Knowledge (XXG)

Breit–Wheeler process

Source 📝

28: 265:
Strong pair generation can be achieved by colliding head-on this electron beam with a second laser of intensity above 10 W/cm. In this configuration at this level of intensity, theoretical studies predict that several hundreds of pico-Coulombs of antimatter could be produced. This experimental setup could even be one of the most prolific positron yield factory. This all-optical scenario may be preliminary tested with lower laser intensities of the order of 10 W/cm.
191:(German for 'empty room' or 'cavity'). Scientists would fire a high-energy laser at the inner surface of this hohlraum to create a thermal radiation field. They would then direct the photon beam from the first stage of the experiment through the centre of the hohlraum, causing the photons from the two sources to collide and form electrons and positrons. It would then be possible to detect the formation of the electrons and positrons when they exited the can. 1541: 20: 260:. The resulting electron bunch is then made to interact with a second high-power laser in order to study QED processes. The feasibility of an all-optical multi-photon Breit–Wheeler pair production scheme has first been proposed theoretically in Implementation of this scheme is restricted to multi-beam short-pulse extreme-intensity laser facilities such as the CILEX-Apollon and 227:. Researchers were able to conduct the multi-photon Breit–Wheeler process using electrons to first create high-energy photons, which then underwent multiple collisions to produce electrons and positrons, all within the same chamber. Electrons were accelerated in the linear accelerator to an energy of 46.6 GeV before being sent head-on into a Neodymium (Nd:glass) 199:
foils or gas jets. The forthcoming short-pulse extremely intense lasers, laser interaction with solid target will be the place of strong radiative effects driven by the nonlinear inverse quantum scattering. This effect, negligible so far, will become a dominant cooling mechanism for the extremely relativistic electrons accelerated above the 100 
198:
In 2016, a second novel experimental setup was proposed theoretically to demonstrate and study the Breit–Wheeler process by colliding two high-energy photon sources (composed of non-coherent hard x-ray and gamma-ray photons) generated from the interaction of two extremely intense lasers on solid thin
264:
systems (CPA titanium sapphire technology at 0.8 micrometer, duration of 15–30 femtoseconds). The generation of electron beams of few GeV and few nanocoulomb is possible with a first laser of 1 petawatt combined with the use of tuned and optimized gas-jet density profiles such as two-step profiles.
211:
The multiphoton Breit–Wheeler process has already been observed and studied experimentally. One of the most efficient configurations to maximize the multiphoton Breit–Wheeler pair production consists on colliding head-on a bunch of gamma photon with a counter-propagating (or with a slight collision
186:
proposed a relatively simple way to physically demonstrate the Breit–Wheeler process. The collider experiment that the physicists proposed involves two key steps. First, they would use an extremely powerful high-intensity laser to accelerate electrons to nearly the speed of light. They would then
251:
solutions that would significantly enhance process efficiencies (inverse nonlinear Compton and nonlinear Breit–Wheeler pair creation) leading to several orders of magnitude higher antimatter production, enabling higher-resolution measurements, additional mass-shift, as well as nonlinear and spin
536:
Direct production of electron–positron pairs in two-photon collisions, the Breit–Wheeler process, is one of the basic processes in the universe. However, it has never been directly observed in the laboratory because of the absence of intense enough γ-ray
157:
on antimatter and pair annihilation. In 1928, Paul Dirac's work proposed that electrons could have positive and negative energy states following the framework of relativistic quantum theory but did not explicitly predict the existence of a new particle.
239:
527 nanometers and duration 1.6 picoseconds. In this configuration, it has been estimated that photons of energy up to 29 GeV were generated. This led to the yield of 106 ±14 positrons with a broad energy spectrum in the GeV level (peak around 13 GeV).
212:
angle, the co-propagating configuration being the less efficient configuration) ultra-high intensity laser pulse. To first create the photons and then have the pair production in an all-in-one setup, the similar configuration can be used by colliding
255:
The extreme intensities expected to be available in future multi-petawatt laser systems will allow all-optical, laser–electron collision experiments where the electron beam is generated from direct laser interaction with a gas jet in a so-called
1061:
Cros, B.; Paradkar, B. S.; Davoine, X.; Chancé, A.; Desforges, F. G.; Dobosz-Dufrénoy, S.; Delerue, N.; Ju, J.; Audet, T. L. (2014-03-11). "Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX".
