Knowledge

Calculus of functors

Source 📝

59:
Many objects of central interest in algebraic topology can be seen as functors, which are difficult to analyze directly, so the idea is to replace them with simpler functors which are sufficiently good approximations for certain purposes. The calculus of functors was developed by
622: 165: 840:
The notion of a sheaf and sheafification of a presheaf date to early category theory, and can be seen as the linear form of the calculus of functors. The quadratic form can be seen in the work of
848:
of spheres in 1965, where he defined a "metastable range" in which the problem is simpler. This was identified as the quadratic approximation to the embeddings functor in Goodwillie and Weiss.
413: 475: 361: 204:
by using a sequence of increasingly accurate polynomial functions. In a similar way, with the calculus of functors method, you can approximate the behavior of certain kind of
514: 777: 737: 696: 522: 655: 61: 627:
and can be thought of as "successive approximations", just as in a Taylor series one can progressively discard higher order terms.
98: 956: 182: 178:
on the space (formally, as a functor on the category of open subsets of the space), and sheaves are the linear functors.
794:"; this may not occur. Further, if one wishes to reconstruct the original functor, the resulting approximations must be 985: 810:, and says that "the Taylor tower converges to the functor", in analogy with Taylor series of an analytic function. 64:
in a series of three papers in the 1990s and 2000s, and has since been expanded and applied in a number of areas.
369: 274:, is the kind of functor you can approximate using the calculus of functors method: for a particular open set 167:– in this case the map from a functor to an approximation is an inclusion, but in general it is simply a map. 422: 364: 92: 703: 304: 904: 891: 646:– which is a simplifying condition, and roughly means that they are determined by their behavior around 193:
Here is an analogy: with the Taylor series method from calculus, you can approximate the shape of a
651: 170:
As this example illustrates, the linear approximation of a functor (on a topological space) is its
480: 863:
T. Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, K-theory 4 (1990), 1-27.
845: 746: 643: 73: 17: 934: 917: 841: 990: 790:
meaning that the approximating functor approximates the original functor "in dimension up to
903:
T. Goodwillie and M. Weiss, Embeddings from the point of view of immersion theory, Part II,
712: 635: 301:
In the calculus of functors method, the sequence of approximations consists of (1) functors
669: 960: 227: 194: 49: 419:. These natural transforms are required to be compatible, meaning that the composition 171: 37: 979: 243: 45: 953: 617:{\displaystyle F\to \cdots \to T_{k+1}F\to T_{k}F\to \cdots \to T_{1}F\to T_{0}F,} 780: 262:
of topological spaces with continuous morphisms. This kind of functor, called a
21: 818:
There are three branches of the calculus of functors, developed in the order:
282:
is, so you can study the topology of the increasingly accurate approximations
91:
whose first derivative in the sense of calculus of functors is the functor of
970: 77: 36:
by approximating them by a sequence of simpler functors; it generalizes the
881:
T. Goodwillie, Calculus III: Taylor series, Geom. Topol. 7 (2003), 645-711.
95:. As every embedding is an immersion, one obtains an inclusion of functors 872:
T. Goodwillie, Calculus II: Analytic functors, K-theory 5 (1992), 295-332.
832:
Homotopy calculus has seen far wider application than the other branches.
890:
M. Weiss, Embeddings from the point of view of immersion theory, Part I,
