Knowledge

Cryptochrome

Source 📝

1537: 854:(HY5) to accumulate. HY5 is a basic leucine zipper (bZIP) factor that promotes photomorphogenesis by binding to light-responsive genes. CRY interacts with G protein β-subunit AGB1, where HY5 dissociates from AGB1 and becomes activated. CRY interacts with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and PIF5, repressors of photomorphogenesis and promoter of hypocotyl elongation, to repress PIF4 and PIF5 transcription activity. Lastly, CRY can inhibit 1588:
triad). The longer chain leads to a better separation and over 1000× longer lifetimes of the photoinduced flavin-tryptophan radical pairs than in proteins with a triad of tryptophans. The absence of spin-selective recombination of these radical pairs on the nanosecond to microsecond timescales seems to be incompatible with the suggestion that magnetoreception by cryptochromes is based on the forward light reaction.
40: 1587:
neurons, with the overall result that the animal can sense the magnetic field. Animal cryptochromes and closely related animal (6-4) photolyases contain a longer chain of electron-transferring tryptophans than other proteins of the cryptochrome-photolyase superfamily (a tryptophan tetrad instead of a
1582:
when exposed to blue light. Radical pairs can also be generated by the light-independent dark reoxidation of the flavin cofactor by molecular oxygen through the formation of a spin-correlated FADH-superoxide radical pairs. Magnetoreception is hypothesized to function through the surrounding magnetic
1367:
While CRY1 has been well established as a TIM homolog in mammals, the role of CRY1 as a photoreceptor in mammals has been controversial. Early papers indicated that CRY1 has both light-independent and -dependent functions. A study conducted by Selby CP et al. (2000) found that mice without rhodopsin
853:
CRY gene mediates photomorphogenesis in several ways. CRY C-terminal interacts with CONTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a E3 ubiquitin ligase that represses photomorphogenesis and flowering time. The interaction inhibits COP1 activity and allows transcription factors such as ELONGATED HYPOCOTYL 5
830:
plants increases blue-light-stimulated cotyledon expansion, which results in many broad leaves and no flowers rather than a few primary leaves with a flower. A double loss-of-function mutation in Arabidopsis thaliana Early Flowering 3 (elf3) and Cry2 genes delays flowering under continuous light and
1196:
and functions as a blue light photoreceptor. Exposure to blue light induces a conformation similar to that of the always-active CRY mutant with a C-terminal deletion (CRYΔ). The half-life of this conformation is 15 minutes in the dark and facilitates the binding of CRY to other clock gene products,
927:
A new hypothesis proposes that partner molecules sense the transduction of a light signal into a chemical signal in plant cryptochromes, which could be triggered by a photo-induced negative charge on the FAD cofactor or on the neighboring aspartic acid within the protein. This negative charge would
1382:
and the suprachiasmatic nucleus (SCN). One of the main difficulties in confirming or denying CRY as a mammalian photoreceptor is that when the gene is knocked out the animal goes arrhythmic, so it is hard to measure its capacity as purely a photoreceptor. However, some recent studies indicate that
1228:
pathway. Therefore, CRY is involved in light perception and is an input to the circadian clock, however it is not the only input for light information, as a sustained rhythm has been shown in the absence of the CRY pathway, in which it is believed that the rhodopsin pathway is providing some light
936:
binding pocket prior to photon absorption. The resulting change in protein conformation could lead to phosphorylation of previously inaccessible phosphorylation sites on the C-terminus and the given phosphorylated segment could then liberate the transcription factor HY5 by competing for the same
700:
cofactors characteristic of these proteins. Of these genes, one encodes a photolyase, while the other two encode cryptochrome proteins designated VcCry1 and VcCry2. Cashmore AR et al. (1999) hypothesize that mammalian cryptochromes developed later in evolutionary history shortly after plants and
1570:
plants: growth behavior seemed to be affected by magnetic fields in the presence of blue (but not red) light. Nevertheless, these results have later turned out to be irreproducible under strictly controlled conditions in another laboratory, suggesting that plant cryptochromes do not respond to
1269:
transcription and mRNA levels. In LD, CRY protein has low levels in light and high levels in dark, and, in DD, CRY levels increase continuously throughout the subjective day and night. Thus, CRY expression is regulated by the clock at the transcriptional level and by light at the
501:, and positions 288 through 486 show a conserved domain with the FAD binding domain of DNA photolyase. Comparative genomic analysis supports photolyase proteins as the ancestors of cryptochromes. However, by 1995 it became clear that the products of the HY4 gene and its two human 2340:"Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light" 538:
Cryptochromes (CRY1, CRY2) are evolutionarily old and highly conserved proteins that belong to the flavoproteins superfamily that exists in all kingdoms of life. Cryptochromes are derived from and closely related to photolyases, which are bacterial
1342:
genes and activate their transcription. The CRY2 and PER proteins then bind to each other, enter the nucleus, and inhibit CLOCK-BMAL1-activated transcription. The overall function of CRY2 is therefore to repress transcription of CLOCK and BMAL1.
904:, pterin appears to absorb at a wavelength of 380 nm and flavin at 450 nm. Past studies have supported a model by which energy captured by pterin is transferred to flavin. Under this model of phototransduction, FAD would then be 1104:
Studies in animals and plants suggest that cryptochromes play a pivotal role in the generation and maintenance of circadian rhythms. Similarly, cryptochromes play an important role in the entrainment of circadian rhythms in plants. In
1071:
or cryptochrome to do so. The iris of chicken embryos senses short-wavelength light via a cryptochrome, rather than opsins. Research by Margiotta and Howard (2020) shows that the PMTR of the chicken iris striated muscle occurs with
1364:, a brain region involved in the generation of circadian rhythms, with mRNA levels peaking during the light phase and reaching a minimum in the dark. These daily oscillations in expression are maintained in constant darkness. 1260:
mRNA concentrations cycle under a light-dark cycle (LD), with high levels in light and low levels in the dark. This cycling persists in constant darkness (DD), but with decreased amplitude. The transcription of the
4679:
Müller P, Yamamoto J, Martin R, Iwai S, Brettel K (November 2015). "Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases".
705:(6-4) photolyase protein. Based on the role of cryptochromes in the entrainment of mammalian circadian rhythms, current researchers hypothesize that they developed simultaneously with the coevolution of PER, TIM, 2026:
Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, et al. (April 1996). "Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family".
1583:
field's effect on the correlation (parallel or anti-parallel) of these radicals, which affects the lifetime of the activated form of cryptochrome. Activation of cryptochrome may affect the light-sensitivity of
482:
first documented plant responses to blue light in the 1880s, it was not until the 1980s that research began to identify the pigment responsible. In 1980, researchers discovered that the HY4 gene of the plant
647:
cryptochrome protein was discovered with the characteristic property of lacking photolyase activity, prompting researchers to consider it in the same class of cryptochrome proteins. In mice, the greatest
1696:
van der Spek PJ, Kobayashi K, Bootsma D, Takao M, Eker AP, Yasui A (October 1996). "Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors".
426:
CRY1 and CRY2, respectively. Cryptochromes are classified into plant Cry and animal Cry. Animal Cry can be further categorized into insect type (Type I) and mammal-like (Type II). CRY1 is a circadian
1229:
input. Recently, it has also been shown that there is a CRY-mediated light response that is independent of the classical circadian CRY-TIM interaction. This mechanism is believed to require a flavin
1224:
and may play a role in nonparametric entrainment (entrainment by short discrete light pulses). However, the lateral neurons receive light information through both the blue light CRY pathway and the
1289:
overexpression increases flies' sensitivity to low-intensity light. This light regulation of CRY protein levels suggests that CRY has a circadian role upstream of other clock genes and components.
576:. The protein encoded by this gene was named cryptochrome 1 to distinguish it from its ancestral photolyase proteins and was found to be involved in the photoreception of blue light. Studies of 2480:
Song SH, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen LO (October 2006). "Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana".
1092:, and decreasing transcription of these genes inhibited PMTRs. The greatest iris PMTRs therefore correspond with the development of striated, rather than smooth, muscle fibers through 4718:
Cailliez F, Müller P, Firmino T, Pernot P, de la Lande A (February 2016). "Energetics of Photoinduced Charge Migration within the Tryptophan Tetrad of an Animal (6-4) Photolyase".
1548:
Magnetoreception is a sense which allows an organism to detect a magnetic field to perceive direction, altitude or location. Experimental data suggests that cryptochromes in the
850:, CRY1 is the primary inhibitor of hypocotyl elongation but CRY2 inhibits hypocotyl elongation under low blue light intensity. CRY2 promotes flowering under long-day conditions. 1109:, cryptochrome (dCRY) acts as a blue-light photoreceptor that directly modulates light input into the circadian clock, while in mammals, cryptochromes (CRY1 and CRY2) act as 1059:(GPCRs). Therefore, the sponge's unique eyes must have evolved a different mechanism to detect light and mediate phototaxis, possibly with cryptochromes or other proteins. 747:
bound to the protein. These proteins have variable lengths and surfaces on the C-terminal end, due to the changes in genome and appearance that result from the lack of
2663:
Cailliez F, Müller P, Gallois M, de la Lande A (September 2014). "ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome".
1124:-like version of cryptochrome, providing evidence for an ancestral clock mechanism involving both light-sensing and transcriptional-repression roles for cryptochrome. 1464:
which in turn lengthens the period. This causes people with this mutation to have a later sleep midpoint than the rest of the population, causing a disorder known as
831:
was shown to accelerate it during long and short days, which suggests that Arabidopsis CRY2 may play a role in accelerating flowering time during continuous light.
506: 2303:
Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, et al. (November 1996). "Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins".
671:
of each other that evolved directly from a shared photolyase gene. However, genomic analysis indicates that mammalian and fly cryptochrome proteins show greater
981:• by light. Furthermore, mutations that blocked photoreduction had no effect on light-induced degradation of CRY, while mutations that altered the stability of 216: 63: 675:
to the (6-4) photolyase proteins than to plant cryptochrome proteins. It is therefore likely that plant and animal cryptochrome proteins show a unique case of
4375:
Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (February 2007). "Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana".
1314:
Cryptochrome is one of the four groups of mammalian clock genes/proteins that generate a transcription-translation negative-feedback loop (TTFL), along with
1173:
mRNA levels. These results suggest that cryptochromes play a photoreceptive role, as well as acting as negative regulators of Per gene expression in mice.