608:
Bamber, C.; Boege, S. J.; Koffas, T.; Kotseroglou, T.; Melissinos, A. C.; Meyerhofer, D. D.; Reis, D. A.; Ragg, W.; Bula, C. (1999-11-01). "Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses".
112:, is still a technological challenge. In many experimental configurations, pure Breit–Wheeler is dominated by other more efficient pair creation processes that screen pairs produced via this mechanism. The Dirac process ( 123:
Although this mechanism is still one of the most difficult to be observed experimentally on Earth, it is of considerable importance for the absorption of high-energy photons travelling cosmic distances.
655:
Bamber, C.; Berridge, S. C.; Boege, S. J.; Bugg, W. M.; Bula, C.; Burke, D. L.; Field, R. C.; Horton-Smith, G.; Koffas, T. (1997-02-25). "Positron production in multiphoton light-by-light scattering".
187:
fire these electrons into a slab of gold to create a beam of photons a billion times more energetic than those of visible light. The next stage of the experiment involves a tiny gold can called a
179:
beams and the very weak probability of this mechanism. Recently, different teams have proposed novel theoretical studies on possible experimental configurations to finally observe it on Earth.
63:. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e e where γ and γ′ are two light quanta (for example, 100:
This mechanism is theoretically characterized by a very weak probability, so producing a significant number of pairs requires two extremely bright, collimated sources of photons having
1181:
STAR Collaboration; Adam, J.; Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aparin, A. (2021-07-27).
90:
pulse). In contrast with the linear process, this can take the form of γ + n ω → e e, where n represents the number of photons, and ω represents the coherent laser field.
1316: 1000:
Sokolov, Igor V.; Naumova, Natalia M.; Nees, John A.; Mourou, Gérard A. (2010-11-04). "Pair Creation in QED-Strong Pulsed Laser Fields Interacting with Electron Beams".
220:
mechanism when interacting with the laser pulse. Still interacting with the laser, the photons then turn into multiphoton Breit–Wheeler electron–positron pairs.
552:
Ruffini, Remo; Vereshchagin, Gregory; Xue, She-Sheng (2010-02-01). "Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes".
31:
The nonlinear Breit–Wheeler process or multiphoton Breit–Wheeler is the creation of an electron-positron pair from the decay of a high-energy photon (
895:
Bula, C.; McDonald, K. T.; Prebys, E. J.; Bamber, C.; Boege, S.; Kotseroglou, T.; Melissinos, A. C.; Meyerhofer, D. D.; Ragg, W. (1996-04-22).
1309: 217: 93:
The inverse process, e e → γ γ′, in which an electron and a positron collide and annihilate to generate a pair of gamma photons, is known as
244: 224: 117: 23:
The Breit–Wheeler process is the creation of an electron–positron pair following the collision of two high-energy photons (gamma photons).
116:) has, on the other hand, been extensively verified. This is also the case for the multi-photon Breit–Wheeler, which was observed at the 94: 954: 1544: 1134:"Generation of high-energy electron–positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser" 979:
Hartin, A.; Porto, S.; Moortgat-Pick, G. (2014-04-03). "Testing nonlinear-QED at the future linear collider with an intense laser".
97:
or the Dirac process for the name of the physicist who first described it theoretically and anticipated the Breit–Wheeler process.
1576: 1416: 1302: 1339: 1571: 273: 247:
with more powerful laser technologies. The use of higher laser intensities (10 W/cm) is now easily achievable with short-pulse
1064:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
360:
A. I. Titov; B. Kämpfer; H. Takabe; A. Hosaka (10 April 2013). "Breit–Wheeler process in very short electromagnetic pulses".
