Knowledge (XXG)

Brooks' theorem

Source đź“ť

17: 211:
nor an odd cycle, and a list of Δ colors for each vertex, it is possible to choose a color for each vertex from its list so that no two adjacent vertices have the same color. In other words, the list chromatic number of a connected undirected graph G never exceeds Δ, unless G is a clique or an odd
286:
A Δ-coloring, or even a Δ-list-coloring, of a degree-Δ graph may be found in linear time. Efficient algorithms are also known for finding Brooks colorings in parallel and distributed models of computation.
470: 239:
For certain graphs, even fewer than Δ colors may be needed. Δ − 1 colors suffice if and only if the given graph has no Δ-clique,
542: 749: 143:, its small number of neighbors allows it to be colored. Therefore, the most difficult case of the proof concerns biconnected Δ- 648: 589: 443: 62:, who published a proof of it in 1941. A coloring with the number of colors described by Brooks' theorem is sometimes called a 673: 278:
states that any graph has a (Δ + 1)-coloring in which the sizes of any two color classes differ by at most one.
612:
Panconesi, Alessandro; Srinivasan, Aravind (1995), "The local nature of Δ-coloring and its algorithmic applications",
248: 179:
is colored, it has an uncolored parent, so its already-colored neighbors cannot use up all the free colors, while at
43:. According to the theorem, in a connected graph in which every vertex has at most Δ neighbors, the vertices can be 643: 119:, its biconnected components may be colored separately and then the colorings combined. If the graph has a vertex 23:
need one more color than their maximum degree. They and the odd cycles are the only exceptions to Brooks' theorem.
744: 507:
Grable, David A.; Panconesi, Alessandro (2000), "Fast distributed algorithms for Brooks–Vizing colourings",
139:) is uncolored, so it has fewer than Δ colored neighbors and has a free color. When the algorithm reaches 584: 232:
the same color as each other (if possible), or otherwise give one of them a color that is unavailable to
112: 208: 89: 36: 479: 212:
cycle. A small modification of the proof of Lovász applies to this case: for the same three vertices
434: 263: 244: 131:
before closer ones uses at most Δ colors. This is because at the time that each vertex other than
631: 524: 495: 275: 104:
is a complete graph or an odd cycle, in which case the chromatic number is Î” + 1.
537: 717: 465: 270:, stating that the total chromatic number is at most Δ + 2, has been conjectured by 116: 59: 682: 657: 623: 598: 572: 551: 516: 487: 452: 93: 82: 40: 124: 79: 171:
and processing the remaining vertices of the spanning tree in bottom-up order, ending at
483: 267: 48: 44: 20: 738: 614: 603: 576: 499: 438: 259: 204: 148: 144: 635: 528: 258:
The degree of a graph also appears in upper bounds for other types of coloring; for
16: 721: 271: 252: 28: 52: 207:: given any connected undirected graph with maximum degree Δ that is neither a 686: 491: 726: 430: 147:
graphs with Δ â‰Ą 3. In this case, Lovász shows that one can find a
662: 520: 457: 671:
Skulrattanakulchai, San (2006), "Δ-List vertex coloring in linear time",
135:
is colored, at least one of its neighbors (the one on a shortest path to
627: 555: 262:, the result that the chromatic index is at most Δ + 1 is 115:
gives a simplified proof of Brooks' theorem. If the graph is not
471:
Mathematical Proceedings of the Cambridge Philosophical Society
563:
Karloff, H. J. (1989), "An NC algorithm for Brooks' theorem",
694:
Vizing, V. G. (1976), "Vertex colorings with given colors",
175:, uses at most Δ colors. For, when every vertex other than 163:
are leaves in the tree. A greedy coloring starting from
377: 441:(1999), "Coloring graphs with sparse neighborhoods", 236:, and then complete the coloring greedily as before. 55:
of odd length, which require Δ + 1 colors.
301: 299: 191:
have equal colors so again a free color remains for
409: 329: 389: 203:A more general version of the theorem applies to 468:(1941), "On colouring the nodes of a network", 413: 405: 317: 646:(1999), "A strengthening of Brooks' theorem", 587:(1975), "Three short proofs in graph theory", 8: 274:and Vizing. The Hajnal–SzemerĂ©di theorem on 127:algorithm that colors vertices farther from 47:with only Δ colors, except for two cases, 35:states a relationship between the maximum 661: 602: 456: 247:, or more generally graphs in which the 15: 540:(1990), "Brooks coloring in parallel", 401: 295: 378:Alon, Krivelevich & Sudakov (1999) 353: 341: 305: 266:. An extension of Brooks' theorem to 7: 543:SIAM Journal on Discrete Mathematics 365: 151:such that two nonadjacent neighbors 255:, O(Δ/log Î”) colors suffice. 14: 410:Panconesi & Srinivasan (1995) 330:Panconesi & Srinivasan (1995) 251:of every vertex is sufficiently 123:with degree less than Δ, then a 649:Journal of Combinatorial Theory 590:Journal of Combinatorial Theory 444:Journal of Combinatorial Theory 674:Information Processing Letters 1: 414:Grable & Panconesi (2000) 406:Hajnal & SzemerĂ©di (1990) 318:Hajnal & SzemerĂ©di (1990) 224:from that proof, either give 604:10.1016/0095-8956(75)90089-1 577:10.1016/0304-3975(89)90121-7 565:Theoretical Computer Science 58:The theorem is named after 766: 687:10.1016/j.ipl.2005.12.007 492:10.1017/S030500410002168X 390:Skulrattanakulchai (2006) 750:Theorems in graph theory 243:Δ is large enough. For 663:10.1006/jctb.1998.1891 521:10.1006/jagm.2000.1097 458:10.1006/jctb.1999.1910 24: 509:Journal of Algorithms 100:is at most Δ, unless 19: 435:Krivelevich, Michael 245:triangle-free graphs 484:1941PCPS...37..194B 39:of a graph and its 718:Weisstein, Eric W. 628:10.1007/BF01200759 276:equitable coloring 183:the two neighbors 25: 722:"Brooks' Theorem" 60:R. Leonard Brooks 757: 731: 730: 703: 696:Diskret. Analiz. 689: 666: 665: 638: 607: 606: 579: 558: 538:SzemerĂ©di, Endre 531: 502: 461: 460: 417: 399: 393: 387: 381: 375: 369: 363: 357: 351: 345: 339: 333: 327: 321: 315: 309: 303: 264:Vizing's theorem 94:chromatic number 83:undirected graph 74:Formal statement 41:chromatic number 765: 764: 760: 759: 758: 756: 755: 754: 735: 734: 716: 715: 712: 707: 693: 670: 642: 611: 583: 562: 556:10.1137/0403008 536:Hajnal, PĂ©ter; 535: 506: 464: 429: 425: 420: 400: 396: 388: 384: 376: 372: 364: 360: 352: 348: 340: 336: 328: 324: 316: 312: 304: 297: 293: 284: 201: 125:greedy coloring 110: 76: 64:Brooks coloring 49:complete graphs 33:Brooks' theorem 21:Complete graphs 12: 11: 5: 763: 761: 753: 752: 747: 745:Graph coloring 737: 736: 733: 732: 711: 710:External links 708: 706: 705: 698:(in Russian), 691: 681:(3): 101–106, 668: 656:(2): 136–149, 640: 622:(2): 255–280, 609: 597:(3): 269–271, 