952:
CRY is still debated, with some models indicating that the FAD is in an oxidized form, while others support a model in which the flavin cofactor exists in
1080:
gene knockouts and decreased when flavin reductase was inhibited, but remained intact with the addition of melanopsin antagonists. Similarly, cytosolic
3776:"Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals" 743:. The structure of cryptochrome involves a fold very similar to that of photolyase, arranged as an orthogonal bundle with a single molecule of FAD 4850: 656:(SCN) where levels rhythmically fluctuate. Due to the role of the SCN as the primary mammalian pacemaker as well as the rhythmic fluctuations in 4802: 3560:
Busza A, Emery-Le M, Rosbash M, Emery P (June 2004). "Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception".
1149:
which is required for flavin association in CRY protein, results in no PER or TIM protein cycling in either DD or LD. In addition, mice lacking
784:, or directional growth toward a light source, in response to blue light. This response is now known to have its own set of photoreceptors, the 4768: 1465: 1067:
Isolated irises constrict in response to light via a photomechanical transduction response (PMTR) in a variety of species and require either
4975: 4970: 2010: 580:
knockout mutants led to the later discovery that cryptochrome proteins are also involved in regulating the mammalian circadian clock. The
2198:"Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae" 4924: 240: 87: 3096:
Somers DE, Devlin PF, Kay SA (November 1998). "Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock".
2384:"The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis" 1926:
Ahmad M, Cashmore AR (November 1993). "HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor".
489:
was necessary for the plant's blue light sensitivity, and, when the gene was sequenced in 1993, it showed high sequence homology with
4605:"Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception" 4114:"An observational study investigating the CRY1Δ11 variant associated with delayed sleep-wake patterns and circadian metabolic output" 3367:"CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity" 893: 843:. They help control seed and seedling development, as well as the switch from the vegetative to the flowering stage of development. 1233:-based mechanism that is dependent on potassium channel conductance. This CRY-mediated light response has been shown to increase 1036:
expressed in photoreceptor cells, which communicate information about light from the environment to the nervous system. However,
1029:
express a blue-light-sensitive cryptochrome (Aq-Cry2), which might mediate phototaxis. In contrast, the eyes of most animals use
616: 544: 228: 75: 763:
with little to no steric overlap. The structure of CRY1 is almost entirely made up of alpha helices, with several loops and few
725: 221: 68: 4909: 3522:
Griffin EA, Staknis D, Weitz CJ (October 1999). "Light-independent role of CRY1 and CRY2 in the mammalian circadian clock".
1378:
as the main circadian photoreceptor, in particular melanopsin cells that mediate entrainment and communication between the
713:
proteins, but there is currently insufficient evidence to determine the exact evolution timing and mechanism of evolution.
2557: 692:. Genome sequencing of this bacteria identified three genes in the photolyase/cryptochrome family, all of which have the 4985: 3244:"Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation" 4843: 1441:
expression) is not sufficient to rescue rhythmicity. Transfection of these cells with both the promoter and the first
1419: 1056: 800: 729: 4420: 667:
A common misconception in the evolutionary history of cryptochrome proteins is that mammalian and plant proteins are
2001:
Thompson CL, Sancar A (2004). "Cryptochrome: Discovery of a Circadian Photopigment". In Lenci F, Horspool WM (ed.).
1220:
brain. These data along with other results suggest that CRY is the cell-autonomous photoreceptor for body clocks in
686:
Research by Worthington et al. (2003) indicates that cryptochromes first evolved in bacteria and were identified in
4990: 1327: 619:
to short pulses of light, leading researchers to conclude that the dorsal and ventral lateral neurons (the primary
2148:
Cashmore AR, Jarillo JA, Wu YJ, Liu D (April 1999). "Cryptochromes: blue light receptors for plants and animals".
1475:, specifically through temporal regulation. CRY1 has an impact in the cell cycle progression, particularly in the 493:, a DNA repair protein activated by blue light. Reference sequence analysis of cryptochrome-1 isoform d shows two 4889: 4884: 3835:"Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice" 1518:
in comparison to those with the CRY1Δ11 variant. The participants with the variant had a delayed sleep cycle and
608: 2741:"Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly" 4995: 4759: 1110: 744: 737: 2782:"Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis" 1519: 1491:, CRY1 is stabilized by DNA damage, which results in CRY1 expression being associated with worse outcomes in 4919: 4904: 4899: 2996:
Tu DC, Batten ML, Palczewski K, Van Gelder RN (October 2004). "Nonvisual photoreception in the chick iris".
1361: 1018:
or quartet state by absorption of a photon, which then leads to a conformational change in the CRY protein.
733: 653: 497:
domains with photolyase proteins. Isoform d nucleotide positions 6 through 491 show a conserved domain with
4879: 4836: 1541: 1410:
promoter activation. This delay is independent of CRY1 or CRY2 levels and is mediated by a combination of
1374:
transcription, a mediator of light sensitivity, significantly drops. In recent years, data have supported
933: 929: 443: 3894:"Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity" 1861: 1484: 1456:, that causes a delay in one's circadian rhythm.  CRY1Δ11 is a splicing variant that has deleted an 1368:
but with cryptochrome still respond to light; however, in mice without either rhodopsin or cryptochrome,
233: 80: 4949: 4874: 2947:"Cryptochromes Mediate Intrinsic Photomechanical Transduction in Avian Iris and Somatic Striated Muscle" 1271: 427: 399: 345: 298: 145: 4261:"A visual pathway links brain structures active during magnetic compass orientation in migratory birds" 3949:
Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, et al. (July 2008). Schibler U (ed.).
1507: 1506:
Variants of CRY1 can have impacts on humans in regards to metabolic output. According to a 2021 study,
1480: 4176:"The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair" 3465:"Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2" 1536: 1158: 4551: 4504: 4384: 4331: 4272: 4239: 4187: 4125: 3905: 3846: 3787: 3673: 3569: 3476: 3306: 3200: 3005: 2841: 2619: 2157: 2036: 1935: 1814: 1496: 1457: 1265:
gene also cycles with a similar trend. CRY protein levels, however, cycle in a different manner than
1201:, in a light-dependent manner. Once bound by dCRY, dTIM is committed to degradation by the ubiquitin- 676: 631:
mutants also had visually unresponsive compound eyes, though, they failed to behaviorally entrain to
485: 2700:"A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome" 4980: 4765: 4244: 3049:"Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila" 1575: 956: 913: 756: 4174:
Shafi AA, McNair CM, McCann JJ, Alshalalfa M, Shostak A, Severson TM, et al. (January 2021).
4929: 4408: 4221: 4083: 3951:"Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells" 3642: 3593: 3445: 3396: 3332: 3224: 3173: 3121: 3029: 2588: 2413: 2060: 1959: 1891: 1773: 1629: 1549: 1331: 992:• destroyed CRY photoreceptor function. These observations provide support for a ground state of 840: 502: 494: 463: 4658:. Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign 1801:
Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (August 2004).
1208:
Although light pulses do not entrain, full photoperiod LD cycles can still drive cycling in the
679:
by repeatedly evolving new functions independently of each other from a single common ancestral
3414:
Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, et al. (November 1998).
2433:"Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition" 4944: 4939: 4808: 4792: 4735: 4697: 4636: 4585: 4556:"Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor" 4532: 4473: 4400: 4357: 4300: 4213: 4151: 4075: 4031: 3982: 3931: 3874: 3815: 3753: 3699: 3634: 3585: 3539: 3504: 3437: 3388: 3324: 3275: 3216: 3165: 3113: 3078: 3021: 2978: 2918: 2869: 2803: 2762: 2721: 2680: 2645: 2580: 2538: 2517:"Evidence of a light-sensing role for folate in Arabidopsis cryptochrome blue-light receptors" 2497: 2462: 2405: 2361: 2320: 2285: 2229: 2173: 2109: 2052: 2006: 1951: 1883: 1842: 1791: 1765: 1724: 1678: 1649:"Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants" 1621: 1500: 1213: 1117: 875: 752: 672: 668: 620: 252: 99: 3463:
Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, et al. (October 1999).
2256:"Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer" 1453: 4727: 4689: 4626: 4616: 4575: 4567: 4522: 4512: 4463: 4455: 4392: 4347: 4339: 4290: 4280: 4203: 4195: 4141: 4133: 4112:
Smieszek SP, Brzezynski JL, Kaden AR, Shinn JA, Wang J, Xiao C, et al. (October 2021).
4065: 4021: 4013: 3972: 3962: 3921: 3913: 3864: 3854: 3805: 3795: 3743: 3735: 3689: 3681: 3624: 3577: 3531: 3494: 3484: 3427: 3378: 3314: 3265: 3255: 3208: 3155: 3105: 3068: 3060: 3013: 2968: 2958: 2908: 2900: 2859: 2849: 2793: 2752: 2711: 2672: 2635: 2627: 2572: 2528: 2489: 2452: 2444: 2395: 2351: 2312: 2275: 2267: 2219: 2209: 2165: 2099: 2091: 2044: 1943: 1873: 1832: 1822: 1755: 1714: 1706: 1668: 1660: 1613: 1531: 1234: 1030: 379: 375: 371: 302: 293: 149: 140: 4442:
Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore PJ, Okamoto H (December 2009).
4000:
Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, et al. (March 2006).
4772: 2889:"Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin" 2887:
Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Sancar A, Oakley TH (April 2012).
1878: 1563: 1511: 1492: 1476: 1198: 917: 909: 859: 811: 688: 467: 322: 169: 4259:
Heyers D, Manns M, Luksch H, Güntürkün O, Mouritsen H (September 2007). Iwaniuk A (ed.).
4054:"Delay in feedback repression by cryptochrome 1 is required for circadian clock function" 2698:
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E (April 2007).
701:
animals diverged based on conserved genomic domains between animal cryptochromes and the
438:. In plants, blue-light photoreception can be used to cue developmental signals. Besides 4755: 4508: 4388: 4335: 4276: 4191: 4129: 3909: 3850: 3791: 3677: 3573: 3480: 3310: 3204: 3009: 2845: 2623: 2161: 2040: 1939: 1910: 1818: 4631: 4604: 4580: 4555: 4527: 4492: 4468: 4444:"Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana" 4443: 4352: 4319: 4295: 4260: 4208: 4175: 4146: 4113: 4026: 4001: 3977: 3950: 3926: 3893: 3748: 3723: 3694: 3661: 3270: 3243: 3073: 3048: 2973: 2946: 2913: 2888: 2864: 2829: 2640: 2607: 2457: 2432: 2280: 2255: 1673: 1648: 1617: 1579: 1553: 1248:
Cryptochrome, like many genes involved in circadian rhythm, shows circadian cycling in
871: 479: 355: 4788: 3629: 3612: 3432: 3416:"The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila" 3415: 3383: 3366: 3242:
Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM (January 2008).