267: 175: 81: 41: 33: 251: 965: 238:, i.e., the category where the objects are the open subspaces of 44:. This sequence of approximations is formally similar to the 160:{\displaystyle \mathrm {Emb} (M,N)\to \mathrm {Imm} (M,N)} 278:, you may want to know what sort of a topological space 215:
by using a sequence of increasingly accurate polynomial
662:
points in the given space. The difference between the
749: 715: 672: 525: 483: 425: 372: 307: 101: 922:
Enlacements de sphères en codimension supérieure à 2
771: 731: 690: 616: 508: 469: 407: 355: 159: 698:st functors is a "homogeneous functor of degree 630:The approximating functors are required to be " 72:A motivational example, of central interest in 739:to be approximations to the original functor 8: 936:Syllabus for Math 283: Calculus of Functors 408:{\displaystyle \eta _{k}\colon F\to T_{k}F} 181:This example was studied by Goodwillie and 760: 748: 720: 714: 671: 602: 586: 564: 542: 524: 494: 482: 458: 436: 424: 396: 377: 371: 344: 328: 312: 306: 131: 102: 100: 856: 802:increasing to infinity. One then calls 650:points at a time, or more formally are 470:{\displaystyle F\to T_{k+1}F\to T_{k}F} 822:manifold calculus, such as embeddings, 234:be the category of open subspaces of 7: 356:{\displaystyle T_{0}F,T_{1}F,T_{2}F} 138: 135: 132: 109: 106: 103: 14: 743:the resulting approximation maps 174:, thinking of the functor as a 753: 685: 673: 595: 579: 573: 557: 535: 529: 487: 451: 429: 389: 154: 142: 128: 125: 113: 1: 638:" – such functors are called 706:), which can be classified. 509:{\displaystyle F\to T_{k}F,} 363:, and so on, as well as (2) 32:is a technique for studying 772:{\displaystyle F\to T_{k}F} 1007: 254:functor from the category 242:, and the morphisms are 704:homogeneous polynomials 516:and thus form a tower 365:natural transformations 211:at a particular object 933:Munson, Brian (2005), 825:homotopy calculus, and 773: 733: 732:{\displaystyle T_{k}F} 692: 618: 510: 471: 409: 357: 161: 87:into another manifold 905:Geometry and Topology 892:Geometry and Topology 774: 734: 693: 691:{\displaystyle (k-1)} 619: 511: 472: 410: 358: 162: 828:orthogonal calculus. 747: 713: 670: 523: 481: 423: 370: 305: 222:To be specific, let 99: 76:, is the functor of 26:calculus of functors 702:" (by analogy with 656:configuration space 640:polynomial functors 30:Goodwillie calculus 986:Algebraic topology 959:2009-11-28 at the 907:3 (1999), 103-118. 769: 729: 688: 644:Taylor polynomials 614: 506: 467: 405: 353: 157: 74:geometric topology 52:, hence the term " 18:algebraic topology 954:Thomas Goodwillie 894:3 (1999), 67-101. 709:For the functors 415:for each integer 62:Thomas Goodwillie 998: 971:Michael S. Weiss 942: 941: 925: 924: 918:Haefliger, André 914: 908: 901: 895: 888: 882: 879: 873: 870: 864: 861: 808:analytic functor 786:for some number 778: 776: 775: 770: 765: 764: 738: 736: 735: 730: 725: 724: 697: 695: 694: 689: 642:by analogy with 623: 621: 620: 615: 607: 606: 591: 590: 569: 568: 553: 552: 515: 513: 512: 507: 499: 498: 476: 474: 473: 468: 463: 462: 447: 446: 414: 412: 411: 406: 401: 400: 382: 381: 362: 360: 359: 354: 349: 348: 333: 332: 317: 316: 258:to the category 166: 164: 163: 158: 141: 112: 1006: 1005: 1001: 1000: 999: 997: 996: 995: 976: 975: 961:Wayback Machine 950: 945: 939: 932: 928: 916: 915: 911: 902: 898: 889: 885: 880: 876: 871: 867: 862: 858: 854: 842:André Haefliger 838: 816: 798:-connected for 756: 745: 744: 716: 711: 710: 668: 667: 598: 582: 560: 538: 521: 520: 490: 479: 478: 477:equals the map 454: 432: 421: 420: 392: 373: 368: 367: 340: 324: 308: 303: 302: 295: 291: 287: 228:smooth manifold 200:around a point 195:smooth function 191: 97: 96: 70: 50:smooth function 12: 11: 5: 1004: 1002: 994: 993: 988: 978: 977: 974: 973: 968: 963: 949: 948:External links 946: 944: 943: 929: 927: 926: 909: 896: 883: 874: 865: 