Knowledge

Brillouin spectroscopy

Source 📝

271:, a form of elastic scattering from the incident photons and the sample. Rayleigh scattering occurs when the induced polarization of the atoms, resulting from the incident photons, does not couple with possible vibrational modes of the atoms. The resulting emitted radiation has the same energy as the incident radiation, meaning no frequency shift is observed. This peak is generally quite intense and is not of direct interest for Brillouin spectroscopy. In an experiment, the incident light is most often a high power laser. This results in a very intense Rayleigh peak which has the ability to wash out the Brillouin peaks of interest. In order to adjust for this, most spectrum are plotted with the Rayleigh peak either filtered out or suppressed. 405:, relates stress and strain within a given material. The number of independent elastic constants found within the elastic tensor can be reduced through symmetry operations and depends on the symmetry of a given material ranging from 2 for non-crystalline substances or 3 for cubic crystals to 21 for systems with triclinic symmetry. The tensor is unique to given materials and thus must be independently determined for each material in order to understand their elastic properties. The elastic tensor is especially important to mineral physicist and seismologists looking to understand the bulk, polycrystalline, properties of deep Earth minerals. It is possible to determine elastic properties of materials such as the adiabatic bulk modulus, 98:), can be obtained through a Raman spectroscopy study shedding light on structure and chemical composition, whereas Brillouin scattering involves the scattering of photons by low frequency phonons providing information regarding elastic properties. Optical phonons and molecular vibrations measured in Raman spectroscopy typically have wavenumbers between 10 and 4000 cm, while phonons involved in Brillouin scattering are on the order of 0.1–6 cm. This roughly two order of magnitude difference becomes obvious when attempting to perform Raman spectroscopy vs. Brillouin spectroscopy experiments. 291:
regime, as a result, longitudinal waves, which are transmitted via compression parallel to the propagation direction, can transmit their energy through the material easily and thus travel quickly. The motion of transverse waves, on the other hand, is perpendicular to the propagation direction and is thus less easily propagated through the medium. As a result, longitudinal waves travel more quickly through solids than transverse waves. An example of this can be seen in
432:, without first finding the complete elastic tensor through techniques such as the determination of an equation of state through a compression study. Elastic properties found in this way, however, do not scale well to bulk systems such as those found within rock assemblages in the Earth's mantle. In order to calculate the elastic properties of bulk material with randomly oriented crystals the elastic tensor is needed. 1767: 349:
two transverse waves will be degenerate, as they will be traveling along elastically identical crystallographic planes. In non-isotropic solids the two transverse waves will be distinguishable from one another, but not distinguishable as being horizontally or vertically polarized without a deeper understanding of the material being studied. They are then generically labeled transverse 1 and transverse 2.
264:
of the absorbed photon. Anti-Stokes scattering describes the interaction scenario in which the incoming photon absorbs a phonon, phonon annihilation, and a photon with a higher energy than that of absorbed photon is emitted. The figure illustrates the differences between Raman scattering and Brillouin scattering along with Stokes and anti-Stokes interactions as is seen in experimental data.
1779: 74: 348:
According to the equation, acoustic waves with varying speeds will appear on the Brillouin spectra with varying wavenumbers: faster waves with higher magnitude wavenumbers and slower waves with smaller wavenumbers. Therefore, three distinct Brillouin lines will be observable. In isotropic solids, the
290:
In practice, six Brillouin lines of interest are generally seen in a Brillouin spectrum. Acoustic waves have three polarization directions one longitudinal and two transverse directions each being orthogonal to the others. Solids can be considered nearly incompressible, within an appropriate pressure
263:
The equations describe both the constructive (Stokes) and destructive (anti-Stokes) interactions between a photon and phonon. Stokes scattering describes the interaction scenario in which the material absorbs the photon, creating a phonon, inelastically emitting a photon with a lower energy than that
295:
with an approximate acoustic longitudinal wave velocity of 5965 m/s and transverse wave velocity of 3750 m/s. Fluids cannot support transverse waves. As a result, transverse wave signals are not found in Brillouin spectra of fluids. The equation shows the relationship between acoustic wave
274:
The second noteworthy aspect of the figure is the distinction between Brillouin and Raman peaks. As previously mentioned, Brillouin peaks range from 0.1 cm to approximately 6 cm while Raman scattering wavenumbers ranges from 10–10000 cm. As Brillouin and Raman spectroscopy probe two
251:
The second equation describes the application of conservation of momentum to the system. The phonon, which is either generated or annihilated, has a wavevector which is a linear combination of the incident and scattered wavevectors. This orientation will become more apparent and important when the
248:
Brillouin scattering occurs. The energy imparted on an incident photon from a phonon is relatively small, generally around 5-10% that of the photon's energy. Given an approximate frequency of visible light, ~10 Hz, it is easy to see that Brillouin scattering generally lies in the GHz regime.
