Knowledge (XXG)

Curvature of Riemannian manifolds

Source đź“ť

24: 2338: 4130: 953:
only by identifications with objects of the tensor algebra - but likewise there are identifications with concepts in the Clifford-algebra. Let us note that these three axioms of a curvature structure give rise to a well-developed structure theory, formulated in terms of projectors (a Weyl projector,
3937:
Although individually, the Weyl tensor and Ricci tensor do not in general determine the full curvature tensor, the Riemann curvature tensor can be decomposed into a Weyl part and a Ricci part. This decomposition is known as the Ricci decomposition, and plays an important role in the
969:
The three identities form a complete list of symmetries of the curvature tensor, i.e. given any tensor which satisfies the identities above, one could find a Riemannian manifold with such a curvature tensor at some point. Simple calculations show that such a tensor has
3553: 2121: 1617: 3978: 301: 2682: 3278: 800: 1120: 1247: 558: 3748: 2856: 4173: 3067: 2770: 3402: 1685: 2429: 901: 2924: 427: 383: 2726: 2579: 3283:
It is possible to do this precisely because of the symmetries of the curvature tensor (namely antisymmetry in the first and last pairs of indices, and block-symmetry of those pairs).
2966: 958:
and an Einstein projector, needed for the setup of the Einsteinian gravitational equations). This structure theory is compatible with the action of the pseudo-orthogonal groups plus
2465: 2800: 2504: 702: 3002: 1025: 612: 3829: 3183: 3884: 3619: 3578: 3351: 3103: 1290: 3653: 3391: 1482: 2333:{\displaystyle \langle R(u,v)w,z\rangle ={\frac {1}{6}}\left.{\frac {\partial ^{2}}{\partial s\partial t}}\left(K(u+sz,v+tw)-K(u+sw,v+tz)\right)\right|_{(s,t)=(0,0)}} 2111: 1898: 1474: 1417: 1389: 1365: 1337: 1313: 142: 3970: 339: 2538: 3917: 3329: 1454: 3753:
The result does not depend on the choice of orthonormal basis. With four or more dimensions, Ricci curvature does not describe the curvature tensor completely.
3584:. The result does not depend on the choice of orthonormal basis. Starting with dimension 3, scalar curvature does not describe the curvature tensor completely. 465: 4323: 3849: 3143: 177: 4125:{\displaystyle e^{2f}\left(R+\left({\text{Hess}}(f)-df\otimes df+{\frac {1}{2}}\|{\text{grad}}(f)\|^{2}g\right){~\wedge \!\!\!\!\!\!\!\!\;\bigcirc ~}g\right)} 185: 4486: 4336: 2587: 3786:
has the same symmetries as the Riemann curvature tensor, but with one extra constraint: its trace (as used to define the Ricci curvature) must vanish.
3191: 4199: 710: 4516: 4491: 1033: 4378: 1420: 1139: 473: 116:
The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a
4241: 1263:
Sectional curvature is a further, equivalent but more geometrical, description of the curvature of Riemannian manifolds. It is a function
4606: 4653: 3291:
In general the following tensors and functions do not describe the curvature tensor completely, however they play an important role.
3665: 4678: 4316: 4250: 86: 4815: 4628: 3889:
In dimensions 2 and 3 the Weyl tensor vanishes, but in 4 or more dimensions the Weyl tensor can be non-zero. For a manifold of
2805: 4820: 4138: 3011: 2734: 4830: 3548:{\displaystyle S=\sum _{i,j}\langle R(e_{i},e_{j})e_{j},e_{i}\rangle =\sum _{i}\langle {\text{Ric}}(e_{i}),e_{i}\rangle ,} 3112: 4825: 4413: 4309: 3942:
of Riemannian manifolds. In particular, it can be used to show that if the metric is rescaled by a conformal factor of
4708: 4176: 1628: 4648: 2858:
and hence does not necessarily vanish. The following describes relation between curvature form and curvature tensor:
2540:
be a local section of orthonormal bases. Then one can define the connection form, an antisymmetric matrix of 1-forms
2387: 808: 4434: 94: 2864: 4563: 4265: 121: 4584: 4496: 388: 344: 4771: 4746: 4668: 4356: 2690: 2543: 907: 111: 81: 48: 2939: 4718: 4599: 4542: 4192: 2438: 959: 4501: 2779: 2477: 4723: 4713: 4573: 4568: 4506: 4439: 4398: 3761: 3354: 3123: 2366: 642: 117: 2974: 4620: 60: 973: 573: 4403: 4203: 3796: 3152: 2374: 3854: 1622:
The following formula indicates that sectional curvature describes the curvature tensor completely:
914:, just because it looks similar to the Bianchi identity below. The first two should be addressed as 4761: 4733: 4688: 4460: 4429: 4417: 4388: 4371: 4332: 3932: 3765: 1258: 341:
is a linear transformation of the tangent space of the manifold; it is linear in each argument. If
68: 36: 3602: 3561: 79:
introduced an abstract and rigorous way to define curvature for these manifolds, now known as the
4693: 4643: 4592: 4558: 4455: 4424: 4282: 3939: 3890: 3334: 1612:{\displaystyle K(\sigma )=K(u,v)/|u\wedge v|^{2}{\text{ where }}K(u,v)=\langle R(u,v)v,u\rangle } 28: 17: 4465: 3079: 1266: 3625: 3363: 4470: 4246: 4210: 3358: 1904: 1691: 1459: 1402: 1374: 1350: 1322: 1298: 127: 4756: 4658: 4537: 4532: 4408: 4361: 4274: 3945: 3920: 3300: 2472: 2362: 309: 2516: 966:
and algebras, Lie triples and Jordan algebras. See the references given in the discussion.
4751: 4663: 4366: 4221: 3593: 2507: 2354: 3896: 3308: 1433: 432: 4784: 4779: 4698: 4214: 3834: 3128: 2348: 145: 75:
greater than 2 is too complicated to be described by a single number at a given point.
945:
are elements of the pseudo-orthogonal Lie algebra. All three together should be named
150: 4809: 4703: 4393: 3790: 3598:
Ricci curvature is a linear operator on tangent space at a point, usually denoted by
3146: 2358: 64: 296:{\displaystyle R(u,v)w=\nabla _{u}\nabla _{v}w-\nabla _{v}\nabla _{u}w-\nabla _{}w.} 3757: 3581: 2677:{\displaystyle \omega _{\ j}^{k}(e_{i})=\langle \nabla _{e_{i}}e_{j},e_{k}\rangle } 23: 4301: 3273:{\displaystyle \langle Q(u\wedge v),w\wedge z\rangle =\langle R(u,v)z,w\rangle .} 4789: 4260: 3777: 3305:
Scalar curvature is a function on any Riemannian manifold, denoted variously by
2468: 628:
There are a few books where the curvature tensor is defined with opposite sign.
56: 32: 3972:, then the Riemann curvature tensor changes to (seen as a (0, 4)-tensor): 4511: 1027:
independent components. Yet another useful identity follows from these three:
4638: 4616: 2357:
gives an alternative way to describe curvature. It is used more for general
1316: 963: 90: 72: 795:{\displaystyle \langle R(u,v)w,z\rangle =-\langle R(u,v)z,w\rangle _{}^{}} 4794: 4383: 4225: 1115:{\displaystyle \langle R(u,v)w,z\rangle =\langle R(w,z)u,v\rangle _{}^{}} 44: 47:
may have different curvatures in different directions, described by the
4286: 1242:{\displaystyle \nabla _{u}R(v,w)+\nabla _{v}R(w,u)+\nabla _{w}R(u,v)=0} 553:{\displaystyle R(u,v)w=\nabla _{u}\nabla _{v}w-\nabla _{v}\nabla _{u}w} 76: 2929:
This approach builds in all symmetries of curvature tensor except the
2432: 40: 4278: 22: 97:
can be expressed in the same way with only slight modifications.
