Knowledge

Pseudocomplement

Source 📝

121:, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a 495: 177: 586:
is a pseudocomplemented (and distributive) lattice with the meet and join being the usual union and intersection of open sets. The pseudocomplement of an open set
762: 726: 663:. In general, an implicative lattice may not have a minimal element. If such a minimal element exists, then each pseudocomplement 435: 330: 721:. Springer Science & Business Media. Chapter 7. Pseudocomplementation; Stone and Heyting algebras. pp. 103–119. 680: 834: 458:
is pseudocomplemented. In fact, a Stone algebra can be defined as a pseudocomplemented distributive lattice
448: 412: 365: 350: 40: 591: 465: 147: 758: 722: 575: 810: 792: 644: 206: 67: 564: 44: 595: 298: 51: 828: 784: 455: 32: 796: 128:. However this latter term may have other meanings in other areas of mathematics. 17: 779: 118: 28: 342: 603: 579: 191: 117:
is pseudocomplemented. Every pseudocomplemented lattice is necessarily
655:. A lattice with the pseudocomplement for each two elements is called 602:. Furthermore, the dense elements of this lattice are exactly the 462:
in which any of the following equivalent statements hold for all
667:* could be defined using relative pseudocomplement as 468: 150: 755:
Universal Algebra: Fundamentals and Selected Topics
333:(the complement in this algebra is *). In general, 489: 171: 438:; indeed, so do pseudocomplemented semilattices. 8: 748: 746: 744: 742: 740: 738: 719:Lattices and Ordered Algebraic Structures 467: 149: 407:), the set of all the dense elements in 712: 710: 708: 706: 704: 702: 700: 698: 696: 692: 39:is one generalization of the notion of 7: 782:(September 1970). "Stone Lattices". 434:Pseudocomplemented lattices form a 423:-algebra is Boolean if and only if 194:. In particular, 0* = 1 and 1* = 0. 25: 817:(3rd ed.). AMS. p. 44. 1: 797:10.1215/S0012-7094-70-03768-3 757:. CRC Press. pp. 63–70. 391:. Every element of the form 851: 681:Topological vector lattice 111:pseudocomplemented lattice 753:Clifford Bergman (2011). 617:relative pseudocomplement 611:Relative pseudocomplement 606:in the topological sense. 490:{\displaystyle x,y\in L:} 172:{\displaystyle x,y\in L:} 383:* = 0 (or equivalently, 77:with the property that 567:is pseudocomplemented. 491: 451:is pseudocomplemented. 173: 85:* = 0. More formally, 627:is a maximal element 506:) is a sublattice of 492: 174: 466: 449:distributive lattice 148: 113:if every element of 717:T.S. Blyth (2006). 657:implicative lattice 109:itself is called a 105:= 0 }. The lattice 661:Brouwerian lattice 604:dense open subsets 487: 387:** = 1) is called 379:with the property 305:and together with 169: 66:if there exists a 62:is said to have a 31:, particularly in 18:Brouwerian lattice 811:Birkhoff, Garrett 778:Balbes, Raymond; 764:978-1-4398-5129-6 728:978-1-84628-127-3 578:, the (open set) 576:topological space 419:. A distributive 16:(Redirected from 842: 819: 818: 807: 801: 800: 775: 769: 768: 750: 733: 732: 714: 645:binary operation 623:with respect to 496: 494: 493: 488: 364:) is the set of 281:} is called the 178: 176: 175: 170: 68:greatest element 64:pseudocomplement 37:pseudocomplement 21: 850: 849: 845: 844: 843: 841: 840: 839: 825: 824: 823: 822: 809: 808: 804: 777: 776: 772: 765: 752: 751: 736: 729: 716: 715: 694: 689: 677: 613: 565:Heyting algebra 464: 463: 444: 331:Boolean algebra 146: 145: 134: 23: 22: 15: 12: 11: 5: 848: 846: 838: 837: 835:Lattice theory 827: 826: 821: 820: 815:Lattice Theory 802: 791:(3): 537–545. 