 1308: 1275: 1271: 1265: 1232: 1228: 1222: 1187: 1183: 1173: 1148: 1144: 1138: 1113: 1109: 1103: 1070: 1066: 1060: 1025: 1021: 1011: 976: 972: 962: 937: 933: 904: 900: 854: 850: 840: 815: 811: 781: 747: 701: 697: 639: 635: 625: 606:Multifractal 579: 572: 564: 556: 553:Edge effects 518: 481: 441: 365: 349: 339: 313: 309: 262: 255: 245: 236: 104: 93: 84:multifractal 40:Box counting 39: 38: 20: 18: 1982:(1987 book) 1974:(1986 book) 1966:(1982 book) 1952:Fractal art 1872:Bill Gosper 1836:LĂ©vy flight 1582:Peano curve 1577:Moore curve 1463:Topological 1448:Correlation 2006:Categories 1790:Orbit trap 1785:Buddhabrot 1778:techniques 1766:Mandelbulb 1567:Koch curve 1500:Cantor set 618:References 612:Lacunarity 468:lacunarity 306:Scan types 90:The method 86:analysis. 80:lacunarity 1897:Paul LĂ©vy 1776:Rendering 1761:Mandelbox 1707:Julia set 1619:Hexaflake 1550:Minkowski 1470:Recursion 1453:Hausdorff 954:118918429 509:Figure 2c 495:ϵ 454:ϵ 444:Figure 2b 410:ϵ 386:ϵ 368:Figure 2a 357:counting. 289:ϵ 270:extracted 219:ϵ 177:ϵ 157:ϵ 137:ϵ 64:extracted 2012:Fractals 1807:fractals 1694:fractals 1662:L-system 1604:T-square 1412:Fractals 1356:18385056 1300:31745811 1292:10491946 1257:10039645 1214:16533317 1165:18644861 1052:20740072 1003:21258464 883:19668394 726:20175299 674:14645092 608:analysis 585:See also 575:Figure 4 422:and the 400:Figure 4 372:Figure 1 259:The data 237:counting 100:Figure 1 60:Figure 1 1756:Tricorn 1609:n-flake 1458:Packing 1441:Higuchi 1431:Assouad 1237:Bibcode 1205:2100241 1130:7112365 1095:9964879 1075:Bibcode 1043:2927230 994:3005165 913:7499097 874:2698675 820:Bibcode 718:8946315 665:1303704 644:Bibcode 96:fractal 52:dataset 1855:People 1805:Random 1712:Filled 1680:H tree 1599:String 1487:system 1354:  1298:  1290:  1255:  1212:  1202:  1163:  1128:  1093:  1050:  1040:  1001:  991:  952:  911:  881:  871:  788:  756:  724:  716:  672:  662:  1931:Other 1296:S2CID 1161:S2CID 1126:S2CID 950:S2CID 722:S2CID 105:boxes 66:from 1352:PMID 1288:PMID 1253:PMID 1210:PMID 1091:PMID 1048:PMID 999:PMID 909:PMID 879:PMID 786:ISBN 754:ISBN 714:PMID 670:PMID 82:and 44:data 1342:doi 1280:doi 1245:doi 1200:PMC 1192:doi 1188:208 1153:doi 1118:doi 1083:doi 1038:PMC 1030:doi 989:PMC 981:doi 942:doi 869:PMC 859:doi 828:doi 706:doi 660:PMC 652:doi 573:As 189:in 2008:: 1941:" 1350:. 1338:49 1336:. 1332:. 1294:. 1286:. 1276:89 1274:. 1251:. 1243:. 1233:62 1231:. 1208:. 1198:. 1186:. 1182:. 1159:. 1149:15 1147:. 1124:. 1112:. 1089:. 1081:. 1071:53 1069:. 1046:. 1036:. 1024:. 1020:. 997:. 987:. 975:. 971:. 948:. 938:29 936:. 921:^ 905:36 903:. 891:^ 877:. 867:. 853:. 849:. 826:. 816:42 814:. 800:^ 768:^ 734:^ 720:. 712:. 702:69 700:. 696:. 682:^ 668:. 658:. 650:. 640:85 638:. 634:. 549:. 511:. 474:. 434:. 1937:" 1404:e 1397:t 1390:v 1358:. 1344:: 1302:. 1282:: 1259:. 1247:: 1239:: 1216:. 1194:: 1167:. 1155:: 1132:. 1120:: 1114:8 1097:. 1085:: 1077:: 1054:. 1032:: 1026:3 1005:. 983:: 977:1 956:. 944:: 915:. 885:. 861:: 855:2 834:. 830:: 822:: 794:. 762:. 728:. 708:: 676:. 654:: 646:: 528:E 198:E 116:E 35:.

Index


quadric fractal
self similarity
data
complex patterns
dataset
size of the element
Figure 1
extracted
digital media
fundamental method
fractal analysis
lacunarity
multifractal
fractal
Figure 1
scanning plan
relevant features

digital images
extracted
fractal dimension
box counting dimension





Figure 2a
Figure 1

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