4588: 4305: 3743:{\displaystyle {\text{Ric}}(u)=\sum _{i}R(u,e_{i})e_{i}._{}^{}} 2365:, but it works just as well for the tangent bundle with the 2173: 3122:
It is sometimes convenient to think about curvature as an
1371:
is a locally defined piece of surface which has the plane
2851:{\displaystyle \omega _{\ j}^{i}\wedge \omega _{\ k}^{j}} 3185:), which is uniquely defined by the following identity: 85:. Similar notions have found applications everywhere in 4224:
can help if one knows something about the behavior of
4168:{\displaystyle {~\wedge \!\!\!\!\!\!\!\!\;\bigcirc ~}} 3919:
if and only if the metric is locally conformal to the
3062:{\displaystyle \theta ^{i}(v)=\langle e_{i},v\rangle } 2765:{\displaystyle \Omega =d\omega +\omega \wedge \omega } 101:
Ways to express the curvature of a Riemannian manifold
4141: 3981: 3948: 3899: 3857: 3837: 3799: 3668: 3628: 3605: 3564: 3405: 3366: 3337: 3311: 3194: 3155: 3131: 3082: 3014: 2977: 2942: 2867: 2808: 2782: 2737: 2693: 2590: 2546: 2519: 2480: 2441: 2390: 2124: 1907: 1694: 1631: 1485: 1462: 1436: 1405: 1377: 1353: 1325: 1301: 1269: 1142: 1036: 976: 811: 713: 645: 576: 476: 435: 391: 347: 312: 188: 153: 130: 4770: 4732: 4677: 4627: 4551: 4525: 4479: 4448: 4344: 636:The curvature tensor has the following symmetries: 4167: 4124: 3964: 3911: 3878: 3843: 3823: 3742: 3647: 3613: 3572: 3547: 3385: 3345: 3323: 3272: 3177: 3137: 3097: 3061: 2996: 2960: 2918: 2850: 2794: 2764: 2720: 2676: 2573: 2532: 2498: 2459: 2423: 2332: 2105: 1892: 1679: 1611: 1468: 1448: 1411: 1383: 1359: 1331: 1315:(i.e. a 2-plane in the tangent spaces). It is the 1307: 1284: 1241: 1114: 1019: 895: 794: 696: 606: 552: 459: 421: 377: 333: 295: 171: 136: 4156: 4155: 4154: 4153: 4152: 4151: 4150: 4149: 4105: 4104: 4103: 4102: 4101: 4100: 4099: 4098: 2510:of the tangent bundle of a Riemannian manifold). 1680:{\displaystyle 6\langle R(u,v)w,z\rangle =_{}^{}} 39:), and a surface of positive Gaussian curvature ( 3793:change of metric: if two metrics are related as 2373:-dimensional Riemannian manifold is given by an 3789:The Weyl tensor is invariant with respect to a 2424:{\displaystyle \Omega _{}^{}=\Omega _{\ j}^{i}} 896:{\displaystyle R(u,v)w+R(v,w)u+R(w,u)v=0_{}^{}} 4239:Kobayashi, Shoshichi; Nomizu, Katsumi (1996). 922:respectively, since the second means that the 4600: 4317: 8: 4242:Foundations of Differential Geometry, Vol. 1 4074: 4056: 3642: 3629: 3539: 3502: 3486: 3428: 3380: 3367: 3264: 3234: 3228: 3195: 3056: 3037: 2919:{\displaystyle R(u,v)w=\Omega (u\wedge v)w.} 2671: 2628: 2155: 2125: 1665: 1635: 1606: 1576: 1104: 1073: 1067: 1037: 784: 753: 744: 714: 565:noncommutativity of the covariant derivative 4607: 4593: 4585: 4487:Fundamental theorem of Riemannian geometry 4324: 4310: 4302: 4157: 4106: 2581:which satisfy from the following identity 422:{\displaystyle v=\partial /\partial x_{j}} 378:{\displaystyle u=\partial /\partial x_{i}} 27:From left to right: a surface of negative 4142: 4140: 4091: 4077: 4059: 4046: 4011: 3986: 3980: 3953: 3947: 3898: 3859: 3858: 3856: 3836: 3801: 3800: 3798: 3737: 3735: 3725: 3712: 3690: 3669: 3667: 3636: 3627: 3606: 3604: 3565: 3563: 3533: 3517: 3505: 3496: 3480: 3467: 3454: 3441: 3416: 3404: 3374: 3365: 3338: 3336: 3310: 3193: 3160: 3154: 3130: 3081: 3044: 3019: 3013: 2988: 2976: 2941: 2866: 2842: 2834: 2821: 2813: 2807: 2781: 2736: 2721:{\displaystyle \Omega =\Omega _{\ j}^{i}} 2712: 2704: 2692: 2665: 2652: 2640: 2635: 2616: 2603: 2595: 2589: 2574:{\displaystyle \omega =\omega _{\ j}^{i}} 2565: 2557: 2545: 2524: 2518: 2479: 2440: 2435:(or equivalently a 2-form with values in 2415: 2407: 2397: 2395: 2389: 2294: 2182: 2176: 2161: 2123: 2100: 2098: 1906: 1887: 1885: 1693: 1674: 1672: 1630: 1550: 1544: 1539: 1524: 1519: 1484: 1461: 1435: 1404: 1395:, obtained from geodesics which start at 1376: 1352: 1324: 1300: 1268: 1209: 1178: 1147: 1141: 1109: 1107: 1035: 1009: 994: 981: 975: 890: 888: 810: 789: 787: 712: 691: 689: 644: 575: 541: 531: 515: 505: 475: 434: 413: 401: 390: 369: 357: 346: 311: 269: 253: 243: 227: 217: 187: 152: 129: 35:), a surface of zero Gaussian curvature ( 1456:are two linearly independent vectors in 962:. It has strong ties with the theory of 467:and therefore the formula simplifies to 4263:(1901). "Space of constant curvature". 4200:list of formulas in Riemannian geometry 2961:{\displaystyle \Omega \wedge \theta =0} 4191:of hypersurfaces and submanifolds see 2460:{\displaystyle \operatorname {so} (n)} 1133:) involves the covariant derivatives: 16:For a more elementary discussion, see 3893:, the Weyl tensor is zero. Moreover, 2795:{\displaystyle \omega \wedge \omega } 2499:{\displaystyle \operatorname {O} (n)} 947:pseudo-orthogonal curvature structure 7: 4245:(New ed.). Wiley-Interscience. 