855: 853: 850: 837: 834: 830: 829: 826: 823: 815: 812: 768: 763: 759: 755: 752: 728: 723: 719: 687: 684: 681: 678: 675: 625: 624: 613: 610: 605: 601: 597: 594: 589: 585: 581: 578: 575: 572: 567: 563: 559: 556: 551: 548: 545: 541: 537: 534: 531: 528: 505: 502: 497: 493: 489: 486: 466: 461: 457: 453: 450: 445: 442: 439: 435: 431: 428: 404: 399: 395: 391: 388: 385: 380: 376: 352: 347: 343: 339: 336: 331: 327: 323: 320: 315: 311: 293: 289: 285: 244:inclusion maps 190: 187: 172:sheafification 156: 153: 150: 147: 144: 140: 137: 134: 130: 127: 124: 121: 118: 115: 111: 108: 105: 69: 66: 56:of functors". 38:sheafification 20:, a branch of 13: 10: 9: 6: 4: 3: 2: 1003: 992: 989: 987: 984: 983: 981: 972: 969: 967: 964: 962: 958: 955: 952: 951: 947: 938: 937: 931: 930: 923: 919: 913: 910: 906: 900: 897: 893: 887: 884: 878: 875: 869: 866: 860: 857: 851: 849: 847: 843: 835: 833: 827: 824: 821: 820: 819: 813: 811: 809: 805: 801: 797: 793: 789: 785: 783: 766: 761: 757: 750: 742: 726: 721: 717: 707: 705: 701: 682: 679: 676: 665: 661: 657: 653: 649: 645: 641: 637: 633: 628: 611: 608: 603: 599: 592: 587: 583: 576: 570: 565: 561: 554: 549: 546: 543: 539: 532: 526: 519: 518: 517: 503: 500: 495: 491: 484: 464: 459: 455: 448: 443: 440: 437: 433: 426: 418: 402: 397: 393: 386: 383: 378: 374: 366: 350: 345: 341: 337: 334: 329: 325: 321: 318: 313: 309: 299: 297: 281: 277: 273: 269: 265: 261: 257: 253: 252:contravariant 249: 245: 241: 237: 233: 229: 225: 220: 218: 214: 210: 207: 203: 199: 196: 188: 186: 184: 183:Michael Weiss 179: 177: 173: 168: 151: 148: 145: 122: 119: 116: 94: 90: 86: 83: 79: 75: 67: 65: 63: 57: 55: 51: 47: 46:Taylor series 43: 39: 35: 31: 27: 23: 19: 935: 921: 912: 899: 886: 877: 868: 859: 839: 831: 817: 807: 803: 799: 795: 791: 787: 781: 740: 708: 699: 663: 659: 647: 639: 631: 629: 626: 416: 300: 283: 279: 275: 271: 263: 259: 255: 247: 239: 235: 231: 223: 221: 216: 212: 208: 205: 201: 197: 192: 180: 169: 88: 84: 71: 58: 53: 29: 25: 15: 298:and so on. 22:mathematics 980:Categories 966:John Klein 852:References 784:-connected 189:Definition 93:immersions 78:embeddings 754:→ 680:− 596:→ 580:→ 577:⋯ 574:→ 558:→ 536:→ 533:⋯ 530:→ 488:→ 452:→ 430:→ 390:→ 384:: 375:η 129:→ 991:Functors 957:Archived 814:Branches 779:must be 636:excisive 268:presheaf 266:-valued 230:and let 217:functors 176:presheaf 82:manifold 68:Examples 54:calculus 42:presheaf 34:functors 836:History 666:th and 654:on the 652:sheaves 206:functor 80:of one 292:(X), F 288:(X), F 276:X∈O(M) 246:. Let 24:, the 940:(PDF) 846:links 250:be a 226:be a 48:of a 40:of a 296:(X), 280:F(X) 256:O(M) 232:O(M) 844:on 806:an 658:of 270:on 264:Top 260:Top 28:or 16:In 982:: 920:, 788:n, 741:F, 219:. 185:. 89:N, 804:F 800:n 796:n 792:n 782:n 767:F 762:k 758:T 751:F 727:F 722:k 718:T 700:k 686:) 683:1 677:k 674:( 664:k 660:k 648:k 634:- 632:k 612:, 609:F 604:0 600:T 593:F 588:1 584:T 571:F 566:k 562:T 555:F 550:1 547:+ 544:k 540:T 527:F 504:, 501:F 496:k 492:T 485:F 465:F 460:k 456:T 449:F 444:1 441:+ 438:k 434:T 427:F 417:k 403:F 398:k 394:T 387:F 379:k 351:F 346:2 342:T 338:, 335:F 330:1 326:T 322:, 319:F 314:0 310:T 294:2 290:1 286:0 284:F 272:M 248:F 240:M 236:M 224:M 213:X 209:F 202:x 198:f 155:) 152:N 149:, 146:M 143:( 139:m 136:m 133:I 126:) 123:N 120:, 117:M 114:( 110:b 107:m 104:E 85:M

Index

algebraic topology
mathematics
functors
sheafification
presheaf
Taylor series
smooth function
Thomas Goodwillie
geometric topology
embeddings
manifold
immersions
sheafification
presheaf
Michael Weiss
smooth function
smooth manifold
inclusion maps
contravariant
presheaf
natural transformations
excisive
Taylor polynomials
sheaves
configuration space
homogeneous polynomials
n-connected
André Haefliger
links
Geometry and Topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.