581: 560: 533: 504: 478:(2): 194–197, 462: 439:Sudakov, Benny 426: 424: 421: 419: 418: 402:Karloff (1989) 394: 382: 370: 358: 346: 334: 322: 310: 294: 292: 289: 283: 280: 268:total coloring 200: 197: 109: 106: 75: 72: 13: 10: 9: 6: 4: 3: 2: 762: 751: 748: 746: 743: 742: 740: 729: 728: 723: 719: 714: 713: 709: 701: 697: 692: 688: 684: 680: 676: 675: 669: 664: 659: 655: 651: 650: 645: 641: 637: 633: 629: 625: 621: 617: 616: 615:Combinatorica 610: 605: 600: 596: 592: 591: 586: 582: 578: 574: 571:(1): 89–103, 570: 566: 561: 557: 553: 549: 545: 544: 539: 534: 530: 526: 522: 518: 514: 510: 505: 501: 497: 493: 489: 485: 481: 477: 473: 472: 467: 466:Brooks, R. L. 463: 459: 454: 450: 446: 445: 440: 436: 432: 428: 427: 422: 415: 411: 407: 403: 398: 395: 391: 386: 383: 379: 374: 371: 367: 362: 359: 355: 354:Vizing (1976) 350: 347: 343: 342:Lovász (1975) 338: 335: 331: 326: 323: 319: 314: 311: 307: 306:Brooks (1941) 302: 300: 296: 290: 288: 281: 279: 277: 273: 269: 265: 261: 260:edge coloring 256: 254: 250: 246: 242: 237: 235: 231: 227: 223: 219: 215: 210: 206: 205:list coloring 198: 196: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 149:spanning tree 146: 142: 138: 134: 130: 126: 122: 118: 114: 113:LászlĂł Lovász 107: 105: 103: 99: 95: 91: 88:with maximum 87: 84: 81: 73: 71: 69: 65: 61: 56: 54: 50: 46: 42: 38: 34: 30: 22: 18: 725: 699: 695: 678: 672: 653: 652:, Series B, 647: 619: 613: 594: 593:, Series B, 588: 568: 564: 550:(1): 74–80, 547: 541: 512: 508: 475: 469: 451:(1): 73–82, 448: 447:, Series B, 442: 397: 385: 373: 361: 349: 337: 325: 313: 285: 272:Mehdi Behzad 257: 249:neighborhood 240: 238: 233: 229: 225: 221: 217: 213: 202: 192: 188: 184: 180: 176: 172: 168: 164: 160: 159:of the root 156: 152: 140: 136: 132: 128: 120: 111: 101: 97: 85: 77: 67: 63: 57: 53:cycle graphs 32: 29:graph theory 26: 644:Reed, Bruce 366:Reed (1999) 117:biconnected 739:Categories 585:Lovász, L. 515:: 85–120, 431:Alon, Noga 423:References 282:Algorithms 199:Extensions 727:MathWorld 500:209835194 80:connected 636:28307157 529:14211416 241:provided 195:itself. 78:For any 68:coloring 480:Bibcode 145:regular 92:Δ, the 66:or a Δ- 45:colored 702:: 3–10 634:  527:  498:  253:sparse 220:, and 209:clique 90:degree 37:degree 632:S2CID 525:S2CID 496:S2CID 291:Notes 108:Proof 228:and 187:and 167:and 155:and 51:and 683:doi 658:doi 624:doi 599:doi 573:doi 552:doi 517:doi 488:doi 453:doi 96:of 27:In 741:: 724:, 720:, 700:29 679:98 677:, 654:76 630:, 620:15 618:, 595:19 569:68 567:, 546:, 523:, 513:37 511:, 494:, 486:, 476:37 474:, 449:77 437:; 433:; 412:; 408:; 404:; 298:^ 216:, 70:. 31:, 704:. 690:. 685:: 667:. 660:: 639:. 626:: 608:. 601:: 580:. 575:: 559:. 554:: 548:3 532:. 519:: 503:. 490:: 482:: 455:: 416:. 392:. 380:. 368:. 356:. 344:. 332:. 320:. 308:. 234:v 230:w 226:u 222:w 218:v 214:u 193:v 189:w 185:u 181:v 177:v 173:v 169:w 165:u 161:v 157:w 153:u 141:v 137:v 133:v 129:v 121:v 102:G 98:G 86:G

Index


Complete graphs
graph theory
degree
chromatic number
colored
complete graphs
cycle graphs
R. Leonard Brooks
connected
undirected graph
degree
chromatic number
László Lovász
biconnected
greedy coloring
regular
spanning tree
list coloring
clique
triangle-free graphs
neighborhood
sparse
edge coloring
Vizing's theorem
total coloring
Mehdi Behzad
equitable coloring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