286:
The figure also highlights the difference between Stokes and anti-Stokes scattering. Stokes scattering, positive photon creation, is displayed as a positive shift in wavenumber. Anti-Stokes scattering, negative photon annihilation, is displayed as a negative shift in wavenumber. The locations of
247:
denote the incident and scattered waves. The first equation is the result of the application of the conservation of energy to the system of the incident photon, the scattered photon, and the interacting phonon. Applying conservation of energy also sheds light upon the frequency regime in which
358: 660: 256: 77:
An illustration of an example Brillouin and Raman spectrum. In practice the distinction between Brillouin and Raman spectroscopy depends on which frequencies we choose to sample. Brillouin scattering generally lies within the GHz frequency
914: 275:
fundamentally different interaction regimes this is not too large of an inconvenience. The fact that Brillouin interactions are such low frequency however creates technical challenges when performing experiments for which a
526: 1134:
Muller U. P., Sanctuary R., Seck P., Kruger J. –Ch. (2005) Scanning Brillouin microscopy: acoustic microscopy at gigahertz frequencies. Archives des Sciences Naturelles, Physiques et Mathematiques, 46, 11-25.
163: 829:
In a cubic material it is possible to determine the complete elastic tensor from pure longitudinal and pure transverse phonon velocities. In order make the above calculations the phonon wavevector,
86:
in many ways; in fact the physical scattering processes involved are identical. However, the type of information gained is significantly different. The process observed in Raman spectroscopy,
1223: 1598: 833:, must be pre-determined from the geometry of the experiment. There are three main Brillouin spectroscopy geometries: 90 degree scattering, backscattering, and platelet geometry. 826:
reduces to 3 independent components. Equation 5 shows the complete elastic tensor for a cubic material. The relations between the elastic constants and can be found in Table 1.
218: 711: 624: 594: 1271: 966: 343: 435:
Using Equation 3, it is possible to determine the sound velocity through a material. In order to obtain the elastic tensor the Christoffel Equation needs to be applied:
65:. Brillouin spectroscopy can be used to determine the complete elastic tensor of a given material which is required in order to understand the bulk elastic properties. 824: 781: 564: 399: 1026: 939: 741: 654: 430: 1006: 986: 849: 1489: 1122:
Bass J. (1995) Elasticity of minerals, glasses, and melts. Mineral Physics and Crystallography: a Handbook of Physical Constants, AGU Reference Shelf 2, 45-63.
1422: 1367: 1336: 1331: 1704: 1522: 1384: 267:
The figure depicts three important details. The first is the Rayleigh line, the peak which has been suppressed at 0 cm. This peak is a result of
1653: 1472: 1316: 1593: 1395: 1296: 283:–based spectrometer. In some cases a single grating–based spectrometer has been used to collect both Brillouin and Raman spectra from a sample. 1539: 1517: 1264: 1605: 1527: 1197: 1357: 1462: 1407: 440: 279:
are usually used in order to overcome. A Raman spectroscopy system is generally less technically complicated and can be performed with a
107: 1805: 1689: 1441: 1257: 1237: 1694: 1512: 287:
peaks are symmetric about the Rayleigh line because they correspond to the same energy level transition but of a different sign.