175:, as of 2017, the pure Breit–Wheeler has never been observed in practice because of the difficulty in preparing colliding 261: 1466: 1349: 172: 1426: 799:
O. J. Pike; F. Mackenroth; E. G. Hill; S. J. Rose (18 May 2014). "A photon–photon collider in a vacuum hohlraum".
1354: 1270: 216:
electrons. Depending on the laser intensity, these electrons will first radiate gamma photons via the so-called
896: 1380: 195:
suggest that this technique is capable of producing of the order of 10 Breit–Wheeler pairs in a single shot.
1325: 183: 128: 127:
The photon–photon and the multiphoton Breit–Wheeler processes are described theoretically by the theory of
1502: 672: 192: 82:
in the literature, occurs when a high-energy probe photon decays into pairs propagating through a strong
1097:
Mourou, Gérard; Tajima, Toshiki (2011-07-01). "The Extreme Light Infrastructure: Optics' Next Horizon".
83: 1512: 1204: 1145: 1071: 1019: 908: 853: 810: 744: 664: 618: 571: 495: 427: 381: 331: 285: 677: 1456: 735:
Gould, Robert J.; Schréder, Gérard P. (1967-03-25). "Pair Production in Photon–Photon Collisions".
257: 228: 27: 1566: 1522: 1497: 1228: 1194: 1163: 1043: 1009: 980: 877: 826: 587: 561: 527: 485: 451: 397: 371: 297: 105: 1421: 1183:"Measurement of ee Momentum and Angular Distributions from Linearly Polarized Photon Collisions" 288:
was also studied obtaining evidence enough to claim the first known observation of the process.
1482: 1451: 1220: 1114: 1035: 924: 869: 717: 690: 634: 519: 511: 443: 277: 248: 1517: 1400: 1212: 1153: 1106: 1079: 1027: 916: 861: 818: 801: 752: 682: 626: 579: 503: 435: 389: 339: 281: 120:
in 1997 by colliding high-energy electrons with a counter-propagating terawatt laser pulse.
773: 472:
Ribeyre, X.; d'Humières, E.; Jansen, O.; Jequier, S.; Tikhonchuk, V. T.; Lobet, M. (2016).
1461: 1446: 1344: 1182: 362: 322: 149: 144: 109: 1208: 1158: 1149: 1133: 1075: 1023: 912: 857: 844:
Thomas, Alexander (June 2014). "Optical physics: Antimatter creation in an X-ray bath".
814: 748: 668: 622: 575: 499: 431: 385: 335: 1492: 232: 19: 1560: 1232: 1167: 881: 830: 591: 455: 401: 269: 140: 101: 531: 1216: 1047: 1031: 958: 708:
Nikishov, A. I. (1961-08-01). "Absorption of High Energy Photons in the Universe".
213: 200: 113: 583: 1246: 1066:. Proceedings of the first European Advanced Accelerator Concepts Workshop 2013. 1441: 1431: 1395: 1370: 920: 1083: 630: 507: 474:"Pair creation in collision of γ-ray beams produced with high-intensity lasers" 393: 320:
G. Breit; John A. Wheeler (15 December 1934). "Collision of Two Light Quanta".
1507: 1436: 439: 236: 154: 1118: 873: 865: 756: 694: 638: 515: 447: 418:
Dirac, P. a. M. (July 1930). "On the Annihilation of Electrons and Protons".
1110: 822: 343: 176: 64: 32: 1271:"Colliding photons were spotted making matter. But are the photons 'real'?" 1224: 1039: 928: 523: 1294: 1390: 1375: 188: 56: 52: 774:"Scientists discover how to turn light into matter after 80-year quest" 139:
The photon–photon Breit–Wheeler process was described theoretically by
721: 268:
In July 2021 evidence consistent with the process was reported by the
1385: 60: 932: 686: 1199: 490: 473: 1014: 985: 566: 376: 87: 36: 26: 18: 243:
The aforementioned experiment may be reproduced in the future at
1247:"Collisions of Light Produce Matter/Antimatter from Pure Energy" 167:
Photon–photon Breit–Wheeler possible experimental configurations
1298: 420:
Mathematical Proceedings of the Cambridge Philosophical Society
1132:
Lobet, M.; Davoine, X.; d’Humières, E.; Gremillet, L. (2017).