3160: 3143: 3047:
Klarsfeld A, Malpel S, Michard-Vanhée C, Picot M, Chélot E, Rouyer F (February 2004).
2104: 2080:"Characterization of photolyase/blue-light receptor homologs in mouse and human cells" 2079: 1978:"CRY1 cryptochrome circadian regulator 1 [Homo sapiens (human)] - Gene - NCBI" 1837: 1802: 635:. These findings led researchers to conclude that the cryptochrome protein encoded by 4964: 4934: 4817: 4225: 3869: 3834: 3810: 3775: 3499: 3464: 3142:
Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M (May 2000).
2592: 2493: 2417: 1803:"Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana" 1315: 1015: 604: 359: 3646: 3597: 3400: 3191:
Reppert SM, Weaver DR (August 2002). "Coordination of circadian timing in mammals".
3177: 3125: 3033: 2606:
Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K (June 2014).
2064: 1777: 1633: 1556:. Cryptochromes are also thought to be essential for the light-dependent ability of 1157:
genes exhibit differentially altered free running periods, but are still capable of
611:
proteins in photoreceptor cells. Despite the arrhythmicity of these protein levels,
4863: 4087: 3449: 3336: 3228: 3064: 1963: 1895: 1423: 921: 807: 781: 710: 697: 555: 513: 459: 455: 439: 394: 3739: 3109: 2576: 2338:
Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, et al. (May 2011).
2078:
Kobayashi K, Kanno S, Smit B, van der Horst GT, Takao M, Yasui A (November 1998).
1744:"Phylogenetic and Functional Classification of the Photolyase/Cryptochrome Family" 584:
gene similarly encodes a flavoprotein without photolyase activity that also binds
4412: 4285: 3967: 3535: 3260: 2169: 2048: 888:
is still poorly understood. Cryptochromes are known to possess two chromophores:
269: 116: 4778: 4655: 4052:
Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (January 2011).
2196:
Worthington EN, Kavakli IH, Berrocal-Tito G, Bondo BE, Sancar A (October 2003).
1356:
encodes the CRY1 protein which is a mammalian circadian photoreceptor. In mice,
803: 792: 785: 764: 760: 740: 632: 588: 564: 388: 332: 179: 4775:, by Steven M. Reppert, Department of Neurobiology, University of Massachusetts 4497:
Proceedings of the National Academy of Sciences of the United States of America
4199: 4137: 4070: 4053: 3839:
Proceedings of the National Academy of Sciences of the United States of America
3780:
Proceedings of the National Academy of Sciences of the United States of America
3722:
Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N (June 2010).
3469:
Proceedings of the National Academy of Sciences of the United States of America
2834:
Proceedings of the National Academy of Sciences of the United States of America
2739:
Song SH, Oztürk N, Denaro TR, Arat NO, Kao YT, Zhu H, et al. (June 2007).
2558:"Searching for the mechanism of signalling by plant photoreceptor cryptochrome" 2400: 2383: 1807:
Proceedings of the National Academy of Sciences of the United States of America
1460:
section of the gene. It causes a delay by increasing the affinity of CLOCK and
970:•. Recently, researchers have observed that oxidized FAD is readily reduced to 4914: 4396: 3319: 3294: 1558: 1472: 1448:
There is evidence that CRY1 can play a role in how sleep-wake patterns can be
1375: 1202: 1089: 1068: 1022: 880: 827: 748: 722: 600: 573: 554:, cryptochromes no longer retain this original enzymatic activity. By using a 522: 498: 490: 435: 276: 123: 3489: 2963: 2448: 2271: 2095: 1625: 1386:
Normal mammalian circadian rhythm relies critically on delayed expression of
4621: 4517: 3917: 3800: 3685: 3581: 3293:
Zhu H, Yuan Q, Briscoe AD, Froy O, Casselman A, Reppert SM (December 2005).
3017: 2854: 2608:"ATP binding turns plant cryptochrome into an efficient natural photoswitch" 1827: 1515: 1483:
leads to effects on DNA repair networks, including mismatch repair, UV, and
1225: 1113: 819: 551: 510: 431: 404: 4739: 4701: 4640: 4589: 4571: 4536: 4477: 4459: 4404: 4361: 4304: 4217: 4155: 4079: 4035: 3986: 3935: 3878: 3859: 3833:
Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A (December 2000).
3757: 3703: 3589: 3543: 3508: 3328: 3279: 3220: 3169: 3082: 3025: 2982: 2922: 2873: 2807: 2798: 2781: 2766: 2757: 2740: 2725: 2716: 2699: 2684: 2649: 2584: 2542: 2501: 2466: 2409: 2365: 2289: 2233: 2214: 2197: 2177: 1887: 1846: 1769: 1710: 1682: 721:
All members of the flavoprotein superfamily have the characteristics of an
4428: 3819: 3638: 3441: 3392: 3117: 2324: 2113: 2056: 1955: 1728: 932:
molecule and thereby also the protein C-terminal domain, which covers the
572:
gene encoded a flavoprotein without photolyase activity and with a unique
4828: 4731: 3662:"CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate" 2382:
Zhong M, Zeng B, Tang D, Yang J, Qu L, Yan J, et al. (August 2021).
2356: 2339: 1977: 1449: 1415: 281: 128: 4343: 4320:"Cryptochrome mediates light-dependent magnetosensitivity in Drosophila" 4002:"Feedback repression is required for mammalian circadian clock function" 3212: 2533: 2516: 4859: 4822: 4812: 4693: 2904: 1209: 796: 664:
was also necessary for the entrainment of mammalian circadian rhythms.
447: 423: 39: 2676: 2631: 2316: 2224: 1795: 1760: 1743: 1719: 1664: 257: 104: 1947: 1584: 1566:. Magnetic fields were once reported to affect cryptochromes also in 1488: 1442: 1130: 1076:
gene activation by 430 nm blue light. The PMTR was inhibited in
1052: 1041: 897: 889: 693: 585: 543:
that are activated by light and involved in the repair of UV-induced
540: 462:, initial studies on yeast have capitalized on the potential of CRY2 367: 363: 264: 111: 4242:, Mouritsen H (April 2022). "The Quantum Nature of Bird Migration". 2431:
Mao Z, Wei X, Li L, Xu P, Zhang J, Wang W, et al. (July 2021).
505:
did not exhibit photolyase activity and were instead a new class of
17: 4017: 1406:
mRNA production is delayed by approximately four hours relative to
615:
mutants still showed rhythmicity in overall behavior but could not
1535: 1411: 1370: 1323: 1319: 1238: 1230: 1045: 1033: 953: 905: 855: 839:
Cryptochromes receptors cause plants to respond to blue light via
706: 527: 4803:
Animated model of murine circadian pathway, including role of Cry
2828:
Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A (January 2011).
1445:
is required for restoration of circadian rhythms in these cells.
451:. These appear to enable some animals to detect magnetic fields. 442:, cryptochromes are the only proteins known to form photoinduced 4493:"Chemical magnetoreception in birds: the radical pair mechanism" 3724:"Circadian clock control of the cellular response to DNA damage" 1461: 1249: 1170: 1048: 938: 454:
Cryptochromes have been the focus of several current efforts in
412: 245: 209: 92: 4832: 3892:
Hattar S, Liao HW, Takao M, Berson DM, Yau KW (February 2002).
912:
of a certain domain in cryptochrome. This could then trigger a
3365:
Emery P, So WV, Kaneko M, Hall JC, Rosbash M (November 1998).
1379: 4318:
Gegear RJ, Casselman A, Waddell S, Reppert SM (August 2008).
1383:
human CRY1 may mediate light response in peripheral tissues.
937:
binding site at the negative regulator of photomorphogenesis
408:
organisms on which many blue-light studies were carried out.
4807:
Overview of all the structural information available in the
1297:
In mammals, cryptochrome proteins are encoded by two genes,
1116:
within the circadian clockwork. Some insects, including the
1003:•. Researchers have also recently proposed a model in which 1552:
of birds' eyes are involved in magnetic orientation during
896:(MTHF)) and flavin (in the form of FAD). Both may absorb a 434:
which represses Clock/Cycle (Bmal1) complex in insects and
1647:
Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y (January 2017).
3144:"Drosophila CRY is a deep brain circadian photoreceptor" 1544:
has been proposed for quantum magnetoreception in birds.
2780:Öztürk N, Song SH, Selby CP, Sancar A (February 2008). 2003:
CRC handbook of organic photochemistry and photobiology
1145:
exhibit little to no mRNA cycling. A point mutation in
814:
and causes subsequent stem elongation. To be specific,
3660:
Fogle KJ, Parson KG, Dahm NA, Holmes TC (March 2011).
2482:
Journal of Photochemistry and Photobiology. B, Biology
1169:
are arrhythmic in both LD and DD and always have high
643:
photoentrainment. In mammals, a protein analog of the
4550:
Biskup T, Schleicher E, Okafuji A, Link G, Hitomi K,
4047: 4045: 1514:, were severely different for participants who were 1422:
binding elements (RREs) in the gene's first intron.