1709: 1679: 1610: 1544: 1638: 1429: 1326: 231:
are the angular frequency and wavevector of the photon, respectively. While the phonon angular frequency and wavevector are
663:
Relationships between elastic constants and X for cubic systems depending upon the direction of propagation of the phonon,
1436: 1341: 1570: 1417: 1306: 1726: 1565: 1534: 1467: 94:
modes. Information relating to modes of vibration, such as the six normal modes of vibration of the carbonate ion, (CO
1716: 1658: 1507: 1379: 276: 101:
In Brillouin scattering, and similarly Raman scattering, both energy and momentum are conserved in the relations:
1742: 1721: 1484: 1362: 626:, whose eigenvalues are equal to ρV2, where ρ is density and V is acoustic velocity. The polarization matrix, 1783: 1615: 1311: 1229: 1402: 1148:
Mazzacurati, V; Benassi, P; Ruocco, G (1988). "A new class of multiple dispersion grating spectrometers".
1771: 1643: 1374: 1288: 790:, and acoustic wave velocities, ρV2, have been determined and tabulated. For example, in a cubic system 35: 1080: 1037: 171: 39: 31: 27: 1699: 1412: 1321: 686: 599: 569: 280: 268: 91: 43: 1113:
Buzgar N., Apopei A., (2009) The Raman study of certain carbonates. Geologie. Tomul LV, 2, 97-112.
944: 1747: 1684: 1663: 1479: 1457: 1390: 1301: 1042: 314: 83: 530:
The Christoffel Equation is essentially an eigenvalue problem which relates the elastic tensor,
1648: 1575: 1549: 1233: 1193: 1165: 1096: 793: 786:
For specific symmetries the relationship between a specific combination of elastic constants,
750: 533: 368: 1011: 924: 1157: 1088: 716: 629: 87: 62: 26:
technique which allows the determination of elastic moduli of materials. The technique uses
408: 909:{\displaystyle \Delta \omega =v_{\text{s}}{\frac {2n\omega }{c}}\sin {\frac {\theta }{2}}} 357: 58: 30:
scattering of light when it encounters acoustic phonons in a crystal, a process known as
1084: 841:
The frequency shift of the incident laser light due to Brillouin scattering is given by
659: 991: 971: 402: 365:
Brillouin spectroscopy is a valuable tool for determining the complete elastic tensor,
1799: 1161: 57:
This technique is commonly used to determine the elastic properties of materials in
1280: 259:
Geometric relationships between longitudinal, L, and transverse, T, acoustic waves.
23: 1187: 401:, of solids. The elastic tensor is an 81 component 3x3x3x3 matrix which, through 255: 1169: 1100: 1071:
Polian, Alain (2003). "Brillouin scattering at high pressure: an overview".
20: 1136: 73: 566:, to the crystal orientation and the orientation of the incident light, 747:
is determined from the Brillouin spectra, it is possible to determine
1092: 656:, contains the corresponding polarizations of the propagating waves. 521:{\displaystyle c_{ijkl}\Lambda _{kl}=\lambda _{kl}\delta _{kl}p_{kl}} 292: 51: 47: 968:
is the velocity of acoustic waves (speed of sound in the medium),
158:{\displaystyle \hbar \Omega =\pm \hbar (\omega _{i}-\omega _{s})} 1253: 1249: 1014: 994: 974: 947: 927: 852: 796: 753: 719: 689: 632: 602: 572: 536: 443: 411: 371: 317: 174: 110: 252:
orientation of the experimental setup is discussed.