906:The last identity was discovered by 697:{\displaystyle R(u,v)=-R(v,u)_{}^{}} 2997:{\displaystyle \theta =\theta ^{i}} 563:i.e. the curvature tensor measures 4654:Radius of curvature (applications) 3831:for some positive scalar function 3357:of the curvature tensor; given an 3157: 3086: 2943: 2892: 2738: 2701: 2694: 2632: 2481: 2404: 2392: 2195: 2189: 2179: 1399:in the directions of the image of 1206: 1175: 1144: 538: 528: 512: 502: 429:are coordinate vector fields then 406: 398: 362: 354: 266: 250: 240: 224: 214: 131: 14: 4742:Curvature of Riemannian manifolds 3393:in the tangent space at a point 1020:{\displaystyle n^{2}(n^{2}-1)/12} 87:differential geometry of surfaces 607:{\displaystyle w\mapsto R(u,v)w} 3824:{\displaystyle {\tilde {g}}=fg} 3622:. Given an orthonormal basis 3178:{\displaystyle \Lambda ^{2}(T)} 4070: 4064: 4022: 4016: 3879:{\displaystyle {\tilde {W}}=W} 3864: 3806: 3718: 3699: 3680: 3674: 3523: 3510: 3460: 3434: 3252: 3240: 3213: 3201: 3172: 3166: 3031: 3025: 3008:-vector of 1-forms defined by 2907: 2895: 2883: 2871: 2622: 2609: 2493: 2487: 2454: 2448: 2325: 2313: 2307: 2295: 2281: 2251: 2242: 2212: 2143: 2131: 2091: 2088: 2076: 2067: 2055: 2046: 2028: 2019: 2001: 1992: 1974: 1965: 1947: 1938: 1914: 1908: 1878: 1875: 1863: 1854: 1842: 1833: 1815: 1806: 1788: 1779: 1761: 1752: 1734: 1725: 1701: 1695: 1653: 1641: 1594: 1582: 1570: 1558: 1540: 1525: 1516: 1504: 1495: 1489: 1279: 1273: 1230: 1218: 1199: 1187: 1168: 1156: 1091: 1079: 1055: 1043: 1006: 987: 875: 863: 851: 839: 827: 815: 771: 759: 732: 720: 686: 673: 661: 649: 598: 586: 580: 492: 480: 448: 436: 328: 316: 282: 270: 204: 192: 166: 154: 1: 4187:For calculation of curvature 3756:Explicit expressions for the 3113:exterior covariant derivative 4414:Raising and lowering indices 3614:{\displaystyle {\text{Ric}}} 3573:{\displaystyle {\text{Ric}}} 106:The Riemann curvature tensor 3764:is given in the article on 3346:{\displaystyle {\text{Sc}}} 43:). In higher dimensions, a 4847: 4435:Pseudo-Riemannian manifold 3930: 3775: 3591: 3298: 3098:{\displaystyle D\Omega =0} 2776:Note that the expression " 2346: 1285:{\displaystyle K(\sigma )} 1256: 910:, but is often called the 570:The linear transformation 179:by the following formula: 109: 95:pseudo-Riemannian manifold 15: 4564:Geometrization conjecture 4266:The Annals of Mathematics 4179:and Hess is the Hessian. 3648:{\displaystyle \{e_{i}\}} 3386:{\displaystyle \{e_{i}\}} 3287:Further curvature tensors 2116:Or in a simpler formula: 632:Symmetries and identities 122:covariant differentiation 4772:Curvature of connections 4747:Riemann curvature tensor 4669:Total absolute curvature 4183:Calculation of curvature 3655:in the tangent space at 2687:Then the curvature form 616:curvature transformation 112:Riemann curvature tensor 82:Riemann curvature tensor 49:Riemann curvature tensor 4816:Curvature (mathematics) 4719:Second fundamental form 4709:Gauss–Codazzi equations 4198:in coordinates see the 4193:second fundamental form 4177:Kulkarni–Nomizu product 3071:second Bianchi identity 2106:{\displaystyle ._{}^{}} 1893:{\displaystyle -_{}^{}} 1469:{\displaystyle \sigma } 1412:{\displaystyle \sigma } 1384:{\displaystyle \sigma } 1360:{\displaystyle \sigma } 1332:{\displaystyle \sigma } 1308:{\displaystyle \sigma } 1131:second Bianchi identity 137:{\displaystyle \nabla } 89:and other objects. The 4724:Third fundamental form 4714:First fundamental form 4679:Differential geometry 4649:Frenet–Serret formulas 4629:Differential geometry 4574:Uniformization theorem 4507:Nash embedding theorem 4440:Riemannian volume form 4399:Levi-Civita connection 4169: 4126: 3966: 3965:{\displaystyle e^{2f}} 3913: 3880: 3845: 3825: 3762:Levi-Civita connection 3744: 3649: 3615: 3574: 3549: 3387: 3347: 3325: 3274: 3179: 3139: 3118:The curvature operator 3099: 3063: 2998: 2962: 2931:first Bianchi identity 2920: 2852: 2796: 2766: 2722: 2678: 2575: 2534: 2500: 2461: 2425: 2369:. The curvature of an 2367:Levi-Civita connection 2334: 2107: 1894: 1681: 1613: 1470: 1450: 1413: 1391:as a tangent plane at 1385: 1361: 1333: 1309: 1286: 1243: 1116: 1021: 949:. They give rise to a 912:first Bianchi identity 897: 796: 698: 608: 554: 461: 423: 379: 335: 334:{\displaystyle R(u,v)} 297: 173: 138: 118:Levi-Civita connection 52: 4821:Differential geometry 4621:differential geometry 4209:by moving frames see 4170: 4127: 3967: 3914: 3881: 3846: 3826: 3784:Weyl curvature tensor 3772:Weyl curvature tensor 3745: 3650: 3616: 3575: 3550: 3388: 3348: 3326: 3275: 3180: 3140: 3100: 3064: 2999: 2963: 2921: 2853: 2797: 2767: 2723: 2679: 2576: 2535: 2533:{\displaystyle e_{i}} 2501: 2462: 2426: 2335: 2108: 1895: 1682: 1614: 1471: 1451: 1414: 1386: 1362: 1334: 1310: 1287: 1244: 1117: 1022: 898: 797: 699: 609: 555: 462: 424: 380: 336: 298: 174: 139: 61:differential geometry 26: 4831:Riemannian manifolds 4689:Principal curvatures 4497:Gauss–Bonnet theorem 4404:Covariant derivative 4204:covariant derivative 4139: 3979: 3946: 3897: 3855: 3835: 3797: 3666: 3626: 3603: 3562: 3403: 3364: 3335: 3309: 3192: 3153: 3129: 3080: 3012: 2975: 2940: 2865: 2806: 2780: 2735: 2691: 2588: 2544: 