Knowledge

Bridgman–Stockbarger method

Source 📝

349: 624: 36: 354:
The difference between the Bridgman technique and Stockbarger technique is subtle: While both methods utilize a temperature gradient and a moving crucible, the Bridgman technique utilizes the relatively uncontrolled gradient produced at the exit of the furnace; the Stockbarger technique introduces a
328:
is located. A single crystal of the same crystallographic orientation as the seed material is grown on the seed and is progressively formed along the length of the container. The process can be carried out in a horizontal or vertical orientation, and usually involves a rotating crucible/ampoule to
355:
baffle, or shelf, separating two coupled furnaces with temperatures above and below the freezing point. Stockbarger's modification of the Bridgman technique allows for better control over the temperature gradient at the melt/crystal interface.
358:
When seed crystals are not employed as described above, polycrystalline ingots can be produced from a feedstock consisting of rods, chunks, or any irregularly shaped pieces once they are melted and allowed to re-solidify. The resultant
54: 665: 97: 344:
is more difficult. The process can reliably produce single-crystal ingots, but does not necessarily result in uniform properties through the crystal.
279: 579:
Montgomery, Matthew; Blockburger, Clark (2017). Zelinski, Brian J. (ed.). "18 x 36 x 1.5 inch sapphire panels for visible and infrared windows".
466:
Bridgman, Percy W. (1925). "Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin".
208: 450: 324:
The methods involve heating polycrystalline material above its melting point and slowly cooling it from one end of its container, where a
238: 699: 658: 348: 72: 704: 188: 583:. Window and Dome Technologies and Materials XV. 10179 101790N-1 (Window and Dome Technologies and Materials XV): 101790N. 689: 684: 651: 272: 147: 228: 363:
of the ingots so obtained are characteristic of directionally solidified metals and alloys with their aligned grains.
403:
crystals 45 cm wide and over 1 meter long. However, the quality of the crystals grown by HDSM differ from the
542: 396: 265: 301: 305: 218: 584: 551: 510: 96: 213: 600: 483: 416: 404: 341: 308:(1895–1952). The method includes two similar but distinct techniques primarily used for growing 233: 193: 694: 501:
Stockbarger, Donald C. (1936). "The Production of Large Single Crystals of Lithium Fluoride".
446: 440: 223: 116: 17: 592: 559: 518: 475: 380: 337: 157: 631: 387:) starting in the 1960s in the Soviet Union. It uses a flat-bottomed crucible made out of 360: 313: 309: 248: 178: 137: 88: 623: 588: 555: 514: 635: 243: 162: 142: 678: 604: 333: 325: 253: 152: 203: 538:"Growth of large 90 mm diameter Yb:YAG single crystals with Bagdasarov method" 388: 121: 564: 537: 400: 536:
Arzakantsyan, M.; Ananyan, N.; Gevorgyan, V.; Chanteloup, J.-C. (2012).
487: 596: 392: 198: 111: 522: 479: 395:, and has been used to grow various large oxide crystals including 439:
Hans J. Scheel; Peter Capper; Peter Rudolph (25 October 2010).
312:(single-crystal ingots), but which can be used for solidifying 29: 407:, due to the problem of the problematic presence of bubbles. 332:
The Bridgman method is a popular way of producing certain
442:
Crystal Growth Technology: Semiconductors and Dielectrics
468:
Proceedings of the American Academy of Arts and Sciences
639: 50: 170: 129: 103: 87: 45:
may be too technical for most readers to understand
434: 432: 659: 391:with short sidewalls rather than an enclosed 273: 8: 373:horizontal directional solidification method 445:. John Wiley & Sons. pp. 177–178. 666: 652: 280: 266: 84: 563: 73:Learn how and when to remove this message 57:, without removing the technical details. 