1735: 1672: 1631: 1624: 1586: 1558: 1500: 1450: 1350: 1287: 1020: 1000: 980: 960: 933: 908: 818: 775: 735: 705: 648: 618: 588: 558: 520: 424: 393: 337: 212: 157: 1186:William Hayes; Rodney Loudon (13 December 2012). 1181: 1179: 1212:Cummins & Schoen, 1972, Laser Handbook vol 2 361:Cubic elastic tensor after symmetry reduction. 1265: 38:of a material. The scattering occurs when an 34:, to determine phonon energies and therefore 8: 1337:Vibrational spectroscopy of linear molecules 1150:Journal of Physics E: Scientific Instruments 1066: 1064: 1062: 1060: 1058: 1628: 1332:Nuclear resonance vibrational spectroscopy 1272: 1258: 1250: 743:are known from the experimental setup and 1705:Inelastic electron tunneling spectroscopy 1385:Resonance-enhanced multiphoton ionization 1028:is the angle of incidence of the light. 1013: 993: 973: 952: 946: 926: 896: 872: 866: 851: 801: 795: 758: 752: 724: 718: 694: 688: 637: 631: 607: 601: 577: 571: 541: 535: 509: 496: 483: 467: 448: 442: 416: 410: 376: 370: 327: 316: 201: 188: 173: 146: 133: 109: 1473:Extended X-ray absorption fine structure 1130: 1128: 658: 356: 254: 72: 1137:http://orbilu.uni.lu/handle/10993/13482 1054: 941:is the angular frequency of the light, 123: 111: 783:, given the density of the material. 667:, and the eigenvector of the phonon, 82:Brillouin spectroscopy is similar to 7: 1778: 90:, primarily involves high frequency 1008:is the vacuum speed of light, and 853: 691: 574: 464: 324: 114: 69:Comparison with Raman spectroscopy 14: 1690:Deep-level transient spectroscopy 1442:Saturated absorption spectroscopy 1777: 1766: 1765: 1695:Dual-polarization interferometry 1710:Scanning tunneling spectroscopy 1685:Circular dichroism spectroscopy 1680:Acoustic resonance spectroscopy 1189:Scattering of Light by Crystals 213:{\displaystyle q=(k_{t}-k_{s})} 1639:Fourier-transform spectroscopy 1327:Vibrational circular dichroism 207: 181: 152: 126: 1: 1437:Cavity ring-down spectroscopy 1342:Thermal infrared spectroscopy 1073:Journal of Raman Spectroscopy 706:{\displaystyle \Lambda _{kl}} 619:{\displaystyle \lambda _{kl}} 589:{\displaystyle \Lambda _{kl}} 1571:Inelastic neutron scattering 1225:Optical Properties of Solids 988:is the index of refraction, 961:{\displaystyle v_{\text{s}}} 679:= transverse acoustic waves. 1632:Data collection, processing 1508:Photoelectron/photoemission 338:{\displaystyle V=\Omega /q} 1822: 1717:Photoacoustic spectroscopy 1659:Time-resolved spectroscopy 1162:10.1088/0022-3735/21/8/012 683:Using the equation, where 277:Fabry-Perot interferometer 1761: 1743:Astronomical spectroscopy 1722:Photothermal spectroscopy 304:, and phonon wavenumber, 1806:Vibrational spectroscopy 819:{\displaystyle c_{ijkl}} 776:{\displaystyle c_{ijkl}} 559:{\displaystyle c_{ijkl}} 394:{\displaystyle c_{ijkl}} 1727:Pump–probe spectroscopy 1616:Ferromagnetic resonance 1408:Laser-induced breakdown 1230:Oxford University Press 1192:. Courier Corporation. 