2517: 2478: 2439: 2388: 2122: 1905: 1692: 1629: 1483: 1460: 1434: 1403: 1375: 1351: 1323: 1299: 1267: 1140: 1034: 974: 920:Lie algebra property 809: 711: 643: 574: 474: 433: 389: 345: 310: 186: 151: 128: 69:Riemannian manifolds 4826:Riemannian geometry 4762:Sectional curvature 4734:Riemannian geometry 4615:Various notions of 4569:PoincarĂ© conjecture 4430:Riemannian manifold 4418:Musical isomorphism 4333:Riemannian geometry 3933:Ricci decomposition 3927:Ricci decomposition 3912:{\displaystyle W=0} 3766:Christoffel symbols 3739: 3324:{\displaystyle S,R} 2933:, which takes form 2847: 2826: 2802:" is shorthand for 2717: 2608: 2570: 2420: 2399: 2102: 1889: 1676: 1449:{\displaystyle v,u} 1292:which depends on a 1259:Sectional curvature 1253:Sectional curvature 1111: 892: 791: 693: 614:is also called the 4694:Gaussian curvature 4644:Torsion of a curve 4559:General relativity 4502:Hopf–Rinow theorem 4449:Types of manifolds 4425:Parallel transport 4165: 4122: 3962: 3940:conformal geometry 3909: 3891:constant curvature 3876: 3841: 3821: 3740: 3731: 3695: 3645: 3611: 3570: 3545: 3501: 3427: 3383: 3353:. It is the full 3343: 3321: 3270: 3175: 3135: 3095: 3059: 2994: 2958: 2916: 2848: 2830: 2809: 2792: 2762: 2718: 2700: 2674: 2591: 2571: 2553: 2530: 2496: 2457: 2421: 2403: 2391: 2330: 2103: 2094: 1890: 1881: 1677: 1668: 1609: 1466: 1446: 1409: 1381: 1357: 1329: 1305: 1282: 1239: 1112: 1103: 1017: 893: 884: 792: 783: 694: 685: 604: 550: 460:{\displaystyle =0} 457: 419: 375: 331: 293: 169: 134: 53: 29:Gaussian curvature 18:Curvature of space 4803: 4802: 4582: 4581: 4211:Cartan connection 4163: 4145: 4112: 4094: 4062: 4054: 4014: 3867: 3844:{\displaystyle f} 3809: 3686: 3672: 3609: 3568: 3508: 3492: 3412: 3359:orthonormal basis 3341: 3138:{\displaystyle Q} 2837: 2816: 2707: 2598: 2560: 2410: 2363:principal bundles 2202: 2169: 1553: 1552: where  4838: 4757:Scalar curvature 4659:Affine curvature 4609: 4602: 4595: 4586: 4326: 4319: 4312: 4303: 4290: 4256: 4174: 4172: 4171: 4166: 4164: 4161: 4143: 4131: 4129: 4128: 4123: 4121: 4117: 4113: 4110: 4092: 4090: 4086: 4082: 4081: 4063: 4060: 4055: 4047: 4015: 4012: 3994: 3993: 3971: 3969: 3968: 3963: 3961: 3960: 3921:Euclidean metric 3918: 3916: 3915: 3910: 3885: 3883: 3882: 3877: 3869: 3868: 3860: 3850: 3848: 3847: 3842: 3830: 3828: 3827: 3822: 3811: 3810: 3802: 3760:in terms of the 3749: 3747: 3746: 3741: 3738: 3736: 3730: 3729: 3717: 3716: 3694: 3673: 3670: 3654: 3652: 3651: 3646: 3641: 3640: 3620: 3618: 3617: 3612: 3610: 3607: 3579: 3577: 3576: 3571: 3569: 3566: 3554: 3552: 3551: 3546: 3538: 3537: 3522: 3521: 3509: 3506: 3500: 3485: 3484: 3472: 3471: 3459: 3458: 3446: 3445: 3426: 3392: 3390: 3389: 3384: 3379: 3378: 3352: 3350: 3349: 3344: 3342: 3339: 3330: 3328: 3327: 3322: 3301:Scalar curvature 3295:Scalar curvature 3279: 3277: 3276: 3271: 3184: 3182: 3181: 3176: 3165: 3164: 3144: 3142: 3141: 3136: 3104: 3102: 3101: 3096: 3068: 3066: 3065: 3060: 3049: 3048: 3024: 3023: 3003: 3001: 3000: 2995: 2993: 2992: 2967: 2965: 2964: 2959: 2925: 2923: 2922: 2917: 2857: 2855: 2854: 2849: 2846: 2841: 2835: 2825: 2820: 2814: 2801: 2799: 2798: 2793: 2771: 2769: 2768: 2763: 2727: 2725: 2724: 2719: 2716: 2711: 2705: 2683: 2681: 2680: 2675: 2670: 2669: 2657: 2656: 2647: 2646: 2645: 2644: 2621: 2620: 2607: 2602: 2596: 2580: 2578: 2577: 2572: 2569: 2564: 2558: 2539: 2537: 2536: 2531: 2529: 2528: 2505: 2503: 2502: 2497: 2473:orthogonal group 2466: 2464: 2463: 2458: 2430: 2428: 2427: 2422: 2419: 2414: 2408: 2398: 2396: 2339: 2337: 2336: 2331: 2329: 2328: 2293: 2289: 2288: 2284: 2203: 2201: 2187: 2186: 2177: 2170: 2162: 2112: 2110: 2109: 2104: 2101: 2099: 1899: 1897: 1896: 1891: 1888: 1886: 1686: 1684: 1683: 1678: 1675: 1673: 1618: 1616: 1615: 1610: 1554: 1551: 1549: 1548: 1543: 1528: 1523: 1475: 1473: 1472: 1467: 1455: 1453: 1452: 1447: 1418: 1416: 1415: 1410: 1390: 1388: 1387: 1382: 1366: 1364: 1363: 1358: 1338: 1336: 1335: 1330: 1314: 1312: 1311: 1306: 1291: 1289: 1288: 1283: 1248: 1246: 1245: 1240: 1214: 1213: 1183: 1182: 1152: 1151: 1127:Bianchi identity 1121: 1119: 1118: 1113: 1110: 1108: 1026: 1024: 1023: 1018: 1013: 999: 998: 986: 985: 936: 902: 900: 899: 894: 891: 889: 801: 799: 798: 793: 790: 788: 703: 701: 700: 695: 692: 690: 613: 611: 610: 605: 559: 557: 556: 551: 546: 545: 536: 535: 520: 519: 510: 509: 466: 464: 463: 458: 428: 426: 425: 420: 418: 417: 405: 384: 382: 381: 376: 374: 373: 361: 340: 338: 337: 332: 302: 300: 299: 294: 286: 285: 258: 257: 248: 247: 232: 231: 222: 221: 178: 176: 175: 172:{\displaystyle } 170: 143: 141: 140: 135: 4846: 4845: 4841: 4840: 4839: 4837: 4836: 4835: 4806: 4805: 4804: 4799: 4766: 4752:Ricci curvature 4728: 4680: 4673: 4664:Total curvature 4630: 4623: 4613: 4583: 4578: 4547: 4526:Generalizations 4521: 4475: 4444: 4379:Exponential map 4340: 4330: 4299: 4297: 4279:10.2307/1967636 4273:(1/4): 71–112. 