Knowledge

CA-group

Source đź“ť

198:
is a CA-group if and only if it is abelian. The finite CA-groups are classified: the solvable ones are semidirect products of abelian groups by cyclic groups such that every non-trivial element acts fixed-point-freely and include groups such as the
178:
of an abelian group and a fixed-point-free automorphism, and that conversely every such semidirect product is a finite, solvable CA-group. Wu also extended the classification of Suzuki et al. to
166:
which states that every finite, simple, non-abelian group is of even order. A textbook exposition of the classification of finite CA-groups is given as example 1 and 2 in (
345: 426: 139: 52: 407: 323: 211:
on 4 points of order 12, while the nonsolvable ones are all simple and are the 2-dimensional projective special linear groups PSL(2, 2) for
104: 91:
Locally finite CA-groups were classified by several mathematicians from 1925 to 1998. First, finite CA-groups were shown to be
116: 47:. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the 512: 391: 340: 262: 143: 265:; Wall, G. E. (1958), "A characterization of the one-dimensional unimodular projective groups over finite fields", 163: 48: 158:. This result was first extended to the Feit–Hall–Thompson theorem showing that finite, simple, non-abelian, 195: 240: 179: 155: 68: 170:, pp. 291–305). A more detailed description of the Frobenius groups appearing is included in ( 80: 25: 424:
Weisner, L. (1925), "Groups in which the normaliser of every element except identity is abelian",
372: 175: 483: 445: 403: 364: 319: 284: 208: 473: 453: 435: 354: 274: 495: 417: 384: 333: 296: 491: 457: 413: 399: 380: 329: 315: 292: 128: 112: 258: 244: 228: 200: 96: 64: 60: 506: 191: 83:
amongst the non-identity elements of a group if and only if the group is a CA-group.
41: 440: 398:, Grundlehren der Mathematischen Wissenschaften , vol. 248, Berlin, New York: 307: 151: 147: 120: 92: 21: 303: 37: 17: 235:, p. 10). Some more recent results in the infinite case are included in ( 216: 56: 487: 464:
Wu, Yu-Fen (1998), "Groups in which commutativity is a transitive relation",
449: 368: 288: 279: 343:(1957), "The nonexistence of a certain type of simple groups of odd order", 478: 159: 44: 376: 220: 71:
CA-groups have been classified explicitly. CA-groups are also called
359: 127:≥ 2. Finally, finite CA-groups of odd order were shown to be 55:. Several important infinite groups are CA-groups, such as 174:), where it is shown that a finite, solvable CA-group is a 135:), and so in particular, are never non-abelian simple. 247:are obvious examples of infinite simple CA-groups. 111:), finite CA-groups of even order were shown to be 346:Proceedings of the American Mathematical Society 108: 138:CA-groups were important in the context of the 194:is a CA-group, and a group with a non-trivial 427:Bulletin of the American Mathematical Society 8: 232: 477: 439: 358: 278: 100: 167: 140:classification of finite simple groups 132: 79:for short) because commutativity is a 53:classification of finite simple groups 115:, abelian groups, or two dimensional 7: 154:, non-abelian, CA-group is of even 243:CA-groups. Wu also observes that 236: 171: 14: 239:), including a classification of 40:of any nonidentity element is an 215:≥ 2. Infinite CA-groups include 162:had even order, and then to the 117:projective special linear groups 441:10.1090/S0002-9904-1925-04079-3 267:Illinois Journal of Mathematics 109:Brauer, Suzuki & Wall 1958 1: 123:of even order, PSL(2, 2) for 73:commutative-transitive groups 529: 312:Combinatorial group theory 231:of large prime exponent, ( 105:Brauer–Suzuki–Wall theorem 