955:""Supernova in a bottle" could help create matter from light" 203:
level at the laser-solid interface via different mechanisms.
35:) interacting with a strong electromagnetic field such as a 467: 465: 171:
Although the process is one of the manifestations of the
897:"Observation of Nonlinear Effects in Compton Scattering" 1138:
Physical Review Special Topics: Accelerators and Beams
1475: 1409: 1363: 1332: 710:Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 108:. Manufacturing such a source, for instance, a 1310: 16:Electron-positron production from two photons 8: 768: 766: 153:. It followed previous theoretical work of 1317: 1303: 1295: 59:pair is created from the collision of two 51:is a proposed physical process in which a 1198: 1157: 1013: 984: 676: 565: 489: 375: 276:although it was unclear if it was due to 309: 106:electron and positron rest mass energy 218:non-linear inverse Compton scattering 207:Multiphoton Breit–Wheeler experiments 7: 650: 648: 603: 601: 547: 545: 413: 411: 355: 353: 315: 313: 231:laser of intensity 10 W/cm (maximal 223:This method was used in 1997 at the 1159:10.1103/physrevaccelbeams.20.043401 272:one of the four experiments at the 258:laser wakefield acceleration regime 235:amplitude of around 6×10 V/m), of 225:Stanford Linear Accelerator Center 118:Stanford Linear Accelerator Center 14: 1545:Template:Quantum mechanics topics 1540: 1539: 1417:Anomalous magnetic dipole moment 274:Relativistic Heavy Ion Collider 1251:Brookhaven National Laboratory 1217:10.1103/PhysRevLett.127.052302 1032:10.1103/PhysRevLett.105.195005 95:electron–positron annihilation 1: 584:10.1016/j.physrep.2009.10.004 74:process, also referred to as 49:Breit–Wheeler pair production 953:Akshat Rathi (19 May 2014). 1340:Euler–Heisenberg Lagrangian 921:10.1103/PhysRevLett.76.3116 1593: 1084:10.1016/j.nima.2013.10.090 657:AIP Conference Proceedings 631:10.1103/PhysRevD.60.092004 508:10.1103/PhysRevE.93.013201 394:10.1103/PhysRevA.87.042106 80:strong field Breit–Wheeler 1531: 1355:Path integral formulation 1099:Optics and Photonics News 440:10.1017/S0305004100016091 162:Experimental observations 72:multiphoton Breit–Wheeler 1523:Photon-photon scattering 866:10.1038/nphoton.2014.118 757:10.1103/PhysRev.155.1404 1577:Quantum electrodynamics 1467:Ward–Takahashi identity 1350:Gupta–Bleuler formalism 1326:Quantum electrodynamics 1187:Physical Review Letters 1111:10.1364/OPN.22.7.000047 1002:Physical Review Letters 901:Physical Review Letters 823:10.1038/nphoton.2014.95 344:10.1103/PhysRev.46.1087 249:titanium-sapphire laser 193:Monte Carlo simulations 184:Imperial College London 182:In 2014, physicists at 173:mass–energy equivalence 129:quantum electrodynamics 76:nonlinear Breit–Wheeler 1572:Hypothetical processes 104:close to or above the 40: 24: 1488:Breit–Wheeler process 1427:Klein–Nishina formula 84:electromagnetic field 45:Breit–Wheeler process 30: 22: 286:vacuum birefringence 1503:Delbrück scattering 1457:Vacuum polarization 1381:Faddeev–Popov