4259: 4253: 4238: 4235: 4222:Jacobi equation 4185: 4137: 4136: 4073: 4010: 4006: 3999: 3995: 3982: 3977: 3976: 3949: 3944: 3943: 3935: 3929: 3895: 3894: 3853: 3852: 3833: 3832: 3795: 3794: 3780: 3774: 3721: 3708: 3664: 3663: 3632: 3624: 3623: 3601: 3600: 3596: 3594:Ricci curvature 3590: 3588:Ricci curvature 3560: 3559: 3529: 3513: 3476: 3463: 3450: 3437: 3401: 3400: 3370: 3362: 3361: 3333: 3332: 3307: 3306: 3303: 3297: 3289: 3190: 3189: 3156: 3151: 3150: 3127: 3126: 3120: 3078: 3077: 3040: 3015: 3010: 3009: 2984: 2973: 2972: 2938: 2937: 2863: 2862: 2804: 2803: 2778: 2777: 2733: 2732: 2689: 2688: 2661: 2648: 2636: 2631: 2612: 2586: 2585: 2542: 2541: 2520: 2515: 2514: 2508:structure group 2506:, which is the 2476: 2475: 2437: 2436: 2386: 2385: 2355:connection form 2351: 2345: 2208: 2204: 2188: 2178: 2175: 2172: 2171: 2120: 2119: 1903: 1902: 1690: 1689: 1627: 1626: 1538: 1481: 1480: 1458: 1457: 1432: 1431: 1421:exponential map 1401: 1400: 1373: 1372: 1349: 1348: 1321: 1320: 1317:Gauss curvature 1297: 1296: 1265: 1264: 1261: 1255: 1205: 1174: 1143: 1138: 1137: 1032: 1031: 990: 977: 972: 971: 954:giving rise to 923: 807: 806: 709: 708: 641: 640: 634: 572: 571: 537: 527: 511: 501: 472: 471: 431: 430: 409: 387: 386: 365: 343: 342: 308: 307: 265: 249: 239: 223: 213: 184: 183: 149: 148: 126: 125: 114: 108: 103: 59:, specifically 21: 12: 11: 5: 4844: 4842: 4834: 4833: 4828: 4823: 4818: 4808: 4807: 4801: 4800: 4798: 4797: 4792: 4787: 4785:Torsion tensor 4782: 4780:Curvature form 4776: 4774: 4768: 4767: 4765: 4764: 4759: 4754: 4749: 4744: 4738: 4736: 4730: 4729: 4727: 4726: 4721: 4716: 4711: 4706: 4701: 4699:Mean curvature 4696: 4691: 4685: 4683: 4675: 4674: 4672: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4635: 4633: 4625: 4624: 4614: 4612: 4611: 4604: 4597: 4589: 4580: 4579: 4577: 4576: 4571: 4566: 4561: 4555: 4553: 4549: 4548: 4546: 4545: 4543:Sub-Riemannian 4540: 4535: 4529: 4527: 4523: 4522: 4520: 4519: 4514: 4509: 4504: 4499: 4494: 4489: 4483: 4481: 4477: 4476: 4474: 4473: 4468: 4463: 4458: 4452: 4450: 4446: 4445: 4443: 4442: 4437: 4432: 4427: 4422: 4421: 4420: 4411: 4406: 4401: 4391: 4386: 4381: 4376: 4375: 4374: 4369: 4364: 4359: 4348: 4346: 4345:Basic concepts 4342: 4341: 4331: 4329: 4328: 4321: 4314: 4306: 4296: 4293: 4292: 4291: 4257: 4251: 4234: 4231: 4230: 4229: 4218: 4215:curvature form 4207: 4196: 4184: 4181: 4160: 4148: 4133: 4132: 4120: 4116: 4109: 4097: 4089: 4085: 4080: 4076: 4072: 4069: 4066: 4058: 4053: 4050: 4045: 4042: 4039: 4036: 4033: 4030: 4027: 4024: 4021: 4018: 4009: 4005: 4002: 3998: 3992: 3989: 3985: 3959: 3956: 3952: 3931:Main article: 3928: 3925: 3908: 3905: 3902: 3875: 3872: 3866: 3863: 3840: 3820: 3817: 3814: 3808: 3805: 3776:Main article: 3773: 3770: 3751: 3750: 3734: 3728: 3724: 3720: 3715: 3711: 3707: 3704: 3701: 3698: 3693: 3689: 3685: 3682: 3679: 3676: 3644: 3639: 3635: 3631: 3592:Main article: 3589: 3586: 3556: 3555: 3544: 3541: 3536: 3532: 3528: 3525: 3520: 3516: 3512: 3504: 3499: 3495: 3491: 3488: 3483: 3479: 3475: 3470: 3466: 3462: 3457: 3453: 3449: 3444: 3440: 3436: 3433: 3430: 3425: 3422: 3419: 3415: 3411: 3408: 3382: 3377: 3373: 3369: 3320: 3317: 3314: 3299:Main article: 3296: 3293: 3288: 3285: 3281: 3280: 3269: 3266: 3263: 3260: 3257: 3254: 3251: 3248: 3245: 3242: 3239: 3236: 3233: 3230: 3227: 3224: 3221: 3218: 3215: 3212: 3209: 3206: 3203: 3200: 3197: 3174: 3171: 3168: 3163: 3159: 3134: 3119: 3116: 3106: 3105: 3094: 3091: 3088: 3085: 3058: 3055: 3052: 3047: 3043: 3039: 3036: 3033: 3030: 3027: 3022: 3018: 2991: 2987: 2983: 2980: 2969: 2968: 2957: 2954: 2951: 2948: 2945: 2927: 2926: 2915: 2912: 2909: 2906: 2903: 2900: 2897: 2894: 2891: 2888: 2885: 2882: 2879: 2876: 2873: 2870: 2845: 2840: 2833: 2829: 2824: 2819: 2812: 2791: 2788: 2785: 2774: 2773: 2761: 2758: 2755: 2752: 2749: 2746: 2743: 2740: 2728:is defined by 2715: 2710: 2703: 2699: 2696: 2685: 2684: 2673: 2668: 2664: 2660: 2655: 2651: 2643: 2639: 2634: 2630: 2627: 2624: 2619: 2615: 2611: 2606: 2601: 2594: 2568: 2563: 2556: 2552: 2549: 2527: 2523: 2495: 2492: 2489: 2486: 2483: 2456: 2453: 2450: 2447: 2444: 2418: 2413: 2406: 2402: 2394: 2359:vector bundles 2349:Curvature form 2347:Main article: 2344: 2343:Curvature form 2341: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2306: 2303: 2300: 2297: 2292: 2287: 2283: 2280: 2277: 2274: 2271: 2268: 2265: 2262: 2259: 2256: 2253: 2250: 2247: 2244: 2241: 2238: 2235: 2232: 2229: 2226: 2223: 2220: 2217: 2214: 2211: 2207: 2200: 2197: 2194: 2191: 2185: 2181: 2174: 2168: 2165: 2160: 2157: 2154: 2151: 2148: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2114: 2113: 2097: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2072: 2069: 2066: 2063: 2060: 2057: 2054: 2051: 2048: 2045: 2042: 2039: 2036: 2033: 2030: 2027: 2024: 2021: 2018: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1961: 1958: 1955: 1952: 1949: 1946: 1943: 1940: 1937: 1934: 1931: 1928: 1925: 1922: 1919: 1916: 1913: 1910: 1900: 1884: 1880: 1877: 1874: 1871: 1868: 1865: 1862: 1859: 1856: 1853: 1850: 1847: 1844: 1841: 1838: 