770: 763: 734: 727: 691: 690: 688: 685: 684: 683: 676: 673: 612: 609: 608: 607: 596:set complement 568: 561: 560: 559: 549: 530: 511: 486: 483: 480: 477: 474: 471: 452: 443: 440: 375:Every element 299:subsemilattice 259: 258: 239: 220: 210: 195: 168: 165: 162: 159: 156: 153: 133: 130: 54:0, an element 52:bottom element 24: 14: 13: 10: 9: 6: 4: 3: 2: 847: 836: 833: 832: 830: 816: 812: 806: 803: 798: 794: 790: 787: 786: 785:Duke Math. J. 781: 774: 771: 766: 760: 756: 749: 747: 745: 743: 741: 739: 735: 730: 724: 720: 713: 711: 709: 707: 705: 703: 701: 699: 697: 693: 686: 682: 679: 678: 674: 672: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 618: 610: 605: 601: 597: 593: 589: 585: 581: 577: 573: 569: 566: 562: 557: 553: 550: 547: 543: 539: 535: 531: 528: 524: 520: 516: 512: 509: 505: 501: 498: 497: 484: 481: 478: 475: 472: 469: 461: 457: 456:Stone algebra 453: 450: 447:Every finite 446: 445: 441: 439: 437: 432: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 386: 382: 378: 373: 371: 367: 363: 359: 355: 352: 348: 344: 340: 336: 332: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 256: 252: 248: 244: 240: 237: 233: 229: 225: 221: 218: 214: 211: 208: 204: 200: 196: 193: 189: 185: 181: 180: 179: 166: 163: 160: 157: 154: 151: 143: 139: 131: 129: 127: 125: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 69: 65: 61: 57: 53: 49: 46: 42: 38: 34: 30: 19: 814: 805: 788: 783: 780:Horn, Alfred 773: 754: 718: 668: 664: 660: 656: 652: 648: 640: 636: 632: 628: 624: 620: 616: 614: 599: 587: 583: 571: 555: 551: 545: 541: 537: 533: 526: 522: 518: 514: 507: 503: 499: 459: 433: 428: 424: 420: 416: 408: 404: 400: 399:* is dense. 396: 392: 388: 384: 380: 376: 374: 369: 368:elements of 366:complemented 361: 357: 353: 351:distributive 346: 338: 334: 329:*)* forms a 326: 322: 318: 314: 310: 306: 302: 294: 290: 286: 282: 278: 274: 270: 266: 262: 260: 254: 250: 246: 242: 235: 231: 227: 223: 216: 212: 202: 198: 187: 183: 141: 137: 135: 123: 122: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 63: 59: 55: 47: 36: 33:order theory 26: 647:is denoted 341:) is not a 29:mathematics 687:References 631:such that 356:-algebra, 343:sublattice 144:, for all 132:Properties 41:complement 479:∈ 431:) = {1}. 297:) is a ∧- 161:∈ 140:-algebra 89:* = max{ 829:Category 813:(1973). 675:See also 592:interior 580:topology 442:Examples 283:skeleton 261:The set 205:** is a 197:The map 192:antitone 182:The map 126:-algebra 643:. This 594:of the 590:is the 558:** = 1. 436:variety 349:. In a 321:)** = ( 207:closure 119:bounded 45:lattice 43:. In a 761:  725:  563:Every 540:)** = 454:Every 413:filter 269:) ≝ { 249:)** = 671:→ 0. 659:, or 574:is a 544:** ∨ 521:)* = 411:is a 389:dense 273:** | 253:** ∧ 230:)* = 190:* is 136:In a 50:with 759:ISBN 723:ISBN 554:* ∨ 525:* ∨ 325:* ∧ 234:* ∧ 219:***. 215:* = 73:* ∈ 35:, a 793:doi 619:of 598:of 582:on 570:If 548:**; 415:of 345:of 313:= ( 301:of 289:. 285:of 257:**. 27:In 831:: 789:37 737:^ 695:^ 615:A 529:*; 395:∨ 372:. 309:∪ 277:∈ 238:*. 201:↦ 186:↦ 101:∧ 97:| 93:∈ 81:∧ 58:∈ 799:. 795:: 767:. 731:. 669:a 665:a 653:b 651:→ 649:a 641:b 639:≤ 637:c 635:∧ 633:a 629:c 625:b 621:a 600:A 588:A 584:X 572:X 556:x 552:x 546:y 542:x 538:y 536:∨ 534:x 532:( 527:y 523:x 519:y 517:∧ 515:x 513:( 510:; 508:L 504:L 502:( 500:S 485:: 482:L 476:y 473:, 470:x 460:L 429:L 427:( 425:D 421:p 417:L 409:L 405:L 403:( 401:D 397:x 393:x 385:x 381:x 377:x 370:L 362:L 360:( 358:S 354:p 347:L 339:L 337:( 335:S 327:y 323:x 319:y 317:∨ 315:x 311:y 307:x 303:L 295:L 293:( 291:S 287:L 279:L 275:x 271:x 267:L 265:( 263:S 255:y 251:x 247:y 245:∧ 243:x 241:( 236:y 232:x 228:y 226:∨ 224:x 222:( 217:x 213:x 209:. 203:x 199:x 188:x 184:x 167:: 164:L 158:y 155:, 152:x 142:L 138:p 124:p 115:L 107:L 103:y 99:x 95:L 91:y 87:x 83:x 79:x 75:L 71:x 60:L 56:x 48:L 20:)

Index

Brouwerian lattice
mathematics
order theory
complement
lattice
bottom element
greatest element
bounded
antitone
closure
subsemilattice
Boolean algebra
sublattice
distributive
complemented
filter
variety
distributive lattice
Stone algebra
Heyting algebra
topological space
topology
interior
set complement
dense open subsets
binary operation
Topological vector lattice


Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.