371:A variant of the technique known as the 428: 55:make it understandable to non-experts 7: 620: 618: 379:) developed by Khachik Bagdasarov ( 239:Shaping processes in crystal growth 25: 622: 503:Review of Scientific Instruments 347: 95: 34: 209:Fractional crystallization 298:Bridgman–Stockbarger technique 18:Bridgman–Stockbarger technique 1: 638:. You can help Knowledge by 399:(a laser host crystal), and 229:Laser-heated pedestal growth 300:, is named after physicist 294:Bridgman–Stockbarger method 219:Hydrothermal synthesis 184:Bridgman–Stockbarger method 721: 617: 304:(1882–1961) and physicist 700:Methods of crystal growth 543:Optical Materials Express 384: 261: 189:Van Arkel–de Boer process 175: 134: 108: 94: 27:Method of crystallization 214:Fractional freezing 705:Materials science stubs 302:Percy Williams Bridgman 194:Czochralski method 634:-related article is a 171:Methods and technology 306:Donald C. Stockbarger 690:Semiconductor growth 685:Industrial processes 565:10.1364/OME.2.001219 589:2017SPIE10179E..0NM 556:2012OMExp...2.1219A 515:1936RScI....7..133S 163:Single crystal 143:Crystal growth 597:10.1117/12.2269465 417:Float-zone silicon 405:Czochralski method 342:Czochralski method 234:Micro-pulling-down 647: 646: 523:10.1063/1.1752094 452:978-3-527-32593-1 367:Bagdasarov method 336:crystals such as 290: 289: 224:Kyropoulos method 153:Seed crystal 148:Recrystallization 117:Crystal structure 83: 82: 75: 16:(Redirected from 712: 668: 661: 654: 626: 619: 609: 608: 576: 570: 569: 567: 550:(9): 1219–1225. 533: 527: 526: 498: 492: 491: 480:10.2307/25130058 463: 457: 456: 436: 386: 385:Хачик Багдасаров 351: 340:, for which the 338:gallium arsenide 316:ingots as well. 282: 275: 268: 158:Protocrystalline 99: 85: 78: 71: 67: 64: 58: 38: 37: 30: 21: 720: 719: 715: 714: 713: 711: 710: 709: 675: 674: 673: 672: 632:crystallography 615: 613: 612: 578: 577: 573: 535: 534: 530: 500: 499: 495: 465: 464: 460: 453: 438: 437: 430: 425: 413: 369: 329:stir the melt. 322: 314:polycrystalline 286: 249:Verneuil method 138:Crystallization 89:Crystallization 79: 68: 62: 59: 51:help improve it 48: 39: 35: 28: 23: 22: 15: 12: 11: 5: 718: 716: 708: 707: 702: 697: 692: 687: 677: 676: 671: 670: 663: 656: 648: 645: 644: 627: 611: 610: 571: 528: 509:(3): 133–136. 493: 474:(6): 305–383. 458: 451: 427: 426: 424: 421: 420: 419: 412: 409: 368: 365: 361:microstructure 321: 318: 288: 287: 285: 284: 277: 270: 262: 259: 258: 257: 256: 251: 246: 244:Skull crucible 241: 236: 231: 226: 221: 216: 211: 206: 201: 196: 191: 186: 181: 173: 172: 168: 167: 166: 165: 160: 155: 150: 145: 140: 132: 131: 127: 126: 125: 124: 119: 114: 106: 105: 101: 100: 92: 91: 81: 80: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 717: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 682: 680: 669: 664: 662: 657: 655: 650: 649: 643: 641: 637: 633: 628: 625: 621: 616: 606: 602: 598: 594: 590: 586: 582: 575: 572: 566: 561: 557: 553: 549: 545: 544: 539: 532: 529: 524: 520: 516: 512: 508: 504: 497: 494: 489: 485: 481: 477: 473: 469: 462: 459: 454: 448: 444: 443: 435: 433: 429: 422: 418: 415: 414: 410: 408: 406: 402: 398: 394: 390: 382: 378: 374: 366: 364: 362: 356: 352: 350: 345: 343: 339: 335: 334:semiconductor 330: 327: 319: 317: 315: 311: 307: 303: 299: 295: 283: 278: 276: 271: 269: 264: 263: 260: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 176: 174: 169: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 135: 133: 128: 123: 120: 118: 115: 113: 110: 109: 107: 102: 98: 93: 90: 86: 77: 74: 66: 56: 52: 46: 43:This article 41: 32: 31: 19: 640:expanding it 629: 614: 580: 574: 547: 541: 531: 506: 502: 496: 471: 467: 461: 441: 376: 372: 370: 357: 353: 346: 331: 326:seed crystal 323: 297: 293: 291: 254:Zone melting 183: 104:Fundamentals 69: 60: 44: 204:Flux method 679:Categories 581:Proc. SPIE 423:References 389:molybdenum 122:Nucleation 63:March 2021 605:125444288 695:Crystals 488:25130058 411:See also 401:sapphire 320:Overview 130:Concepts 585:Bibcode 552:Bibcode 511:Bibcode 393:ampoule 381:Russian 199:Epitaxy 112:Crystal 49:Please 603:  486:  449:  397:Yb:YAG 310:boules 179:Boules 630:This 601:S2CID 484:JSTOR 296:, or 636:stub 447:ISBN 377:HDSM 292:The 593:doi 560:doi 519:doi 476:doi 53:to 681:: 599:. 591:. 558:. 546:. 540:. 517:. 505:. 482:. 472:60 470:. 431:^ 383:: 667:e 660:t 653:v 642:. 607:. 595:: 587:: 568:. 562:: 554:: 548:2 525:. 521:: 513:: 507:7 490:. 478:: 455:. 375:( 281:e 274:t 267:v 76:) 70:( 65:) 61:( 47:. 20:)

Index

Bridgman–Stockbarger technique
help improve it
make it understandable to non-experts
Learn how and when to remove this message
Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.