ghost 1209:2021PhRvL.127e2302A 1150:2017PhRvS..20d3401L 1076:2014NIMPA.740...27C 1024:2010PhRvL.105s5005S 913:1996PhRvL..76.3116B 858:2014NaPho...8..429T 815:2014NaPho...8..434P 749:1967PhRv..155.1404G 669:1997AIPC..396..165B 623:1999PhRvD..60i2004B 576:2010PhR...487....1R 500:2016PhRvE..93a3201R 432:1930PCPS...26..361D 386:2013PhRvA..87d2106T 336:1934PhRv...46.1087B 280:photons or massive 1498:Compton scattering 298:Two-photon physics 41: 25: 1554: 1553: 1513:Møller scattering 1483:Bhabha scattering 1452:Uehling potential 1401:Virtual particles 907:(17): 3116–3119. 611:Physical Review D 478:Physical Review E 330:(12): 1087–1091. 114:pair annihilation 1584: 1543: 1542: 1518:Schwinger effect 1319: 1312: 1305: 1296: 1286: 1285: 1283: 1282: 1267: 1261: 1260: 1258: 1257: 1243: 1237: 1236: 1202: 1178: 1172: 1171: 1161: 1129: 1123: 1122: 1094: 1088: 1087: 1058: 1052: 1051: 1017: 997: 991: 990: 988: 976: 970: 969: 967: 965: 950: 944: 943: 941: 940: 931:. Archived from 892: 886: 885: 846:Nature Photonics 841: 835: 834: 802:Nature Photonics 796: 790: 789: 787: 785: 770: 761: 760: 743:(5): 1404–1407. 732: 726: 725: 705: 699: 698: 680: 652: 643: 642: 605: 596: 595: 569: 549: 540: 539: 493: 469: 460: 459: 415: 406: 405: 379: 357: 348: 347: 317: 229:linear polarized 86:(for example, a 1592: 1591: 1587: 1586: 1585: 1583: 1582: 1581: 1557: 1556: 1555: 1550: 1549: 1527: 1471: 1462:Vertex function 1447:Schwinger limit 1422:Furry's theorem 1405: 1359: 1345:Feynman diagram 1328: 1323: 1292: 1290: 1289: 1280: 1278: 1269: 1268: 1264: 1255: 1253: 1245: 1244: 1240: 1180: 1179: 1175: 1131: 1130: 1126: 1096: 1095: 1091: 1060: 1059: 1055: 999: 998: 994: 978: 977: 973: 963: 961: 952: 951: 947: 938: 936: 894: 893: 889: 843: 842: 838: 798: 797: 793: 783: 781: 772: 771: 764: 737:Physical Review 734: 733: 729: 707: 706: 702: 687:10.1063/1.52962 678:10.1.1.388.7683 654: 653: 646: 607: 606: 599: 554:Physics Reports 551: 550: 543: 471: 470: 463: 417: 416: 409: 363:Physical Review 359: 358: 351: 323:Physical Review 319: 318: 311: 306: 294: 209: 169: 164: 150:Physical Review 145:John A. Wheeler 137: 110:gamma-ray laser 17: 12: 11: 5: 1590: 1588: 1580: 1579: 1574: 1569: 1559: 1558: 1552: 1551: 1548: 1547: 1533: 1532: 1529: 1528: 1526: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1493:Bremsstrahlung 1490: 1485: 1479: 1477: 1473: 1472: 1470: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1413: 1411: 1407: 1406: 1404: 1403: 1398: 1393: 1388: 1383: 1378: 1373: 1367: 1365: 1361: 1360: 1358: 1357: 1352: 1347: 1342: 1336: 1334: 1330: 1329: 1324: 1322: 1321: 1314: 1307: 1299: 1288: 1287: 1262: 1238: 1173: 1124: 1089: 1053: 1008:(19): 195005. 992: 971: 945: 887: 852:(6): 429–431. 836: 809:(6): 434–436. 791: 762: 727: 712:(in Russian). 700: 663:(1): 165–177. 644: 597: 541: 461: 426:(3): 361–375. 