4766:
Cryptochrome circadian clock in Monarch Butterflies
2191: 2189: 2187: 328: 318: 313: 292: 287: 275: 263: 251: 239: 227: 215: 205: 200: 195: 175: 165: 160: 139: 134: 122: 110: 98: 86: 74: 62: 54: 49: 32: 4799:cryptochrome 3, obtained by X-ray crystallography. 4427:(Press release). September 7, 2006. Archived from 2254:Zeng Z, Wei J, Liu Y, Zhang W, Mabe T (May 2018). 948:. The true ground state of the flavin cofactor in 4785:at the University of Illinois at Urbana-Champaign 2940: 2938: 2936: 2934: 2932: 2143: 870:Despite much research on the topic, cryptochrome 4713: 4711: 4107: 4105: 4103: 4101: 4099: 4097: 3769: 3767: 2141: 2139: 2137: 2135: 2133: 2131: 2129: 2127: 2125: 2123: 1862:"The Radical-Pair Mechanism of Magnetoreception" 759:of the CRY1 protein is primarily a right-handed 4674: 4672: 2830:"Reaction mechanism of Drosophila cryptochrome" 1604:Gressel J (1979). "Blue Light Photoreception". 358:κρυπτός χρώμα, "hidden colour") are a class of 4783:Theoretical and Computational Biophysics Group 3717: 3715: 3713: 2823: 2821: 2819: 2817: 1495:. Because of its role in DNA repair and being 862:(BR) signaling to promote photomorphogenesis. 4844: 4169: 4167: 4165: 3555: 3553: 3360: 3358: 3356: 3354: 3352: 3350: 3348: 3346: 3137: 3135: 2377: 2375: 1360:expression displays circadian rhythms in the 1326:. In this loop, CLOCK and BMAL1 proteins are 1237:firing within seconds of a light response in 1133:have altered circadian rhythms, showing that 806:is reduced by light and transported into the 728:(PHR) domain. The PHR domain can bind to the 27:Class of photoreceptors in plants and animals 8: 4425:Centre national de la recherche scientifique 2249: 2247: 2245: 2243: 44:Crystallographic structure of Cryptochrome-1 2515:Hoang N, Bouly JP, Ahmad M (January 2008). 2005:. Boca Raton: CRC Press. pp. 1381–89. 1281:also affects circadian light responses. In 599:were found to express arrhythmic levels of 344:"CRY1" redirects here. For other uses, see 4851: 4837: 4829: 4654:Chandler D, Ilia Solov'yov I, Schulten K. 928:electrostatically repel the protein-bound 310: 157: 38: 4758:at the U.S. National Library of Medicine 4630: 4620: 4579: 4526: 4516: 4467: 4351: 4294: 4284: 4207: 4145: 4069: 4025: 3976: 3966: 3925: 3868: 3858: 3809: 3799: 3747: 3693: 3628: 3498: 3488: 3431: 3382: 3318: 3269: 3259: 3159: 3072: 2972: 2962: 2912: 2863: 2853: 2797: 2756: 2715: 2639: 2532: 2456: 2399: 2355: 2279: 2223: 2213: 2103: 1877: 1836: 1826: 1759: 1718: 1672: 627:were still functioning effectively. When 466:to control cellular processes, including 4720:Journal of the American Chemical Society 2665:Journal of the American Chemical Society 1402:mRNA levels have almost the same phase, 795:and phototropins, cryptochromes are not 4448:Journal of the Royal Society, Interface 1596: 1452:through families. There is a mutation, 1414:and D-box elements in the promoter and 818:is responsible for blue-light-mediated 568:plant, researchers determined that the 3613:"Molecular bases for circadian clocks" 1188:, cryptochrome is only encoded by one 944:A different mechanism may function in 192: 29: 1879:10.1146/annurev-biophys-032116-094545 1499:, further research can use CRY1 as a 908:to FADH, which probably mediates the 7: 4491:Rodgers CT, Hore PJ (January 2009). 1915:. New York: D. Appleton and Company. 1433:double-knockout cells with only the 4925:Methylenetetrahydrofolate reductase 4656:"Cryptochrome and Magnetic Sensing" 4609:The Journal of Biological Chemistry 2893:The Journal of Experimental Biology 2786:The Journal of Biological Chemistry 2745:The Journal of Biological Chemistry 2704:The Journal of Biological Chemistry 2556:Müller P, Bouly JP (January 2015). 2202:The Journal of Biological Chemistry 1040:lacks a nervous system, like other 1860:Hore PJ, Mouritsen H (July 2016). 1618:10.1111/j.1751-1097.1979.tb07209.x 1055:either, despite having many other 660:expression, researchers concluded 25: 4779:Cryptochrome and Magnetic Sensing 3774:Miyamoto Y, Sancar A (May 1998). 1466:delayed sleep–wake phase disorder 1137:affects the circadian pacemaker. 894:5,10-methenyltetrahydrofolic acid 780:In plants, cryptochromes mediate 509:photoreceptor hypothesized to be 382:in a number of species. The name 2945:Margiotta JF, Howard MJ (2020). 2494:10.1016/j.jphotobiol.2006.03.007 1522:when compared to the wild type. 1471:CRY1 is also a key modulator in 1120:, have both a mammal-like and a 499:deoxyribodipyrimidine photolyase 4603:Müller P, Ahmad M (June 2011). 3295:"The two CRYs of the butterfly" 1912:The Power of Movement in Plants 1748:Photochemistry and Photobiology 1653:Photochemistry and Photobiology 1606:Photochemistry and Photobiology 1437:promoter (causing constitutive 1161:. However, mice that lack both 4910:Dihydrolipoamide dehydrogenase 4821:(Mouse Cryptochrome-1) at the 3065:10.1523/JNEUROSCI.3661-03.2004 2344:Journal of Experimental Botany 652:expression is observed in the 1: 4421:"The "sixth sense" of plants" 3740:10.1016/j.febslet.2010.03.017 3630:10.1016/S0092-8674(00)80566-8 3433:10.1016/S0092-8674(00)81638-4 3384:10.1016/S0092-8674(00)81637-2 3161:10.1016/S0896-6273(00)81181-2 3110:10.1126/science.282.5393.1488 2577:10.1016/j.febslet.2014.12.008 1574:Cryptochrome forms a pair of 1394:promoter. Whereas rhythms in 1330:, which together bind to the 1274:and posttranslational level. 4976:Genes on human chromosome 11 4971:Genes on human chromosome 12 4286:10.1371/journal.pone.0000937 3968:10.1371/journal.pbio.0060160 3536:10.1126/science.286.5440.768 3261:10.1371/journal.pbio.0060004 2170:10.1126/science.284.5415.760 2049:10.1126/science.272.5258.109 1390:following activation of the 1088:proteins were found in iris 520:homologs were identified in 3053:The Journal of Neuroscience 1866:Annual Review of Biophysics 1057:G-protein-coupled receptors 730:flavin adenine dinucleotide 374:. They are involved in the 5012: 4200:10.1038/s41467-020-20513-5 4138:10.1038/s41598-021-99418-2 4071:10.1016/j.cell.2010.12.019 3611:Dunlap JC (January 1999). 2401:10.1016/j.molp.2021.05.011 1529: 1328:transcriptional activators 1044:. And it does not have an 1021:Also the ring eyes of the 916:chain, possibly affecting 380:sensing of magnetic fields 343: 4890:Butyryl CoA dehydrogenase 4885:Apoptosis-inducing factor 4870: 4397:10.1007/s00425-006-0383-0 3320:10.1016/j.cub.2005.11.030 1742:Ozturk N (January 2017). 309: 156: 37: 4760:Medical Subject Headings 3490:10.1073/pnas.96.21.12114 2964:10.3389/fphys.2020.00128 2272:10.1021/acsomega.8b00645 1520:delayed metabolic output 1398:promoter activation and 1027:Amphimedon queenslandica 430:whereas CRY2 is a clock 4920:Methemoglobin reductase 4905:Cytokinin dehydrogenase 4900:Cytochrome b5 reductase 4682:Chemical Communications 4622:10.1074/jbc.M111.228940 4518:10.1073/pnas.0711968106 3918:10.1126/science.1069609 3801:10.1073/pnas.95.11.6097 3686:10.1126/science.1199702 3582:10.1126/science.1096973 3018:10.1126/science.1101484 2951:Frontiers in Physiology 2855:10.1073/pnas.1017093108 1828:10.1073/pnas.0404851101 1362:suprachiasmatic nucleus 1252:and protein levels. In 1051:in its fully sequenced 810:, where it affects the 654:suprachiasmatic nucleus 4880:Acyl CoA dehydrogenase 4572:10.1002/anie.200803102 4460:10.1098/rsif.2008.0519 3860:10.1073/pnas.260498597 2799:10.1074/jbc.M708612200 2758:10.1074/jbc.M702874200 2717:10.1074/jbc.M608872200 2449:10.1093/plcell/koab091 2215:10.1074/jbc.m305792200 2096:10.1093/nar/26.22.5086 2084:Nucleic Acids Research 1711:10.1006/geno.1996.0539 1545: 1542:radical pair mechanism 558:labeled allele of the 370:that are sensitive to 4950:Thioredoxin reductase 4875:Acetolactate synthase 4180:Nature Communications 1550:photoreceptor neurons 1539: 346:CRY1 (disambiguation) 4732:10.1021/jacs.5b10938 1982:www.ncbi.nlm.nih.gov 1568:Arabidopsis thaliana 1479:checkpoint, and the 886:Arabidopsis thaliana 822:and leaf expansion. 