1021:{\displaystyle \theta } 934:{\displaystyle \omega } 1423:Glow-discharge optical 1403:Raman optical activity 1317:Rotational–vibrational 1022: 1002: 982: 962: 935: 910: 820: 777: 737: 736:{\displaystyle p_{ij}} 707: 680: 650: 649:{\displaystyle p_{kl}} 620: 590: 560: 522: 426: 395: 362: 339: 260: 214: 159: 79: 36:interatomic potentials 17:Brillouin spectroscopy 1644:Hyperspectral imaging 1023: 1003: 983: 963: 936: 911: 821: 778: 738: 708: 662: 651: 621: 591: 561: 523: 427: 425:{\displaystyle K_{s}} 396: 360: 340: 258: 215: 160: 92:molecular vibrational 76: 1396:Coherent anti-Stokes 1351:UV–Vis–NIR "Optical" 1232:. pp. 289–290. 1038:Brillouin scattering 1012: 992: 972: 945: 925: 850: 794: 751: 717: 687: 630: 600: 570: 534: 441: 409: 369: 315: 300:, angular frequency 172: 108: 40:electromagnetic wave 32:Brillouin scattering 1700:Hadron spectroscopy 1490:Conversion electron 1451:X-ray and Gamma ray 1358:Ultraviolet–visible 1085:2003JRSp...34..633P 675:= longitudinal and 281:diffraction grating 269:Rayleigh scattering 1748:Force spectroscopy 1673:Measured phenomena 1664:Video spectroscopy 1368:Cold vapour atomic 1222:Fox, Mark (2010). 1043:Raman spectroscopy 1018: 998: 978: 958: 931: 906: 816: 773: 733: 703: 681: 646: 616: 586: 556: 518: 422: 391: 363: 335: 261: 210: 155: 84:Raman spectroscopy 80: 1793: 1792: 1757: 1756: 1649:Spectrophotometry 1576:Neutron spin echo 1550:Beta spectroscopy 1463:Energy-dispersive 1199:978-0-486-16147-1 1001:{\displaystyle c} 981:{\displaystyle n} 955: 904: 888: 869: 239:. The subscripts 42:interacts with a 1813: 1781: 1780: 1769: 1768: 1629: 1540:phenomenological 1289:Vibrational (IR) 1274: 1267: 1260: 1251: 1244: 1243: 1219: 1213: 1210: 1204: 1203: 1183: 1174: 1173: 1145: 1139: 1132: 1123: 1120: 1114: 1111: 1105: 1104: 1093:10.1002/jrs.1031 1079:(7–8): 633–637. 1068: 1027: 1025: 1024: 1019: 1007: 1005: 1004: 999: 987: 985: 984: 979: 967: 965: 964: 959: 957: 956: 953: 940: 938: 937: 932: 915: 913: 912: 907: 905: 897: 889: 884: 873: 871: 870: 867: 832: 825: 823: 822: 817: 815: 814: 789: 782: 780: 779: 774: 772: 771: 746: 742: 740: 739: 734: 732: 731: 712: 710: 709: 704: 702: 701: 678: 674: 670: 666: 655: 653: 652: 647: 645: 644: 625: 623: 622: 617: 615: 614: 595: 593: 592: 587: 585: 584: 565: 563: 562: 557: 555: 554: 527: 525: 524: 519: 517: 516: 504: 503: 491: 490: 475: 474: 462: 461: 431: 429: 428: 423: 421: 420: 400: 398: 397: 392: 390: 389: 344: 342: 341: 336: 331: 307: 303: 299: 246: 242: 238: 234: 230: 226: 219: 217: 216: 211: 206: 205: 193: 192: 164: 162: 161: 156: 151: 150: 138: 137: 88:Raman scattering 63:material science 1821: 1820: 1816: 1815: 1814: 1812: 1811: 1810: 1796: 1795: 1794: 1789: 1753: 1731: 1668: 1620: 1582: 1554: 1496: 1446: 1346: 1307:Resonance Raman 1283: 1278: 1248: 1247: 1240: 1221: 1220: 1216: 1211: 1207: 1200: 1185: 1184: 1177: 1147: 1146: 1142: 1133: 1126: 1121: 1117: 1112: 1108: 1070: 1069: 1056: 1051: 1034: 1010: 1009: 990: 989: 970: 969: 948: 943: 942: 923: 922: 874: 862: 848: 847: 839: 837:Frequency shift 830: 797: 792: 791: 787: 754: 749: 748: 744: 720: 715: 714: 690: 685: 684: 676: 672: 668: 664: 633: 628: 627: 603: 598: 597: 596:, to a matrix, 573: 568: 567: 537: 532: 531: 505: 492: 479: 463: 444: 439: 438: 412: 407: 406: 372: 367: 366: 355: 313: 312: 305: 