407: 349: 308: 307: 305: 302: 301: 300: 293: 290: 233:electric field 208: 205: 168: 165: 163: 160: 136: 133: 15: 13: 10: 9: 6: 4: 3: 2: 1589: 1578: 1575: 1573: 1570: 1568: 1565: 1564: 1562: 1546: 1538: 1535: 1534: 1530: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1480: 1478: 1474: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1414: 1412: 1408: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1368: 1366: 1362: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1337: 1335: 1331: 1327: 1320: 1315: 1313: 1308: 1306: 1301: 1300: 1297: 1293: 1276: 1272: 1266: 1263: 1252: 1248: 1242: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1201: 1196: 1193:(5): 052302. 1192: 1188: 1184: 1177: 1174: 1169: 1165: 1160: 1155: 1151: 1147: 1144:(4): 043401. 1143: 1139: 1135: 1128: 1125: 1120: 1116: 1112: 1108: 1104: 1100: 1093: 1090: 1085: 1081: 1077: 1073: 1069: 1065: 1057: 1054: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1016: 1011: 1007: 1003: 996: 993: 987: 982: 975: 972: 960: 956: 949: 946: 935:on 2019-06-21 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 891: 888: 883: 879: 875: 871: 867: 863: 859: 855: 851: 847: 840: 837: 832: 828: 824: 820: 816: 812: 808: 804: 803: 795: 792: 780:. 18 May 2014 779: 775: 769: 767: 763: 758: 754: 750: 746: 742: 738: 731: 728: 723: 719: 715: 711: 704: 701: 696: 692: 688: 684: 679: 674: 670: 666: 662: 658: 651: 649: 645: 640: 636: 632: 628: 624: 620: 617:(9): 092004. 616: 612: 604: 602: 598: 593: 589: 585: 581: 577: 573: 568: 563: 559: 555: 548: 546: 542: 538: 533: 529: 525: 521: 517: 513: 509: 505: 501: 497: 492: 487: 484:(1): 013201. 483: 479: 475: 468: 466: 462: 457: 453: 449: 445: 441: 437: 433: 429: 425: 421: 414: 412: 408: 403: 399: 395: 391: 387: 383: 378: 373: 370:(4): 042106. 369: 365: 364: 356: 354: 350: 345: 341: 337: 333: 329: 325: 324: 316: 314: 310: 303: 299: 296: 295: 291: 289: 287: 283: 279: 275: 271: 270:STAR detector 266: 263: 259: 253: 250: 246: 241: 238: 234: 230: 226: 221: 219: 215: 206: 204: 202: 196: 194: 190: 185: 180: 178: 174: 166: 161: 159: 156: 152: 151: 146: 142: 141:Gregory Breit 134: 132: 130: 125: 121: 119: 115: 111: 107: 103: 102:photon energy 98: 96: 91: 89: 85: 81: 77: 73: 68: 66: 65:gamma photons 62: 58: 54: 50: 46: 38: 34: 29: 21: 1536: 1487: 1291: 1279:. Retrieved 1277:. 2021-08-09 1275:Science News 1274: 1265: 1254:. Retrieved 1250: 1241: 1190: 1186: 1176: 1141: 1137: 1127: 1105:(7): 47–51. 1102: 1098: 1092: 1067: 1063: 1056: 1005: 1001: 995: 974: 962:. Retrieved 959:Ars Technica 948: 937:. Retrieved 933:the original 904: 900: 890: 849: 845: 839: 806: 800: 794: 782:. Retrieved 777: 740: 736: 730: 713: 709: 703: 660: 656: 614: 610: 560:(1): 1–140. 557: 553: 535: 481: 477: 423: 419: 367: 361: 327: 321: 267: 254: 242: 222: 210: 197: 181: 170: 148: 138: 126: 122: 99: 92: 79: 75: 71: 69: 48: 44: 42: 33:gamma photon 1442:Self-energy 1432:Landau pole 1396:Positronium 1371:Dual photon 147:in 1934 in 1561:Categories 1508:Lamb shift 1437:QED vacuum 1281:2021-09-02 1256:2021-10-10 1200:1910.12400 939:2019-06-21 491:1504.07868 304:References 237:wavelength 155:Paul Dirac 1567:Photonics 1537:See also: 1476:Processes 1364:Particles 1333:Formalism 1233:236906272 1168:124892081 1119:1541-3721 1070:: 27–33. 