677:convergent evolution 534:Evolutionary history 516:. In 1996 and 1998, 486:Arabidopsis thaliana 4986:Biological pigments 4795:; 3-D structure of 4688:(85): 15502–15505. 4615:(24): 21033–21040. 4509:2009PNAS..106..353R 4389:2007Plant.225..615A 4344:10.1038/nature07183 4336:2008Natur.454.1014G 4330:(7207): 1014–1018. 4277:2007PLoSO...2..937H 4245:Scientific American 4192:2021NatCo..12..401S 4130:2021NatSR..1120103S 3910:2002Sci...295.1065H 3904:(5557): 1065–1070. 3851:2000PNAS...9714697S 3845:(26): 14697–14702. 3792:1998PNAS...95.6097M 3678:2011Sci...331.1409F 3672:(6023): 1409–1413. 3574:2004Sci...304.1503B 3568:(5676): 1503–1506. 3481:1999PNAS...9612114V 3475:(21): 12114–12119. 3311:2005CBio...15.R953Z 3213:10.1038/nature00965 3205:2002Natur.418..935R 3104:(5393): 1488–1490. 3010:2004Sci...306..129T 2899:(Pt 8): 1278–1286. 2846:2011PNAS..108..516O 2751:(24): 17608–17612. 2710:(17): 13011–13021. 2671:(37): 12974–12986. 2624:2014NatSR...4E5175M 2311:(44): 13871–13877. 2208:(40): 39143–39154. 2162:1999Sci...284..760C 2041:1996Sci...272..109T 1940:1993Natur.366..162A 1819:2004PNAS..10112142B 1813:(33): 12142–12147. 1485:nucleotide excision 914:signal transduction 757:secondary structure 726:photolyase homology 673:sequence similarity 4930:NADH dehydrogenase 4771:2011-11-21 at the 4694:10.1039/C5CC06276D 4554:, Weber S (2009). 4118:Scientific Reports 2905:10.1242/jeb.067140 2612:Scientific Reports 2357:10.1093/jxb/erq450 1546: 1501:therapeutic target 1277:Overexpression of 1014:is excited to its 841:photomorphogenesis 835:Photomorphogenesis 826:overexpression in 749:DNA repair enzymes 633:environmental cues 464:heterodimerization 386:was proposed as a 4991:Sensory receptors 4958: 4957: 4945:Sarcosine oxidase 4940:Nitrate reductase 4793:Protein Data Bank 4560:Angewandte Chemie 4454:(41): 1193–1205. 3786:(11): 6097–6102. 3734:(12): 2618–2625. 3530:(5440): 768–771. 3305:(23): R953–R954. 3199:(6901): 935–941. 3004:(5693): 129–131. 2677:10.1021/ja506084f 2632:10.1038/srep05175 2534:10.1093/mp/ssm008 2317:10.1021/bi962209o 2156:(5415): 760–765. 2090:(22): 5086–5092. 2035:(5258): 109–112. 2012:978-0-8493-1348-6 1934:(6451): 162–166. 1909:Darwin C (1881). 1761:10.1111/php.12676 1665:10.1111/php.12663 1571:magnetic fields. 1508:metabolic outputs 1481:depletion of CRY1 1118:monarch butterfly 1096:-mediated PMTRs. 876:phototransduction 753:Ramachandran plot 639:is necessary for 376:circadian rhythms 342: 341: 338: 337: 189: 188: 185: 184: 16:(Redirected from 5003: 4853: 4846: 4839: 4830: 4744: 4743: 4726:(6): 1904–1915. 4715: 4706: 4705: 4676: 4667: 4666: 4664: 4663: 4651: 4645: 4644: 4634: 4624: 4600: 4594: 4593: 4583: 4547: 4541: 4540: 4530: 4520: 4488: 4482: 4481: 4471: 4439: 4433: 4432: 4416: 4372: 4366: 4365: 4355: 4315: 4309: 4308: 4298: 4288: 4256: 4250: 4249: 4236: 4230: 4229: 4211: 4171: 4160: 4159: 4149: 4109: 4092: 4091: 4073: 4049: 4040: 4039: 4029: 3997: 3991: 3990: 3980: 3970: 3946: 3940: 3939: 3929: 3889: 3883: 3882: 3872: 3862: 3830: 3824: 3823: 3813: 3803: 3771: 3762: 3761: 3751: 3719: 3708: 3707: 3697: 3657: 3651: 3650: 3632: 3608: 3602: 3601: 3557: 3548: 3547: 3519: 3513: 3512: 3502: 3492: 3460: 3454: 3453: 3435: 3411: 3405: 3404: 3386: 3362: 3341: 3340: 3322: 3290: 3284: 3283: 3273: 3263: 3239: 3233: 3232: 3188: 3182: 3181: 3163: 3139: 3130: 3129: 3093: 3087: 3086: 3076: 3059:(6): 1468–1477. 3044: 3038: 3037: 2993: 2987: 2986: 2976: 2966: 2942: 2927: 2926: 2916: 2884: 2878: 2877: 2867: 2857: 2825: 2812: 2811: 2801: 2792:(6): 3256–3263. 2777: 2771: 2770: 2760: 2736: 2730: 2729: 2719: 2695: 2689: 2688: 2660: 2654: 2653: 2643: 2603: 2597: 2596: 2562: 2553: 2547: 2546: 2536: 2512: 2506: 2505: 2477: 2471: 2470: 2460: 2443:(6): 1961–1979. 2428: 2422: 2421: 2403: 2394:(8): 1328–1342. 2379: 2370: 2369: 2359: 2350:(8): 2731–2744. 2335: 2329: 2328: 2300: 2294: 2293: 2283: 2266:(5): 4752–4759. 2251: 2238: 2237: 2227: 2217: 2193: 2182: 2181: 2145: 2118: 2117: 2107: 2075: 2069: 2068: 2023: 2017: 2016: 1998: 1992: 1991: 1989: 1988: 1974: 1968: 1967: 1948:10.1038/366162a0 1923: 1917: 1916: 1906: 1900: 1899: 1881: 1857: 1851: 1850: 1840: 1830: 1798: 1788: 1782: 1781: 1763: 1739: 1733: 1732: 1722: 1693: 1687: 1686: 1676: 1644: 1638: 1637: 1601: 1578:with correlated 1532:Magnetoreception 1526:Magnetoreception 1235:action potential 1159:photoentrainment 1100:Circadian rhythm 1038:A. queenslandica 1013: 1012: 1011: 1002: 1001: 1000: 991: 990: 989: 980: 979: 978: 969: 968: 967: 892:(in the form of 860:brassinosterioid 738:light-harvesting 530:, respectively. 311: 193: 158: 42: 30: 21: 5011: 5010: 5006: 5005: 5004: 5002: 5001: 5000: 4996:Plant cognition 4961: 4960: 4959: 4954: 4866: 4857: 4773:Wayback Machine 4752: 4747: 4717: 4716: 4709: 4678: 4677: 4670: 4661: 4659: 4653: 4652: 4648: 4602: 4601: 4597: 4549: 4548: 4544: 4490: 4489: 4485: 4441: 4440: 4436: 4419: 4417: 4374: 4373: 4369: 4317: 4316: 4312: 4258: 4257: 4253: 4238: 4237: 4233: 4173: 4172: 4163: 4111: 4110: 4095: 4051: 4050: 4043: 4006:Nature Genetics 3999: 3998: 3994: 3948: 3947: 3943: 3891: 3890: 3886: 3832: 3831: 3827: 3773: 3772: 3765: 3721: 3720: 3711: 3659: 3658: 3654: 3610: 3609: 3605: 3559: 3558: 3551: 3521: 3520: 3516: 3462: 3461: 3457: 3413: 3412: 3408: 3364: 3363: 3344: 3299:Current Biology 3292: 3291: 3287: 3241: 3240: 3236: 3190: 3189: 3185: 3141: 3140: 3133: 3095: 3094: 3090: 3046: 3045: 3041: 2995: 2994: 2990: 2944: 2943: 2930: 2886: 2885: 2881: 2827: 2826: 2815: 2779: 2778: 2774: 2738: 2737: 2733: 2697: 2696: 2692: 2662: 2661: 2657: 2605: 2604: 2600: 2560: 2555: 2554: 2550: 2521:Molecular Plant 2514: 2513: 2509: 2479: 2478: 2474: 2430: 2429: 2425: 2388:Molecular Plant 2381: 2380: 2373: 2337: 2336: 2332: 2302: 2301: 2297: 2253: 2252: 2241: 2195: 2194: 2185: 2147: 2146: 2121: 2077: 2076: 2072: 2025: 2024: 2020: 2013: 2000: 1999: 1995: 1986: 1984: 1976: 1975: 1971: 1925: 1924: 1920: 1908: 1907: 1903: 1859: 1858: 1854: 1800: 1790: 1789: 1785: 1741: 1740: 1736: 1695: 1694: 1690: 1646: 1645: 1641: 1603: 1602: 1598: 1594: 1564:magnetic fields 1534: 1528: 1512:bowel movements 1497:pro-tumorigenic 1493:prostate cancer 1458:auto-inhibitory 1351: 1312: 1295: 1216:neurons in the 1182: 1102: 1065: 1031:photo-sensitive 1010: 1008: 1007: 1006: 1004: 999: 997: 996: 995: 993: 988: 986: 985: 984: 982: 977: 975: 974: 973: 971: 966: 964: 963: 962: 960: 918:gene regulation 910:phosphorylation 868: 837: 812:turgor pressure 778: 773: 755:shows that the 719: 689:Vibrio cholerae 621:pacemaker cells 578:Drosophila cry- 574:C-terminal tail 536: 476: 468:gene expression 349: 45: 28: 23: 22: 15: 12: 11: 5: 5009: 5007: 4999: 4998: 4993: 4988: 4983: 4978: 4973: 4963: 4962: 4956: 4955: 4953: 4952: 4947: 4942: 4937: 4932: 4927: 4922: 4917: 4912: 4907: 4902: 4897: 4892: 4887: 4882: 4877: 4871: 4868: 4867: 4858: 4856: 4855: 4848: 4841: 4833: 4827: 4826: 4805: 4800: 4786: 4776: 4763: 4751: 4750:External links 4748: 4746: 4745: 4707: 4668: 4646: 4595: 4566:(2): 404–407. 4542: 4503:(2): 353–360. 4483: 4434: 4431:on 2011-07-16. 4383:(3): 615–624. 4367: 4310: 4251: 4231: 4161: 4093: 4064:(2): 268–281. 