301: 297: 244: 240: 236: 232: 228: 224: 197: 184: 170: 169: 142: 129: 106: 105: 97: 71: 59:mineral physics 12: 11: 5: 1819: 1817: 1809: 1808: 1798: 1797: 1791: 1790: 1788: 1787: 1775: 1762: 1759: 1758: 1755: 1754: 1752: 1751: 1745: 1739: 1737: 1733: 1732: 1730: 1729: 1724: 1719: 1714: 1713: 1712: 1702: 1697: 1692: 1687: 1682: 1676: 1674: 1670: 1669: 1667: 1666: 1661: 1656: 1651: 1646: 1641: 1635: 1633: 1626: 1622: 1621: 1619: 1618: 1613: 1608: 1603: 1602: 1601: 1590: 1588: 1584: 1583: 1581: 1580: 1579: 1578: 1568: 1562: 1560: 1556: 1555: 1553: 1552: 1547: 1542: 1537: 1532: 1531: 1530: 1525: 1523:Angle-resolved 1520: 1515: 1504: 1502: 1498: 1497: 1495: 1494: 1493: 1492: 1482: 1477: 1476: 1475: 1470: 1465: 1454: 1452: 1448: 1447: 1445: 1444: 1439: 1434: 1433: 1432: 1427: 1426: 1425: 1410: 1405: 1400: 1399: 1398: 1388: 1382: 1377: 1372: 1371: 1370: 1360: 1354: 1352: 1348: 1347: 1345: 1344: 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1299: 1293: 1291: 1285: 1284: 1279: 1277: 1276: 1269: 1262: 1254: 1246: 1245: 1238: 1228:(2 ed.). 1214: 1205: 1198: 1175: 1156:(8): 798–804. 1140: 1124: 1115: 1106: 1053: 1052: 1050: 1047: 1046: 1045: 1040: 1033: 1030: 1017: 997: 977: 951: 930: 919: 918: 917: 916: 903: 900: 895: 892: 887: 883: 880: 877: 865: 861: 858: 855: 838: 835: 813: 810: 807: 804: 800: 770: 767: 764: 761: 757: 730: 727: 723: 700: 697: 693: 643: 640: 636: 613: 610: 606: 583: 580: 576: 553: 550: 547: 544: 540: 515: 512: 508: 502: 499: 495: 489: 486: 482: 478: 473: 470: 466: 460: 457: 454: 451: 447: 419: 415: 388: 385: 382: 379: 375: 354: 351: 346: 345: 334: 330: 326: 323: 320: 221: 220: 209: 204: 200: 196: 191: 187: 183: 180: 177: 166: 165: 154: 149: 145: 141: 136: 132: 128: 125: 122: 119: 116: 113: 95: 70: 67: 13: 10: 9: 6: 4: 3: 2: 1818: 1807: 1804: 1803: 1801: 1786: 1785: 1776: 1774: 1773: 1764: 1763: 1760: 1749: 1746: 1744: 1741: 1740: 1738: 1734: 1728: 1725: 1723: 1720: 1718: 1715: 1711: 1708: 1707: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1677: 1675: 1671: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1636: 1634: 1630: 1627: 1623: 1617: 1614: 1612: 1609: 1607: 1604: 1600: 1597: 1596: 1595: 1592: 1591: 1589: 1585: 1577: 1574: 1573: 1572: 1569: 1567: 1564: 1563: 1561: 1557: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1510: 1509: 1506: 1505: 1503: 1499: 1491: 1488: 1487: 1486: 1483: 1481: 1478: 1474: 1471: 1469: 1466: 1464: 1461: 1460: 1459: 1456: 1455: 1453: 1449: 1443: 1440: 1438: 1435: 1431: 1428: 1424: 1421: 1420: 1419: 1416: 1415: 1414: 1411: 1409: 1406: 1404: 1401: 1397: 1394: 1393: 1392: 1389: 1386: 1383: 1381: 1380:Near-infrared 1378: 1376: 1373: 1369: 1366: 1365: 1364: 1361: 1359: 1356: 1355: 1353: 1349: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1294: 1292: 1290: 1286: 1282: 1275: 1270: 1268: 1263: 1261: 1256: 1255: 1252: 1241: 1239:9780199573363 1235: 1231: 1227: 1226: 1218: 1215: 1209: 1206: 1201: 1195: 1191: 1190: 1182: 1180: 1176: 1171: 1167: 1163: 1159: 1155: 1151: 1144: 1141: 1138: 1131: 1129: 1125: 1119: 1116: 1110: 1107: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1067: 1065: 1063: 1061: 