1835: 1832: 1829: 1826: 1823: 1820: 1817: 1814: 1811: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1721: 1718: 1715: 1712: 1709: 1706: 1703: 1700: 1697: 1687: 1671: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1620: 1619: 1608: 1605: 1602: 1599: 1596: 1593: 1590: 1587: 1584: 1581: 1578: 1575: 1572: 1569: 1566: 1563: 1560: 1557: 1547: 1542: 1537: 1534: 1531: 1527: 1522: 1518: 1515: 1512: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1488: 1465: 1445: 1442: 1439: 1408: 1380: 1356: 1328: 1304: 1281: 1278: 1275: 1272: 1257:Main article: 1254: 1251: 1250: 1249: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1212: 1208: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1181: 1177: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1150: 1146: 1123: 1122: 1106: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1016: 1012: 1008: 1005: 1002: 997: 993: 989: 984: 980: 956:Weyl curvature 904: 903: 887: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 835: 832: 829: 826: 823: 820: 817: 814: 803: 802: 786: 782: 779: 776: 773: 770: 767: 764: 761: 758: 755: 752: 749: 746: 743: 740: 737: 734: 731: 728: 725: 722: 719: 716: 705: 704: 688: 684: 681: 678: 675: 672: 669: 666: 663: 660: 657: 654: 651: 648: 633: 630: 603: 600: 597: 594: 591: 588: 585: 582: 579: 561: 560: 549: 544: 540: 534: 530: 526: 523: 518: 514: 508: 504: 500: 497: 494: 491: 488: 485: 482: 479: 456: 453: 450: 447: 444: 441: 438: 416: 412: 408: 404: 400: 397: 394: 372: 368: 364: 360: 356: 353: 350: 330: 327: 324: 321: 318: 315: 304: 303: 292: 289: 284: 281: 278: 275: 272: 268: 264: 261: 256: 252: 246: 242: 238: 235: 230: 226: 220: 216: 212: 209: 206: 203: 200: 197: 194: 191: 168: 165: 162: 159: 156: 133: 110:Main article: 107: 104: 102: 99: 13: 10: 9: 6: 4: 3: 2: 4843: 4832: 4829: 4827: 4824: 4822: 4819: 4817: 4814: 4813: 4811: 4796: 4793: 4791: 4788: 4786: 4783: 4781: 4778: 4777: 4775: 4773: 4769: 4763: 4760: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4739: 4737: 4735: 4731: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4704:Darboux frame 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4686: 4684: 4682: 4676: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4636: 4634: 4632: 4626: 4622: 4618: 4610: 4605: 4603: 4598: 4596: 4591: 4590: 4587: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4556: 4554: 4550: 4544: 4541: 4539: 4536: 4534: 4531: 4530: 4528: 4524: 4518: 4517:Schur's lemma 4515: 4513: 4510: 4508: 4505: 4503: 4500: 4498: 4495: 4493: 4492:Gauss's lemma 4490: 4488: 4485: 4484: 4482: 4478: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4453: 4451: 4447: 4441: 4438: 4436: 4433: 4431: 4428: 4426: 4423: 4419: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4396: 4395: 4394:Metric tensor 4392: 4390: 4389:Inner product 4387: 4385: 4382: 4380: 4377: 4373: 4370: 4368: 4365: 4363: 4360: 4358: 4355: 4354: 4353: 4350: 4349: 4347: 4343: 4338: 4334: 4327: 4322: 4320: 4315: 4313: 4308: 4307: 4304: 4300: 4294: 4288: 4284: 4280: 4276: 4272: 4268: 4267: 4262: 4258: 4254: 4252:0-471-15733-3 4248: 4244: 4243: 4237: 4236: 4232: 4227: 4223: 4219: 4216: 4212: 4208: 4205: 4201: 4197: 4194: 4190: 4189: 4188: 4182: 4180: 4178: 4158: 4146: 4118: 4114: 4107: 4095: 4087: 4083: 4078: 4067: 4051: 4048: 4043: 4040: 4037: 4034: 4031: 4028: 4025: 4019: 4007: 4003: 4000: 3996: 3990: 3987: 3983: 3975: 3974: 3973: 3957: 3954: 3950: 3941: 3934: 3926: 3924: 3922: 3906: 3903: 3900: 3892: 3887: 3873: 3870: 3861: 3838: 3818: 3815: 3812: 3803: 3792: 3787: 3785: 3779: 3771: 3769: 3767: 3763: 3759: 3754: 3732: 3726: 3722: 3713: 3709: 3705: 3702: 3696: 3691: 3687: 3683: 3677: 3662: 3661: 3660: 3658: 3637: 3633: 3621: 3595: 3587: 3585: 3583: 3542: 3534: 3530: 3526: 3518: 3514: 3497: 3493: 3489: 3481: 3477: 3473: 3468: 3464: 3455: 3451: 3447: 3442: 3438: 3431: 3423: 3420: 3417: 3413: 3409: 3406: 3399: 3398: 3397: 3394: 3375: 3371: 3360: 3356: 3318: 3315: 3312: 3302: 3294: 3292: 3286: 3284: 3267: 3261: 3258: 3255: 3249: 3246: 3243: 3237: 3231: 3225: 3222: 3219: 3216: 3210: 3207: 3204: 3198: 3188: 3187: 3186: 3169: 3161: 3149:(elements of 3148: 3132: 3125: 3117: 3115: 3114: 3110: 3092: 3089: 3083: 3076: 3075: 3074: 3072: 3053: 3050: 3045: 3041: 3034: 3028: 3020: 3016: 3007: 2989: 2985: 2981: 2978: 2955: 2952: 2949: 2946: 2936: 2935: 2934: 2932: 2913: 2910: 2904: 2901: 2898: 2889: 2886: 2880: 2877: 2874: 2868: 2861: 2860: 2859: 2843: 2838: 2831: 2827: 2822: 2817: 2810: 2789: 2786: 2783: 2759: 2756: 2753: 2750: 2747: 2744: 2741: 2731: 2730: 2729: 2713: 2708: 2697: 2666: 2662: 2658: 2653: 2649: 2641: 2637: 2625: 2617: 2613: 2604: 2599: 2592: 2584: 2583: 2582: 2566: 2561: 2554: 2550: 2547: 2525: 2521: 2511: 2509: 2490: 2484: 2474: 2470: 2451: 2445: 2442: 2434: 2416: 2411: 2400: 2383: 2379: 2376: 2375:antisymmetric 2372: 2368: 2364: 2360: 2356: 2350: 2342: 2340: 2322: 2319: 2316: 2310: 2304: 2301: 2298: 2290: 2285: 2278: 2275: 2272: 2269: 2266: 2263: 2260: 2257: 2254: 