4041: 4018:10.1038/ng1745 4012:(3): 312–319. 3992: 3941: 3884: 3825: 3763: 3709: 3652: 3623:(2): 271–290. 3603: 3549: 3514: 3455: 3426:(5): 681–692. 3406: 3377:(5): 669–679. 3342: 3285: 3234: 3183: 3154:(2): 493–504. 3131: 3088: 3039: 2988: 2928: 2879: 2840:(2): 516–521. 2813: 2772: 2731: 2690: 2655: 2598: 2571:(2): 189–192. 2548: 2507: 2472: 2437:The Plant Cell 2423: 2371: 2330: 2295: 2239: 2183: 2119: 2070: 2018: 2011: 1993: 1969: 1918: 1901: 1872:(1): 299–344. 1852: 1783: 1754:(1): 104–111. 1734: 1705:(2): 177–182. 1688: 1659:(1): 112–127. 1639: 1612:(6): 749–754. 1595: 1593: 1590: 1530:Main article: 1527: 1524: 1510:, measured by 1426:of arrhythmic 1350: 1345: 1311: 1306: 1294: 1291: 1181: 1175: 1101: 1098: 1064: 1061: 1009: 998: 987: 976: 965: 872:photoreception 867: 864: 836: 833: 777: 774: 772: 769: 718: 715: 582:Drosophila cry 535: 532: 480:Charles Darwin 475: 472: 398:nature of the 392:combining the 340: 339: 336: 335: 330: 326: 325: 320: 316: 315: 307: 306: 296: 290: 289: 285: 284: 279: 273: 272: 267: 261: 260: 255: 249: 248: 243: 237: 236: 231: 225: 224: 219: 213: 212: 207: 203: 202: 198: 197: 196:Cryptochrome-2 187: 186: 183: 182: 177: 173: 172: 167: 163: 162: 154: 153: 143: 137: 136: 132: 131: 126: 120: 119: 114: 108: 107: 102: 96: 95: 90: 84: 83: 78: 72: 71: 66: 60: 59: 56: 52: 51: 47: 46: 43: 35: 34: 33:Cryptochrome-1 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5008: 4997: 4994: 4992: 4989: 4987: 4984: 4982: 4979: 4977: 4974: 4972: 4969: 4968: 4966: 4951: 4948: 4946: 4943: 4941: 4938: 4936: 4935:NADPH oxidase 4933: 4931: 4928: 4926: 4923: 4921: 4918: 4916: 4913: 4911: 4908: 4906: 4903: 4901: 4898: 4896: 4893: 4891: 4888: 4886: 4883: 4881: 4878: 4876: 4873: 4872: 4869: 4865: 4864:flavoproteins 4861: 4854: 4849: 4847: 4842: 4840: 4835: 4834: 4831: 4824: 4820: 4819: 4814: 4810: 4806: 4804: 4801: 4798: 4794: 4790: 4787: 4784: 4780: 4777: 4774: 4770: 4767: 4764: 4761: 4757: 4754: 4753: 4749: 4741: 4737: 4733: 4729: 4725: 4721: 4714: 4712: 4708: 4703: 4699: 4695: 4691: 4687: 4683: 4675: 4673: 4669: 4657: 4650: 4647: 4642: 4638: 4633: 4628: 4623: 4618: 4614: 4610: 4606: 4599: 4596: 4591: 4587: 4582: 4577: 4573: 4569: 4565: 4561: 4557: 4553: 4546: 4543: 4538: 4534: 4529: 4524: 4519: 4514: 4510: 4506: 4502: 4498: 4494: 4487: 4484: 4479: 4475: 4470: 4465: 4461: 4457: 4453: 4449: 4445: 4438: 4435: 4430: 4426: 4422: 4414: 4410: 4406: 4402: 4398: 4394: 4390: 4386: 4382: 4378: 4371: 4368: 4363: 4359: 4354: 4349: 4345: 4341: 4337: 4333: 4329: 4325: 4321: 4314: 4311: 4306: 4302: 4297: 4292: 4287: 4282: 4278: 4274: 4270: 4266: 4262: 4255: 4252: 4247: 4246: 4241: 4235: 4232: 4227: 4223: 4219: 4215: 4210: 4205: 4201: 4197: 4193: 4189: 4185: 4181: 4177: 4170: 4168: 4166: 4162: 4157: 4153: 4148: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4108: 4106: 4104: 4102: 4100: 4098: 4094: 4089: 4085: 4081: 4077: 4072: 4067: 4063: 4059: 4055: 4048: 4046: 4042: 4037: 4033: 4028: 4023: 4019: 4015: 4011: 4007: 4003: 3996: 3993: 3988: 3984: 3979: 3974: 3969: 3964: 3960: 3956: 3952: 3945: 3942: 3937: 3933: 3928: 3923: 3919: 3915: 3911: 3907: 3903: 3899: 3895: 3888: 3885: 3880: 3876: 3871: 3866: 3861: 3856: 3852: 3848: 3844: 3840: 3836: 3829: 3826: 3821: 3817: 3812: 3807: 3802: 3797: 3793: 3789: 3785: 3781: 3777: 3770: 3768: 3764: 3759: 3755: 3750: 3745: 3741: 3737: 3733: 3729: 3725: 3718: 3716: 3714: 3710: 3705: 3701: 3696: 3691: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3656: 3653: 3648: 3644: 3640: 3636: 3631: 3626: 3622: 3618: 3614: 3607: 3604: 3599: 3595: 3591: 3587: 3583: 3579: 3575: 3571: 3567: 3563: 3556: 3554: 3550: 3545: 3541: 3537: 3533: 3529: 3525: 3518: 3515: 3510: 3506: 3501: 3496: 3491: 3486: 3482: 3478: 3474: 3470: 3466: 3459: 3456: 3451: 3447: 3443: 3439: 3434: 3429: 3425: 3421: 3417: 3410: 3407: 3402: 3398: 3394: 3390: 3385: 3380: 3376: 3372: 3368: 3361: 3359: 3357: 3355: 3353: 3351: 3349: 3347: 3343: 3338: 3334: 3330: 3326: 3321: 3316: 3312: 3308: 3304: 3300: 3296: 3289: 3286: 3281: 3277: 3272: 3267: 3262: 3257: 3253: 3249: 3245: 3238: 3235: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3198: 3194: 3187: 3184: 3179: 3175: 3171: 3167: 3162: 3157: 3153: 3149: 3145: 3138: 3136: 3132: 3127: 3123: 3119: 3115: 3111: 3107: 3103: 3099: 3092: 3089: 3084: 3080: 3075: 3070: 3066: 3062: 3058: 3054: 3050: 3043: 3040: 3035: 3031: 3027: 3023: 3019: 3015: 3011: 3007: 3003: 2999: 2992: 2989: 2984: 2980: 2975: 2970: 2965: 2960: 2956: 2952: 2948: 2941: 2939: 2937: 2935: 2933: 2929: 2924: 2920: 2915: 2910: 2906: 2902: 2898: 2894: 2890: 2883: 2880: 2875: 2871: 2866: 2861: 2856: 2851: 2847: 2843: 2839: 2835: 2831: 2824: 2822: 2820: 2818: 2814: 2809: 2805: 2800: 2795: 2791: 2787: 2783: 2776: 2773: 2768: 2764: 2759: 2754: 2750: 2746: 2742: 2735: 2732: 2727: 2723: 2718: 2713: 2709: 2705: 2701: 2694: 2691: 2686: 2682: 2678: 2674: 2670: 2666: 2659: 2656: 2651: 2647: 2642: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2602: 2599: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2566: 2559: 2552: 2549: 2544: 2540: 2535: 2530: 2526: 2522: 2518: 2511: 2508: 2503: 2499: 2495: 2491: 2487: 2483: 2476: 2473: 2468: 2464: 2459: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2424: 2419: 2415: 2411: 2407: 2402: 2397: 2393: 2389: 2385: 2378: 2376: 2372: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2334: 2331: 2326: 2322: 2318: 2314: 2310: 2306: 2299: 2296: 2291: 2287: 2282: 2277: 2273: 2269: 2265: 2261: 2257: 2250: 2248: 2246: 2244: 2240: 2235: 2231: 2226: 2221: 2216: 2211: 2207: 2203: 2199: 2192: 2190: 2188: 2184: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2144: 2142: 2140: 2138: 2136: 2134: 2132: 2130: 2128: 2126: 2124: 2120: 2115: 2111: 2106: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2022: 2019: 2014: 2008: 2004: 1997: 1994: 1983: 1979: 1973: 1970: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1922: 1919: 1914: 1913: 1905: 1902: 1897: 1893: 1889: 1885: 1880: 1875: 1871: 1867: 1863: 1856: 1853: 1848: 1844: 1839: 1834: 1829: 1824: 1820: 1816: 1812: 1808: 1804: 1797: 1793: 1787: 1784: 1779: 1775: 1771: 1767: 1762: 1757: 1753: 1749: 1745: 1738: 1735: 1730: 1726: 1721: 1716: 1712: 1708: 1704: 1700: 1692: 1689: 1684: 1680: 1675: 1670: 1666: 1662: 1658: 1654: 1650: 1643: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1600: 1597: 1591: 1589: 1586: 1581: 1577: 1572: 1569: 1565: 1561: 1560: 1555: 1551: 1543: 1538: 1533: 1525: 1523: 1521: 1517: 1513: 1509: 1504: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1469: 1467: 1463: 1459: 1455: 1451: 1446: 1444: 1440: 1436: 1432: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1384: 1381: 1377: 1373: 1372: 1365: 1363: 1359: 1355: 1349: 1346: 1344: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1310: 1307: 1305: 1304: 1300: 1292: 1290: 1288: 1284: 1280: 1275: 1273: 1272:translational 1268: 1264: 1259: 1255: 1251: 1246: 1244: 1240: 1236: 1232: 1227: 1223: 1219: 1215: 1211: 1206: 1204: 1200: 1195: 1191: 1187: 1180: 1176: 1174: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1141:with mutated 1140: 1136: 1132: 1129: 1125: 1123: 1119: 1115: 1112: 1111:transcription 1108: 1099: 1097: 1095: 1091: 1087: 1083: 1079: 1075: 1070: 1063:Iris function 1062: 1060: 1058: 1054: 1050: 1047: 1043: 1039: 1035: 1032: 1028: 1024: 1019: 1017: 958: 955: 951: 947: 942: 940: 935: 931: 925: 923: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 882: 877: 873: 866:Light capture 865: 863: 861: 857: 851: 849: 844: 842: 834: 832: 829: 825: 821: 817: 813: 809: 805: 802: 798: 794: 789: 787: 