1059: 1055: 1048: 1044: 1041: 1039: 1036: 1035: 1031: 1029: 1015: 995: 975: 949: 928: 901: 898: 893: 890: 885: 881: 878: 875: 863: 859: 856: 846: 845: 844: 843: 842: 836: 834: 827: 811: 808: 805: 802: 798: 784: 768: 765: 762: 759: 755: 728: 725: 721: 698: 695: 661: 657: 641: 638: 634: 611: 608: 604: 581: 578: 551: 548: 545: 542: 538: 528: 513: 510: 506: 500: 497: 493: 487: 484: 480: 476: 471: 468: 458: 455: 452: 449: 445: 436: 433: 417: 413: 404: 386: 383: 380: 377: 373: 359: 352: 350: 332: 328: 321: 318: 311: 310: 309: 294: 288: 284: 282: 278: 272: 270: 265: 257: 253: 249: 202: 198: 194: 189: 185: 178: 175: 168: 167: 147: 143: 139: 134: 130: 120: 117: 104: 103: 102: 99: 93: 89: 85: 75: 68: 66: 64: 60: 55: 54:scattering. 53: 49: 45: 41: 37: 33: 29: 25: 22: 18: 1782: 1770: 1750:(a misnomer) 1736:Applications 1654:Time-stretch 1545:paramagnetic 1363:Fluorescence 1281:Spectroscopy 1224: 1217: 1208: 1188: 1153: 1149: 1143: 1118: 1109: 1076: 1072: 920: 840: 828: 785: 682: 529: 437: 434: 364: 353:Applications 347: 289: 285: 273: 266: 262: 250: 222: 100: 81: 56: 44:density wave 24:spectroscopy 16: 15: 1322:Vibrational 403:Hooke's Law 1528:Two-photon 1430:absorption 1312:Rotational 1049:References 296:velocity, 1606:Terahertz 1587:Radiowave 1485:Mössbauer 1170:0022-3735 1101:0377-0486 1016:θ 929:ω 899:θ 894:⁡ 882:ω 857:ω 854:Δ 692:Λ 605:λ 575:Λ 494:δ 481:λ 465:Λ 325:Ω 195:− 144:ω 140:− 131:ω 124:ℏ 121:± 115:Ω 112:ℏ 28:inelastic 21:empirical 1800:Category 1772:Category 1501:Electron 1468:Emission 1418:emission 1375:Vibronic 1032:See also 671:, where 1784:Commons 1611:ESR/EPR 1559:Nucleon 1387:(REMPI) 1081:Bibcode 78:regime. 1625:Others 1413:Atomic 1236:  1196:  1168:  1099:  921:where 293:quartz 223:Where 52:phonon 48:photon 19:is an 1566:Alpha 1535:Auger 1513:X-ray 1480:Gamma 1458:X-ray 1391:Raman 1302:Raman 1297:FT-IR 1234:ISBN 1194:ISBN 1166:ISSN 1097:ISSN 713:and 243:and 235:and 227:and 61:and 1594:NMR 1158:doi 1089:doi 891:sin 1802:: 1599:2D 1518:UV 1178:^ 1164:. 1154:21 1152:. 1127:^ 1095:. 1087:. 1077:34 1075:. 1057:^ 308:. 46:, 1273:e 1266:t 1259:v 1242:. 1202:. 1172:. 1160:: 1103:. 1091:: 1083:: 996:c 976:n 954:s 950:v 902:2 886:c 879:n 876:2 868:s 864:v 860:= 831:q 812:l 809:k 806:j 803:i 799:c 788:X 769:l 766:k 763:j 760:i 756:c 745:V 729:j 726:i 722:p 699:l 696:k 677:T 673:L 669:U 665:q 642:l 639:k 635:p 612:l 609:k 582:l 579:k 552:l 549:k 546:j 543:i 539:c 514:l 511:k 507:p 501:l 498:k 488:l 485:k 477:= 472:l 469:k 459:l 456:k 453:j 450:i 446:c 418:s 414:K 387:l 384:k 381:j 378:i 374:c 333:q 329:/ 322:= 319:V 306:q 302:Ω 298:V 245:s 241:i 237:q 233:Ω 229:k 225:ω 208:) 203:s 199:k 190:t 186:k 182:( 179:= 176:q 153:) 148:s 135:i 127:( 118:= 96:3 50:-

Index

empirical
spectroscopy
inelastic
Brillouin scattering
interatomic potentials
electromagnetic wave
density wave
photon
phonon
mineral physics
material science

Raman spectroscopy
Raman scattering
molecular vibrational

Rayleigh scattering
Fabry-Perot interferometer
diffraction grating
quartz

Hooke's Law

Brillouin scattering
Raman spectroscopy




Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