2248: 2245: 2239: 2236: 2233: 2230: 2227: 2224: 2221: 2218: 2215: 2209: 2205: 2198: 2192: 2183: 2166: 2163: 2158: 2152: 2149: 2146: 2140: 2137: 2134: 2128: 2117: 2095: 2085: 2082: 2079: 2073: 2070: 2064: 2061: 2058: 2052: 2049: 2043: 2040: 2037: 2034: 2031: 2025: 2022: 2016: 2013: 2010: 2007: 2004: 1998: 1995: 1989: 1986: 1983: 1980: 1977: 1971: 1968: 1962: 1959: 1956: 1953: 1950: 1944: 1941: 1935: 1932: 1929: 1926: 1923: 1920: 1917: 1911: 1901: 1882: 1872: 1869: 1866: 1860: 1857: 1851: 1848: 1845: 1839: 1836: 1830: 1827: 1824: 1821: 1818: 1812: 1809: 1803: 1800: 1797: 1794: 1791: 1785: 1782: 1776: 1773: 1770: 1767: 1764: 1758: 1755: 1749: 1746: 1743: 1740: 1737: 1731: 1728: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1698: 1688: 1669: 1662: 1659: 1656: 1650: 1647: 1644: 1638: 1632: 1625: 1624: 1623: 1603: 1600: 1597: 1591: 1588: 1585: 1579: 1573: 1567: 1564: 1561: 1555: 1545: 1535: 1532: 1529: 1520: 1513: 1510: 1507: 1501: 1498: 1492: 1486: 1479: 1478: 1477: 1463: 1443: 1440: 1437: 1428: 1426: 1422: 1406: 1398: 1394: 1378: 1370: 1354: 1346: 1342: 1326: 1318: 1302: 1295: 1276: 1270: 1260: 1252: 1236: 1233: 1227: 1224: 1221: 1215: 1210: 1202: 1196: 1193: 1190: 1184: 1179: 1171: 1165: 1162: 1159: 1153: 1148: 1136: 1135: 1134: 1132: 1128: 1100: 1097: 1094: 1088: 1085: 1082: 1076: 1070: 1064: 1061: 1058: 1052: 1049: 1046: 1040: 1030: 1029: 1028: 1014: 1010: 1003: 1000: 995: 991: 982: 978: 967: 965: 961: 957: 952: 948: 944: 940: 934: 930: 926: 921: 917: 913: 909: 885: 881: 878: 872: 869: 866: 860: 857: 854: 848: 845: 842: 836: 833: 830: 824: 821: 818: 812: 805: 804: 780: 777: 774: 768: 765: 762: 756: 750: 747: 741: 738: 735: 729: 726: 723: 717: 707: 706: 682: 679: 676: 670: 667: 664: 658: 655: 652: 646: 639: 638: 637: 631: 629: 627: 623: 621: 617: 601: 595: 592: 589: 583: 577: 568: 566: 547: 542: 532: 524: 521: 516: 506: 498: 495: 489: 486: 483: 477: 470: 469: 468: 454: 451: 445: 442: 439: 414: 410: 402: 395: 392: 370: 366: 358: 351: 348: 325: 322: 319: 313: 290: 287: 279: 276: 273: 262: 259: 254: 244: 236: 233: 228: 218: 210: 207: 201: 198: 195: 189: 182: 181: 180: 163: 160: 157: 147: 123: 119: 113: 105: 100: 98: 96: 92: 88: 84: 83: 78: 74: 70: 66: 65:infinitesimal 62: 58: 50: 46: 42: 38: 34: 30: 25: 19: 4741: 4552:Applications 4480:Main results 4351: 4298: 4270: 4264: 4261:Woods, F. S. 4240: 4186: 4175:denotes the 4134: 3936: 3888: 3788: 3783: 3781: 3758:Ricci tensor 3755: 3752: 3656: 3599: 3597: 3582:Ricci tensor 3580:denotes the 3557: 3395: 3304: 3290: 3282: 3121: 3111:denotes the 3108: 3107: 3070: 3005: 2970: 2930: 2928: 2775: 2686: 2512: 2381: 2377: 2370: 2352: 2118: 2115: 1621: 1429: 1424: 1396: 1392: 1368: 1344: 1340: 1293: 1262: 1130: 1126: 1124: 968: 955: 950: 946: 942: 938: 932: 928: 924: 919: 916:antisymmetry 915: 911: 905: 635: 625: 624: 620:endomorphism 619: 615: 569: 564: 562: 305: 115: 80: 67:geometry of 54: 4790:Cocurvature 4681:of surfaces 4619:defined in 3778:Weyl tensor 3145:on tangent 3073:takes form 2469:Lie algebra 1129:(often the 146:Lie bracket 57:mathematics 33:hyperboloid 4810:Categories 4512:Ricci flow 4461:Hyperbolic 4233:References 2361:, and for 1419:under the 964:Lie groups 4639:Curvature 4631:of curves 4617:curvature 4456:Hermitian 4409:Signature 4372:Sectional 4352:Curvature 4226:geodesics 4159:◯ 4147:∧ 4108:◯ 4096:∧ 4075:‖ 4057:‖ 4035:⊗ 4026:− 3865:~ 3807:~ 3791:conformal 3688:∑ 3540:⟩ 3503:⟨ 3494:∑ 3487:⟩ 3429:⟨ 3414:∑ 3265:⟩ 3235:⟨ 3229:⟩ 3223:∧ 3208:∧ 3196:⟨ 3158:Λ 3147:bivectors 3087:Ω 3057:⟩ 3038:⟨ 3017:θ 2986:θ 2979:θ 2950:θ 2947:∧ 2944:Ω 2902:∧ 2893:Ω 2832:ω 2828:∧ 2811:ω 2790:ω 2787:∧ 2784:ω 2760:ω 2757:∧ 2754:ω 2748:ω 2739:Ω 2702:Ω 2695:Ω 2672:⟩ 2633:∇ 2629:⟨ 2593:ω 2555:ω 2548:ω 2485:⁡ 2446:⁡ 2405:Ω 2393:Ω 2246:− 2196:∂ 2190:∂ 2180:∂ 2156:⟩ 2126:⟨ 2023:− 1996:− 1969:− 1942:− 1883:− 1810:− 1783:− 1756:− 1729:− 1666:⟩ 1636:⟨ 1607:⟩ 1577:⟨ 1533:∧ 1493:σ 1464:σ 1407:σ 1379:σ 1355:σ 1327:σ 1303:σ 1277:σ 1207:∇ 1176:∇ 1145:∇ 1105:⟩ 1074:⟨ 1068:⟩ 1038:⟨ 1001:− 960:dilations 785:⟩ 754:⟨ 751:− 745:⟩ 715:⟨ 668:− 581:↦ 539:∇ 529:∇ 525:− 513:∇ 503:∇ 407:∂ 399:∂ 363:∂ 355:∂ 267:∇ 263:− 251:∇ 241:∇ 237:− 225:∇ 215:∇ 164:⋅ 158:⋅ 132:∇ 91:curvature 73:dimension 4795:Holonomy 4471:Kenmotsu 4384:Geodesic 4337:Glossary 3659:we have 3396:we have 3124:operator 937:for all 45:manifold 37:cylinder 4538:Hilbert 4533:Finsler 4287:1967636 3851:, then 2471:of the 2433:2-forms 2384:matrix 1369:section 1347:; here 1341:section 1319:of the 1294:section 77:Riemann 4466:Kähler 4362:Scalar 4357:tensor 4285:  4249:  4162:  4144:  4135:where 4111:  4093:  3558:where 3069:. The 3004:is an 2971:where 2836:  2815:  2706:  2597:  2559:  2467:, the 2409:  2380:× 951:tensor 63:, the 41:sphere 4367:Ricci 4295:Notes 4283:JSTOR 3355:trace 1476:then 908:Ricci 306:Here 93:of a 71:with 4247:ISBN 4220:the 4213:and 4061:grad 4013:Hess 3782:The 2513:Let 2353:The 1125:The 918:and 626:N.B. 385:and 144:and 120:(or 4275:doi 4202:or 3671:Ric 3608:Ric 3567:Ric 3507:Ric 3331:or 2431:of 1430:If 1423:at 1343:at 618:or 55:In 4812:: 4281:. 