1015:1009.0703 986:1404.0810 882:123676974 874:1749-4885 831:121658592 695:0094-243X 673:CiteSeerX 639:1550-7998 592:119275572 567:0910.0974 516:2470-0045 456:122633558 448:1469-8064 402:118532838 377:1303.6487 284:photons, 252:effects. 177:gamma ray 1410:Concepts 1391:Positron 1376:Electron 1225:34397228 1040:21231176 929:10060879 778:Phys.org 532:42770145 524:26871177 292:See also 278:massless 189:hohlraum 57:electron 53:positron 1205:Bibcode 1146:Bibcode 1072:Bibcode 1048:6777106 1020:Bibcode 909:Bibcode 854:Bibcode 811:Bibcode 784:24 July 745:Bibcode 722:4836265 665:Bibcode 619:Bibcode 572:Bibcode 537:sources 496:Bibcode 428:Bibcode 382:Bibcode 332:Bibcode 282:virtual 135:History 61:photons 1386:Photon 1231:  1223:  1166:  1117:  1046:  1038:  964:20 May 927:  880:  872:  829:  720:  693:  675:  637:  590:  530:  522:  514:  454:  446:  400:  1229:S2CID 1195:arXiv 1164:S2CID 1044:S2CID 1010:arXiv 981:arXiv 878:S2CID 827:S2CID 588:S2CID 562:arXiv 528:S2CID 486:arXiv 452:S2CID 398:S2CID 372:arXiv 88:laser 37:laser 1221:PMID 1115:ISSN 1036:PMID 966:2014 925:PMID 870:ISSN 786:2015 718:OSTI 691:ISSN 635:ISSN 520:PMID 512:ISSN 444:ISSN 245:SLAC 143:and 70:The 43:The 1213:doi 1191:127 1154:doi 1107:doi 1080:doi 1068:740 1028:doi 1006:105 917:doi 862:doi 819:doi 753:doi 741:155 683:doi 661:396 627:doi 580:doi 558:487 504:doi 436:doi 390:doi 340:doi 262:ELI 214:GeV 201:MeV 78:or 67:). 47:or 1563:: 1273:. 1249:. 1227:. 1219:. 1211:. 1203:. 1189:. 1185:. 1162:. 1152:. 1142:20 1140:. 1136:. 1113:. 1103:22 1101:. 1078:. 1042:. 1034:. 1026:. 1018:. 1004:. 957:. 923:. 915:. 905:76 903:. 899:. 876:. 868:. 860:. 848:. 825:. 817:. 805:. 776:. 765:^ 751:. 739:. 716:. 714:41 689:. 681:. 671:. 659:. 647:^ 633:. 625:. 615:60 613:. 600:^ 586:. 578:. 570:. 556:. 544:^ 534:. 526:. 518:. 510:. 502:. 494:. 482:93 480:. 476:. 464:^ 450:. 442:. 434:. 424:26 422:. 410:^ 396:. 388:. 380:. 368:87 366:. 352:^ 338:. 328:46 326:. 312:^ 131:. 1318:e 1311:t 1304:v 1284:. 1259:. 1235:. 1215:: 1207:: 1197:: 1170:. 1156:: 1148:: 1121:. 1109:: 1086:. 1082:: 1074:: 1050:. 1030:: 1022:: 1012:: 989:. 983:: 968:. 942:. 919:: 911:: 884:. 864:: 856:: 850:8 833:. 821:: 813:: 807:8 788:. 759:. 755:: 747:: 724:. 697:. 685:: 667:: 641:. 629:: 621:: 594:. 582:: 574:: 564:: 506:: 498:: 488:: 458:. 438:: 430:: 404:. 392:: 384:: 374:: 346:. 342:: 334:: 55:– 39:.

Index



gamma photon
laser
positron
electron
photons
gamma photons
electromagnetic field
laser
electron–positron annihilation
photon energy
electron and positron rest mass energy
gamma-ray laser
pair annihilation
Stanford Linear Accelerator Center
quantum electrodynamics
Gregory Breit
John A. Wheeler
Physical Review
Paul Dirac
mass–energy equivalence
gamma ray
Imperial College London
hohlraum
Monte Carlo simulations
MeV
GeV
non-linear inverse Compton scattering
Stanford Linear Accelerator Center

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.