783: 775: 770: 768: 766: 762: 758: 754: 750: 746: 745:noncovalently 742: 739: 735: 731: 727: 724: 716: 714: 712: 708: 704: 699: 695: 691: 690: 684: 682: 678: 674: 670: 665: 663: 659: 655: 651: 646: 642: 638: 634: 630: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 587: 583: 579: 575: 571: 567: 566: 561: 557: 553: 548: 546: 542: 533: 531: 529: 525: 524: 519: 515: 514:photopigments 512: 508: 504: 500: 496: 492: 488: 487: 481: 473: 471: 469: 465: 461: 457: 452: 450: 449: 445: 444:radical-pairs 441: 437: 433: 429: 428:photoreceptor 425: 421: 417: 414: 409: 407: 406: 401: 400:photoreceptor 397: 396: 391: 390: 385: 381: 377: 373: 369: 365: 361: 360:flavoproteins 357: 353: 352:Cryptochromes 347: 334: 331: 327: 324: 321: 317: 312: 308: 305: 304: 300: 297: 295: 291: 286: 283: 280: 278: 274: 271: 268: 266: 262: 259: 256: 254: 250: 247: 244: 242: 238: 235: 232: 230: 226: 223: 220: 218: 214: 211: 208: 204: 199: 194: 191: 181: 178: 174: 171: 168: 164: 159: 155: 152: 151: 147: 144: 142: 138: 133: 130: 127: 125: 121: 118: 115: 113: 109: 106: 103: 101: 97: 94: 91: 89: 85: 82: 79: 77: 73: 70: 67: 65: 61: 57: 53: 48: 41: 36: 31: 19: 4895:Cryptochrome 4894: 4816: 4796: 4782: 4756:cryptochrome 4723: 4719: 4685: 4681: 4660:. Retrieved 4649: 4612: 4608: 4598: 4563: 4559: 4545: 4500: 4496: 4486: 4451: 4447: 4437: 4429:the original 4424: 4380: 4376: 4370: 4327: 4323: 4313: 4268: 4264: 4254: 4243: 4234: 4183: 4179: 4124:(1): 20103. 4121: 4117: 4061: 4057: 4009: 4005: 3995: 3958: 3955:PLOS Biology 3954: 3944: 3901: 3897: 3887: 3842: 3838: 3828: 3783: 3779: 3731: 3728:FEBS Letters 3727: 3669: 3665: 3655: 3620: 3616: 3606: 3565: 3561: 3527: 3523: 3517: 3472: 3468: 3458: 3423: 3419: 3409: 3374: 3370: 3302: 3298: 3288: 3251: 3248:PLOS Biology 3247: 3237: 3196: 3192: 3186: 3151: 3147: 3101: 3097: 3091: 3056: 3052: 3042: 3001: 2997: 2991: 2954: 2950: 2896: 2892: 2882: 2837: 2833: 2789: 2785: 2775: 2748: 2744: 2734: 2707: 2703: 2693: 2668: 2664: 2658: 2615: 2611: 2601: 2568: 2565:FEBS Letters 2564: 2551: 2527:(1): 68–74. 2524: 2520: 2510: 2485: 2481: 2475: 2440: 2436: 2426: 2391: 2387: 2347: 2343: 2333: 2308: 2305:Biochemistry 2304: 2298: 2263: 2259: 2205: 2201: 2153: 2149: 2087: 2083: 2073: 2032: 2028: 2021: 2002: 1996: 1985:. Retrieved 1981: 1972: 1931: 1927: 1921: 1911: 1904: 1869: 1865: 1855: 1810: 1806: 1786: 1751: 1747: 1737: 1702: 1698: 1691: 1656: 1652: 1642: 1609: 1605: 1599: 1573: 1567: 1557: 1547: 1505: 1470: 1447: 1438: 1434: 1430: 1427: 1424:Transfection 1407: 1403: 1399: 1395: 1391: 1387: 1385: 1369: 1366: 1357: 1353: 1352: 1347: 1339: 1335: 1316:Period (PER) 1313: 1308: 1302: 1298: 1296: 1286: 1282: 1278: 1276: 1266: 1262: 1257: 1253: 1247: 1242: 1221: 1217: 1207: 1193: 1189: 1185: 1183: 1178: 1166: 1162: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1126: 1121: 1106: 1103: 1093: 1085: 1081: 1077: 1073: 1066: 1037: 1026: 1020: 949: 945: 943: 926: 922:cell nucleus 901: 885: 879: 869: 852: 847: 845: 838: 823: 815: 808:cell nucleus 793:phytochromes 790: 786:phototropins 782:phototropism 779: 776:Phototropism 720: 702: 687: 685: 680: 666: 661: 657: 649: 644: 640: 636: 628: 624: 612: 596: 592: 589:chromophores 581: 577: 569: 563: 562:gene in the 559: 549: 537: 521: 517: 484: 477: 470:, by light. 460:transfection 458:. Employing 456:optogenetics 453: 446: 440:chlorophylls 419: 415: 410: 403: 393: 387: 384:cryptochrome 383: 351: 350: 301: 190: 148: 4797:Arabidopsis 4271:(9): e937. 3961:(7): e160. 2488:(1): 1–16. 902:Arabidopsis 848:Arabidopsis 804:chromophore 765:beta sheets 761:alpha helix 741:chromophore 703:Arabidopsis 625:Drosophila) 603:as well as 565:Arabidopsis 436:vertebrates 422:encode the 405:cryptogamic 389:portmanteau 323:Swiss-model 201:Identifiers 170:Swiss-model 50:Identifiers 4981:Physiology 4965:Categories 4915:Flavodoxin 4662:2011-04-14 4552:Getzoff ED 4186:(1): 401. 2225:11147/4670 1987:2023-04-11 1720:1765/55742 1592:References 1559:Drosophila 1473:DNA repair 1376:melanopsin 1293:In mammals 1283:Drosophila 1254:Drosophila 1243:Drosophila 1241:-knockout 1222:Drosophila 1218:Drosophila 1203:proteasome 1186:Drosophila 1179:Drosophila 1139:Drosophila 1122:Drosophila 1114:repressors 1107:Drosophila 1069:melanopsin 1023:demosponge 950:Drosophila 946:Drosophila 881:Drosophila 828:transgenic 723:N-terminal 645:Drosophila 641:Drosophila 601:luciferase 552:eukaryotes 545:DNA damage 523:Drosophila 507:blue light 491:photolyase 402:, and the 372:blue light 354:(from the 319:Structures 314:Search for 288:Other data 166:Structures 161:Search for 135:Other data 4226:249811333 3254:(1): e4. 2593:207635307 2418:234361952 2260:ACS Omega 1799:​; 1626:1751-1097 1562:to sense 1554:migration 1516:wild type 1450:inherited 1332:promoters 1226:rhodopsin 1025:larva of 900:, and in 820:cotyledon 717:Structure 669:orthologs 595:mutants ( 511:circadian 495:conserved 478:Although 474:Discovery 432:repressor 395:chromatic 362:found in 270:NP_066940 217:NCBI gene 117:NP_004066 64:NCBI gene 4769:Archived 4740:26765169 4702:26355419 4641:21467031 4590:19058271 4537:19129499 4478:19324677 4405:16955271 4362:18641630 4305:17895978 4265:PLOS ONE 4248:: 24–29. 4218:33452241 4156:34635699 4080:21236481 4036:16474406 3987:18597555 3936:11834834 3879:11114194 3758:20227409 3704:21385718 3647:14991100 3598:18388605 3590:15178801 3544:10531061 3509:10518585 3401:15629055 3329:16332522 3280:18184036 3221:12198538 3178:15553260 3170:10839367 3126:24882653 3083:14960620 3034:26821205 3026:15459395 2983:32153427 2923:22442365 2874:21187431 2808:18056988 2767:17459876 2726:17298948 2685:25157750 2650:24898692 2618:: 5175. 2585:25500270 2543:20031915 2502:16725342 2467:33768238 2410:33971366 2366:21296763 2290:31458694 2234:12878596 2178:10221900 2065:23151554 1888:27216936 1847:15299148 1778:36494968 1770:27864885 1699:Genomics 1683:27861972 1634:98643540 1576:radicals 1412:E/E'-box 1205:system. 1197:PER and 1090:myotubes 799:. Their 771:Function 734:cofactor 503:homologs 424:proteins 378:and the 333:InterPro 180:InterPro 4860:Protein 4823:PDBe-KB 4813:UniProt 4791:at the 4632:3122164 4581:4329312 4528:2626707 4505:Bibcode 4469:2817153 4385:Bibcode 4353:2559964 4332:Bibcode 4296:1976598 4273:Bibcode 4240:Hore PJ 4209:7810852 4188:Bibcode 4147:8505610 4126:Bibcode 4088:8159963 4027:1994933 3978:2443192 3927:2885915 3906:Bibcode 3898:Science 3847:Bibcode 3820:9600923 3788:Bibcode 3749:2878924 3695:4418525 3674:Bibcode 3666:Science 3639:9988221 3570:Bibcode 3562:Science 3524:Science 3477:Bibcode 3450:6996815 3442:9845370 3393:9845369 3337:2130485 3307:Bibcode 3271:2174970 3229:4430366 3201:Bibcode 3118:9822379 3098:Science 3074:6730330 3006:Bibcode 2998:Science 2974:7047837 2957:: 128. 