4269:. 3923:. 3886:. 3768:. 3340:Sc 2443:so 1427:. 1015:12 941:, 931:, 622:. 567:. 124:) 4608:e 4601:t 4594:v 4416:/ 4339:) 4335:( 4325:e 4318:t 4311:v 4289:. 4277:: 4271:3 4255:. 4228:. 4217:. 4206:, 4195:, 4119:) 4115:g 4088:) 4084:g 4079:2 4071:) 4068:f 4065:( 4052:2 4049:1 4044:+ 4041:f 4038:d 4032:f 4029:d 4023:) 4020:f 4017:( 4008:( 4004:+ 4001:R 3997:( 3991:f 3988:2 3984:e 3958:f 3955:2 3951:e 3907:0 3904:= 3901:W 3874:W 3871:= 3862:W 3839:f 3819:g 3816:f 3813:= 3804:g 3733:. 3727:i 3723:e 3719:) 3714:i 3710:e 3706:, 3703:u 3700:( 3697:R 3692:i 3684:= 3681:) 3678:u 3675:( 3657:p 3643:} 3638:i 3634:e 3630:{ 3543:, 3535:i 3531:e 3527:, 3524:) 3519:i 3515:e 3511:( 3498:i 3490:= 3482:i 3478:e 3474:, 3469:j 3465:e 3461:) 3456:j 3452:e 3448:, 3443:i 3439:e 3435:( 3432:R 3424:j 3421:, 3418:i 3410:= 3407:S 3381:} 3376:i 3372:e 3368:{ 3319:R 3316:, 3313:S 3268:. 3262:w 3259:, 3256:z 3253:) 3250:v 3247:, 3244:u 3241:( 3238:R 3232:= 3226:z 3220:w 3217:, 3214:) 3211:v 3205:u 3202:( 3199:Q 3173:) 3170:T 3167:( 3162:2 3133:Q 3109:D 3093:0 3090:= 3084:D 3054:v 3051:, 3046:i 3042:e 3035:= 3032:) 3029:v 3026:( 3021:i 3006:n 2990:i 2982:= 2956:0 2953:= 2914:. 2911:w 2908:) 2905:v 2899:u 2896:( 2890:= 2887:w 2884:) 2881:v 2878:, 2875:u 2872:( 2869:R 2844:j 2839:k 2823:i 2818:j 2772:. 2751:+ 2745:d 2742:= 2714:i 2709:j 2698:= 2667:k 2663:e 2659:, 2654:j 2650:e 2642:i 2638:e 2626:= 2623:) 2618:i 2614:e 2610:( 2605:k 2600:j 2567:i 2562:j 2551:= 2526:i 2522:e 2494:) 2491:n 2488:( 2482:O 2455:) 2452:n 2449:( 2417:i 2412:j 2401:= 2382:n 2378:n 2371:n 2326:) 2323:0 2320:, 2317:0 2314:( 2311:= 2308:) 2305:t 2302:, 2299:s 2296:( 2291:| 2286:) 2282:) 2279:z 2276:t 2273:+ 2270:v 2267:, 2264:w 2261:s 2258:+ 2255:u 2252:( 2249:K 2243:) 2240:w 2237:t 2234:+ 2231:v 2228:, 2225:z 2222:s 2219:+ 2216:u 2213:( 2210:K 2206:( 2199:t 2193:s 2184:2 2167:6 2164:1 2159:= 2153:z 2150:, 2147:w 2144:) 2141:v 2138:, 2135:u 2132:( 2129:R 2096:. 2092:] 2089:) 2086:z 2083:, 2080:u 2077:( 2074:K 2071:+ 2068:) 2065:w 2062:, 2059:v 2056:( 2053:K 2050:+ 2047:) 2044:z 2041:+ 2038:v 2035:, 2032:w 2029:( 2026:K 2020:) 2017:z 2014:+ 2011:v 2008:, 2005:u 2002:( 1999:K 1993:) 1990:z 1987:, 1984:w 1981:+ 1978:u 1975:( 1972:K 1966:) 1963:v 1960:, 1957:w 1954:+ 1951:u 1948:( 1945:K 1939:) 1936:z 1933:+ 1930:v 1927:, 1924:w 1921:+ 1918:u 1915:( 1912:K 1909:[ 1879:] 1876:) 1873:z 1870:, 1867:v 1864:( 1861:K 1858:+ 1855:) 1852:w 1849:, 1846:u 1843:( 1840:K 1837:+ 1834:) 1831:w 1828:+ 1825:v 1822:, 1819:z 1816:( 1813:K 1807:) 1804:w 1801:+ 1798:v 1795:, 1792:u 1789:( 1786:K 1780:) 1777:w 1774:, 1771:z 1768:+ 1765:u 1762:( 1759:K 1753:) 1750:v 1747:, 1744:z 1741:+ 1738:u 1735:( 1732:K 1726:) 1723:w 1720:+ 1717:v 1714:, 1711:z 1708:+ 1705:u 1702:( 1699:K 1696:[ 1670:= 1663:z 1660:, 1657:w 1654:) 1651:v 1648:, 1645:u 1642:( 1639:R 1633:6 1604:u 1601:, 1598:v 1595:) 1592:v 1589:, 1586:u 1583:( 1580:R 1574:= 1571:) 1568:v 1565:, 1562:u 1559:( 1556:K 1546:2 1541:| 1536:v 1530:u 1526:| 1521:/ 1517:) 1514:v 1511:, 1508:u 1505:( 1502:K 1499:= 1496:) 1490:( 1487:K 1444:u 1441:, 1438:v 1425:p 1397:p 1393:p 1367:- 1345:p 1339:- 1280:) 1274:( 1271:K 1237:0 1234:= 1231:) 1228:v 1225:, 1222:u 1219:( 1216:R 1211:w 1203:+ 1200:) 1197:u 1194:, 1191:w 1188:( 1185:R 1180:v 1172:+ 1169:) 1166:w 1163:, 1160:v 1157:( 1154:R 1149:u 1101:v 1098:, 1095:u 1092:) 1089:z 1086:, 1083:w 1080:( 1077:R 1071:= 1065:z 1062:, 1059:w 1056:) 1053:v 1050:, 1047:u 1044:( 1041:R 1011:/ 1007:) 1004:1 996:2 992:n 988:( 983:2 979:n 943:v 939:u 935:) 933:v 929:u 927:( 925:R 886:0 882:= 879:v 876:) 873:u 870:, 867:w 864:( 861:R 858:+ 855:u 852:) 849:w 846:, 843:v 840:( 837:R 834:+ 831:w 828:) 825:v 822:, 819:u 816:( 813:R 781:w 778:, 775:z 772:) 769:v 766:, 763:u 760:( 757:R 748:= 742:z 739:, 736:w 733:) 730:v 727:, 724:u 721:( 718:R 687:) 683:u 680:, 677:v 674:( 671:R 665:= 662:) 659:v 656:, 653:u 650:( 647:R 602:w 599:) 596:v 593:, 590:u 587:( 584:R 578:w 548:w 543:u 533:v 522:w 517:v 507:u 499:= 496:w 493:) 490:v 487:, 484:u 481:( 478:R 455:0 452:= 449:] 446:v 443:, 440:u 437:[ 415:j 411:x 403:/ 396:= 393:v 371:i 367:x 359:/ 352:= 349:u 329:) 326:v 323:, 320:u 317:( 314:R 291:. 288:w 283:] 280:v 277:, 274:u 271:[ 260:w 255:u 245:v 234:w 229:v 219:u 211:= 208:w 205:) 202:v 199:, 196:u 193:( 190:R 167:] 161:, 155:[ 51:. 31:( 20:.

Index

Curvature of space

Gaussian curvature
hyperboloid
cylinder
sphere
manifold
Riemann curvature tensor
mathematics
differential geometry
infinitesimal
Riemannian manifolds
dimension
Riemann
Riemann curvature tensor
differential geometry of surfaces
curvature
pseudo-Riemannian manifold
Riemann curvature tensor
Levi-Civita connection
covariant differentiation
Lie bracket
Ricci
dilations
Lie groups
Sectional curvature
Gauss curvature
exponential map
Curvature form
connection form

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