34:centralizer abelian group 233:Lyndon & Schupp 2001 479:10.1006/jabr.1998.7468 280:10.1215/ijm/1255448336 131:or abelian groups in ( 180:locally finite groups 164:Feit–Thompson theorem 49:Feit–Thompson theorem 513:Properties of groups 314:, Berlin, New York: 81:transitive relation 466:Journal of Algebra 176:semidirect product 146:showed that every 20:, in the realm of 409:978-0-387-10916-9 325:978-3-540-41158-1 209:alternating group 520: 498: 481: 460: 443: 420: 396:Group theory. II 387: 362: 336: 304:Lyndon, Roger C. 299: 282: 129:Frobenius groups 113:Frobenius groups 103:). Then in the 28:is said to be a 528: 527: 523: 522: 521: 519: 518: 517: 503: 502: 501: 463: 423: 410: 400:Springer-Verlag 390: 360:10.2307/2033280 339: 326: 316:Springer-Verlag 308:Schupp, Paul E. 302: 273:(4B): 718–745, 257: 253: 245:Tarski monsters 229:Burnside groups 201:dihedral groups 188: 89: 65:Burnside groups 61:Tarski monsters 12: 11: 5: 526: 524: 516: 515: 505: 504: 500: 499: 472:(1): 165–181, 461: 434:(8): 413–416, 421: 408: 392:Suzuki, Michio 388: 353:(4): 686–695, 341:Suzuki, Michio 337: 324: 300: 263:Suzuki, Michio 254: 252: 249: 241:locally finite 187: 184: 88: 85: 69:locally finite 13: 10: 9: 6: 4: 3: 2: 525: 514: 511: 510: 508: 497: 493: 489: 485: 480: 475: 471: 467: 462: 459: 455: 451: 447: 442: 437: 433: 429: 428: 422: 419: 415: 411: 405: 401: 397: 393: 389: 386: 382: 378: 374: 370: 366: 361: 356: 352: 348: 347: 342: 338: 335: 331: 327: 321: 317: 313: 309: 305: 301: 298: 294: 290: 286: 281: 276: 272: 268: 264: 260: 256: 255: 250: 248: 246: 242: 238: 234: 230: 226: 224: 218: 214: 210: 206: 202: 197: 193: 192:abelian group 185: 183: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 144:Michio Suzuki 141: 136: 134: 130: 126: 122: 118: 114: 110: 106: 102: 98: 94: 86: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 43: 39: 35: 31: 27: 23: 19: 469: 465: 431: 425: 395: 350: 344: 311: 270: 266: 222: 212: 207:+2, and the 204: 189: 137: 124: 121:finite field 101:Weisner 1925 90: 76: 72: 33: 29: 22:group theory 15: 251:Works cited 217:free groups 168:Suzuki 1986 133:Suzuki 1957 63:, and some 57:free groups 38:centralizer 18:mathematics 458:51.0112.06 259:Brauer, R. 203:of order 4 67:, and the 488:0021-8693 450:0002-9904 369:0002-9939 289:0019-2082 160:CN-groups 77:CT-groups 507:Category 394:(1986), 310:(2001), 186:Examples 97:solvable 51:and the 45:subgroup 30:CA-group 496:1643082 418:0815926 385:0086818 377:2033280 334:0577064 297:0104734 237:Wu 1998 221:PSL(2, 172:Wu 1998 119:over a 87:History 42:abelian 36:if the 494:  486:  456:  448:  416:  406:  383:  375:  367:  332:  322:  295:  287:  227:, and 196:center 190:Every 152:simple 148:finite 93:simple 373:JSTOR 156:order 26:group 484:ISSN 446:ISSN 404:ISBN 365:ISSN 320:ISBN 285:ISSN 99:in ( 75:(or 24:, a 474:doi 470:207 454:JFM 436:doi 355:doi 275:doi 95:or 32:or 16:In 509:: 492:MR 490:, 482:, 468:, 452:, 444:, 432:31 430:, 414:MR 412:, 402:, 381:MR 379:, 371:, 363:, 349:, 330:MR 328:, 318:, 306:; 293:MR 291:, 283:, 269:, 261:; 219:, 182:. 150:, 142:. 59:, 476:: 438:: 357:: 351:8 277:: 271:2 225:) 223:R 213:n 205:k 125:f 107:(

Index

mathematics
group theory
group
centralizer
abelian
subgroup
Feit–Thompson theorem
classification of finite simple groups
free groups
Tarski monsters
Burnside groups
locally finite
transitive relation
simple
solvable
Weisner 1925
Brauer–Suzuki–Wall theorem
Brauer, Suzuki & Wall 1958
Frobenius groups
projective special linear groups
finite field
Frobenius groups
Suzuki 1957
classification of finite simple groups
Michio Suzuki
finite
simple
order
CN-groups
Feit–Thompson theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