2914:3309880 2865:3021015 2842:Bibcode 2641:4046262 2620:Bibcode 2458:8290288 2325:8909283 2281:6641772 2158:Bibcode 2150:Science 2114:9801304 2057:8600518 2037:Bibcode 2029:Science 1964:4256360 1956:8232555 1936:Bibcode 1896:7099782 1815:Bibcode 1729:8921389 1674:6167254 1585:retinal 1454:CRY1Δ11 1416:RevErbA 1334:of the 1214:lateral 1210:ventral 1192:gene (d 1131:mutants 1042:sponges 1016:doublet 957:radical 920:in the 906:reduced 797:kinases 791:Unlike 617:entrain 541:enzymes 448:in vivo 368:animals 329:Domains 299:Chr. 11 277:UniProt 176:Domains 146:Chr. 12 124:UniProt 4818:P97784 4762:(MeSH) 4738:  4700:  4639:  4629:  4588:  4578:  4535:  4525:  4476:  4466:  4411:  4403:  4377:Planta 4360:  4350:  4324:Nature 4303:  4293:  4224:  4216:  4206:  4154:  4144:  4086:  4078:  4034:  4024:  3985:  3975:  3934:  3924:  3877:  3867:  3818:  3808:  3756:  3746:  3702:  3692:  3645:  3637:  3596:  3588:  3542:  3507:  3497:  3448:  3440:  3399:  3391:  3335:  3327:  3278:  3268:  3227:  3219:  3193:Nature 3176:  3168:  3148:Neuron 3124:  3116:  3081:  3071:  3032:  3024:  2981:  2971:  2921:  2911:  2872:  2862:  2806:  2765:  2724:  2683:  2648:  2638:  2591:  2583:  2541:  2500:  2465:  2455:  2416:  2408:  2364:  2323:  2288:  2278:  2232:  2176:  2112:  2105:147960 2102:  2063:  2055:  2009:  1962:  1954:  1928:Nature 1894:  1886:  1845:  1838:514401 1835:  1776:  1768:  1727:  1681:  1671:  1632:  1624:  1489:cancer 1443:intron 1322:, and 1053:genome 1034:opsins 959:form, 898:photon 890:pterin 801:flavin 751:. The 736:and a 732:(FAD) 709:, and 698:flavin 694:folate 683:gene. 586:pterin 364:plants 282:Q49AN0 265:RefSeq 246:603732 206:Symbol 129:Q16526 112:RefSeq 93:601933 55:Symbol 4413:96263 4409:S2CID 4222:S2CID 4084:S2CID 3870:18981 3811:27591 3643:S2CID 3594:S2CID 3500:18421 3446:S2CID 3397:S2CID 3333:S2CID 3225:S2CID 3174:S2CID 3122:S2CID 3030:S2CID 2589:S2CID 2561:(PDF) 2414:S2CID 2061:S2CID 1960:S2CID 1892:S2CID 1774:S2CID 1630:S2CID 1580:spins 1487:. In 1371:c-Fos 1324:BMAL1 1320:CLOCK 1303:Cry2. 1239:opsin 1231:redox 1046:opsin 954:anion 856:auxin 711:CYCLE 707:CLOCK 556:T-DNA 413:genes 356:Greek 303:p11.2 294:Locus 150:q23.3 141:Locus 4811:for 4789:2IJG 4736:PMID 4698:PMID 4637:PMID 4586:PMID 4533:PMID 4474:PMID 4401:PMID 4358:PMID 4301:PMID 4214:PMID 4152:PMID 4076:PMID 4058:Cell 4032:PMID 3983:PMID 3932:PMID 3875:PMID 3816:PMID 3754:PMID 3700:PMID 3635:PMID 3617:Cell 3586:PMID 3540:PMID 3505:PMID 3438:PMID 3420:Cell 3389:PMID 3371:Cell 3325:PMID 3276:PMID 3217:PMID 3166:PMID 3114:PMID 3079:PMID 3022:PMID 2979:PMID 2919:PMID 2870:PMID 2804:PMID 2763:PMID 2722:PMID 2681:PMID 2646:PMID 2581:PMID 2539:PMID 2498:PMID 2463:PMID 2406:PMID 2362:PMID 2321:PMID 2286:PMID 2230:PMID 2174:PMID 2110:PMID 2053:PMID 2007:ISBN 1952:PMID 1884:PMID 1843:PMID 1796:1u3c 1766:PMID 1725:PMID 1679:PMID 1622:ISSN 1540:The 1477:G2/M 1462:BMAL 1439:Cry1 1435:Cry1 1431:Cry2 1428:Cry1 1408:Cry1 1404:Cry1 1400:Per2 1396:Per2 1392:Cry1 1388:Cry1 1358:Cry1 1354:Cry1 1348:Cry1 1338:and 1336:Cry2 1309:Cry2 1301:and 1299:Cry1 1250:mRNA 1194:Cry) 1171:Per1 1167:Cry2 1165:and 1163:Cry1 1155:Cry2 1151:Cry1 1147:cry, 1086:CRY2 1084:and 1082:CRY1 1049:gene 939:COP1 884:and 874:and 858:and 824:Cry2 816:Cry2 696:and 662:cry1 658:cry1 650:cry1 607:and 597:cry) 570:cry1 560:cry1 528:mice 526:and 420:CRY2 418:and 416:CRY1 411:The 366:and 258:4MLP 241:OMIM 234:2385 229:HGNC 222:1408 210:CRY2 105:5T5X 88:OMIM 81:2384 76:HGNC 69:1407 58:CRY1 18:CRY2 4809:PDB 4728:doi 4724:138 4690:doi 4627:PMC 4617:doi 4613:286 4576:PMC 4568:doi 4523:PMC 4513:doi 4501:106 4464:PMC 4456:doi 4393:doi 4381:225 4348:PMC 4340:doi 4328:454 4291:PMC 4281:doi 4204:PMC 4196:doi 4142:PMC 4134:doi 4066:doi 4062:144 4022:PMC 4014:doi 3973:PMC 3963:doi 3922:PMC 3914:doi 3902:295 3865:PMC 3855:doi 3806:PMC 3796:doi 3744:PMC 3736:doi 3732:584 3690:PMC 3682:doi 3670:331 3625:doi 3578:doi 3566:304 3532:doi 3528:286 3495:PMC 3485:doi 3428:doi 3379:doi 3315:doi 3266:PMC 3256:doi 3209:doi 3197:418 3156:doi 3106:doi 3102:282 3069:PMC 3061:doi 3014:doi 3002:306 2969:PMC 2959:doi 2909:PMC 2901:doi 2897:215 2860:PMC 2850:doi 2838:108 2794:doi 2790:283 2753:doi 2749:282 2712:doi 2708:282 2673:doi 2669:136 2636:PMC 2628:doi 2573:doi 2569:589 2529:doi 2490:doi 2453:PMC 2445:doi 2396:doi 2352:doi 2313:doi 2276:PMC 2268:doi 2220:hdl 2210:doi 2206:278 2166:doi 2154:284 2100:PMC 2092:doi 2045:doi 2033:272 1944:doi 1932:366 1874:doi 1833:PMC 1823:doi 1811:101 1792:PDB 1756:doi 1715:hdl 1707:doi 1669:PMC 1661:doi 1614:doi 1420:ROR 1380:eye 1340:Per 1287:Cry 1279:Cry 1267:Cry 1263:Cry 1258:Cry 1199:TIM 1190:Cry 1184:In 1177:In 1153:or 1143:Cry 1135:Cry 1128:Cry 1094:CRY 1078:CRY 1074:CRY 1005:FAD 994:FAD 983:FAD 972:FAD 961:FAD 934:ATP 930:ATP 878:in 846:In 681:cry 637:cry 629:cry 623:of 613:cry 609:TIM 605:PER 593:Cry 550:In 518:Cry 253:PDB 100:PDB 4967:: 4862:: 4815:: 4781:, 4734:. 4722:. 4710:^ 4696:. 4686:51 4684:. 4671:^ 4635:. 4625:. 4611:. 4607:. 4584:. 4574:. 4564:48 4562:. 4558:. 4531:. 4521:. 4511:. 4499:. 4495:. 4472:. 4462:. 4450:. 4446:. 4423:. 4407:. 4399:. 4391:. 4379:. 4356:. 4346:. 4338:. 4326:. 4322:. 4299:. 4289:. 4279:. 4267:. 4263:. 4220:. 4212:. 4202:. 4194:. 4184:12 4182:. 4178:. 4164:^ 4150:. 4140:. 4132:. 4122:11 4120:. 4116:. 4096:^ 4082:. 4074:. 4060:. 4056:. 4044:^ 4030:. 4020:. 4010:38 4008:. 4004:. 3981:. 3971:. 3957:. 3953:. 3930:. 3920:. 3912:. 3900:. 3896:. 3873:. 3863:. 3853:. 3843:97 3841:. 3837:. 3814:. 3804:. 3794:. 3784:95 3782:. 3778:. 3766:^ 3752:. 3742:. 3730:. 3726:. 3712:^ 3698:. 3688:. 3680:. 3668:. 3664:. 3641:. 3633:. 3621:96 3619:. 3615:. 3592:. 3584:. 3576:. 3564:. 3552:^ 3538:. 3526:. 3503:. 3493:. 3483:. 3473:96 3471:. 3467:. 3444:. 3436:. 3424:95 3422:. 3418:. 3395:. 3387:. 3375:95 3373:. 3369:. 3345:^ 3331:. 3323:. 3313:. 3303:15 3301:. 3297:. 3274:. 3264:. 3250:. 3246:. 3223:. 3215:. 3207:. 3195:. 3172:. 3164:. 3152:26 3150:. 3146:. 3134:^ 3120:. 3112:. 3100:. 3077:. 3067:. 3057:24 3055:. 3051:. 3028:. 3020:. 3012:. 3000:. 2977:. 2967:. 2955:11 2953:. 2949:. 2931:^ 2917:. 2907:. 2895:. 2891:. 2868:. 2858:. 2848:. 2836:. 2832:. 2816:^ 2802:. 2788:. 2784:. 2761:. 2747:. 2743:. 2720:. 2706:. 2702:. 2679:. 2667:. 2644:. 2634:. 2626:. 2614:. 2610:. 2587:. 2579:. 2567:. 2563:. 2537:. 2523:. 2519:. 2496:. 2486:85 2484:. 2461:. 2451:. 2441:33 2439:. 2435:. 2412:. 2404:. 2392:14 2390:. 2386:. 2374:^ 2360:. 2348:62 2346:. 2342:. 2319:. 2309:35 2307:. 2284:. 2274:. 2262:. 2258:. 2242:^ 2228:. 2218:. 2204:. 2200:. 2186:^ 2172:. 2164:. 2152:. 2122:^ 2108:. 2098:. 2088:26 2086:. 2082:. 2059:. 2051:. 2043:. 2031:. 1980:. 1958:. 1950:. 1942:. 1930:. 1890:. 1882:. 1870:45 1868:. 1864:. 1841:. 1831:. 1821:. 1809:. 1805:. 1794:: 1772:. 1764:. 1752:93 1750:. 1746:. 1723:. 1713:. 1703:37 1701:. 1677:. 1667:. 1657:93 1655:. 1651:. 1628:. 1620:. 1610:30 1608:. 1503:. 1468:. 1318:, 1285:, 1256:, 1245:. 941:. 924:. 788:. 767:. 591:. 547:. 4852:e 4845:t 4838:v 4825:. 4742:. 4730:: 4704:. 4692:: 4665:. 4643:. 4619:: 4592:. 4570:: 4539:. 4515:: 4507:: 4480:. 4458:: 4452:6 4418:* 4415:. 4395:: 4387:: 4364:. 4342:: 4334:: 4307:. 4283:: 4275:: 4269:2 4228:. 4198:: 4190:: 4158:. 4136:: 4128:: 4090:. 4068:: 4038:. 4016:: 3989:. 3965:: 3959:6 3938:. 3916:: 3908:: 3881:. 3857:: 3849:: 3822:. 3798:: 3790:: 3760:. 3738:: 3706:. 3684:: 3676:: 3649:. 3627:: 3600:. 3580:: 3572:: 3546:. 3534:: 3511:. 3487:: 3479:: 3452:. 3430:: 3403:. 3381:: 3339:. 3317:: 3309:: 3282:. 3258:: 3252:6 3231:. 3211:: 3203:: 3180:. 3158:: 3128:. 3108:: 3085:. 3063:: 3036:. 3016:: 3008:: 2985:. 2961:: 2925:. 2903:: 2876:. 2852:: 2844:: 2810:. 2796:: 2769:. 2755:: 2728:. 2714:: 2687:. 2675:: 2652:. 2630:: 2622:: 2616:4 2595:. 2575:: 2545:. 2531:: 2525:1 2504:. 2492:: 2469:. 2447:: 2420:. 2398:: 2368:. 2354:: 2327:. 2315:: 2292:. 2270:: 2264:3 2236:. 2222:: 2212:: 2180:. 2168:: 2160:: 2116:. 2094:: 2067:. 2047:: 2039:: 2015:. 1990:. 1966:. 1946:: 1938:: 1898:. 1876:: 1849:. 1825:: 1817:: 1780:. 1758:: 1731:. 1717:: 1709:: 1685:. 1663:: 1636:. 1616:: 1418:/ 1212:- 348:. 20:)

Index

CRY2

NCBI gene
1407
HGNC
2384
OMIM
601933
PDB
5T5X
RefSeq
NP_004066
UniProt
Q16526
Locus
Chr. 12
q23.3
Swiss-model
InterPro
CRY2
NCBI gene
1408
HGNC
2385
OMIM
603732
PDB
4MLP
RefSeq
NP_066940

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.