Knowledge

Calkin–Wilf tree

Source 📝

37: 25: 613: 198: 256: 1204: 1409: 476:. Thus, in either case, the parent is a fraction with a smaller sum of numerator and denominator, so repeated reduction of this type must eventually reach the number 1. As a graph with one outgoing edge per vertex and one root reachable by all other vertices, the Calkin–Wilf tree must indeed be a tree. 1662:
The description here is dual to the original definition by Calkin and Wilf, which begins by defining the child relationship and derives the parent relationship as part of a proof that every rational appears once in the tree. As defined here, every rational appears once by definition, and instead the
1587:
in that both are binary trees with each positive rational number appearing exactly once. Additionally, the top levels of the two trees appear very similar, and in both trees, the same numbers appear at the same levels. One tree can be obtained from the other by performing a
855:
Because the Calkin–Wilf tree contains every positive rational number exactly once, so does this sequence. The denominator of each fraction equals the numerator of the next fraction in the sequence. The Calkin–Wilf sequence can also be generated directly by the formula
1272: 1592:
on the numbers at each level of the trees. Alternatively, the number at a given node of the Calkin–Wilf tree can be converted into the number at the same position in the Stern–Brocot tree, and vice versa, by a process involving the reversal of the
1009:: the number of consecutive 1s starting from the least significant bit, then the number of consecutive 0s starting from the first block of 1s, and so on. The sequence of numbers generated in this way gives the 940: 1277: 1404:{\displaystyle {\begin{aligned}\operatorname {fusc} (2n)&=\operatorname {fusc} (n)\\\operatorname {fusc} (2n+1)&=\operatorname {fusc} (n)+\operatorname {fusc} (n+1),\end{aligned}}} 1195:; however, in the Calkin–Wilf tree the binary numbers are integers (positions in the breadth-first traversal) while in the question mark function they are real numbers between 0 and 1. 1706:, then the fractions on the level just below the top of the tree, reading from left to right, then the fractions on the next level down, reading from left to right, etc." 596:: its inorder does not coincide with the sorted order of its vertices. However, it is closely related to a different binary search tree on the same set of vertices, the 1958: 1601:: the left-to-right traversal order of the tree is the same as the numerical order of the numbers in it. This property is not true of the Calkin–Wilf tree. 1516:
in which each power occurs at most twice. This can be seen from the recurrence defining fusc: the expressions as a sum of powers of two for an even number
1234: 1457:. Thus, the diatomic sequence forms both the sequence of numerators and the sequence of denominators of the numbers in the Calkin–Wilf sequence. 293:
occurs as a vertex and has one outgoing edge to another vertex, its parent, except for the root of the tree, the number 1, which has no parent.
1881: 1836: 1192: 862: 1925: 479:
The children of any vertex in the Calkin–Wilf tree may be computed by inverting the formula for the parents of a vertex. Each vertex
2068: 2063: 2009: 1597:
representations of these numbers. However, in other ways, they have different properties: for instance, the Stern–Brocot tree is a
2238: 1776:
and to uncited work of Lind. However, Carlitz's paper describes a more restricted class of sums of powers of two, counted by
1916: 230:, since they drew some ideas from a 1973 paper by George N. Raney. Stern's diatomic series was formulated much earlier by 982: 1191:
A similar conversion between run-length-encoded binary numbers and continued fractions can also be used to evaluate
2233: 296:
The parent of any rational number can be determined after placing the number into simplest terms, as a fraction
1589: 601: 319: 1690:: "a list of all positive rational numbers, each appearing once and only once, can be made by writing down 1529:) or two 1s (in which case the rest of the expression is formed by doubling each term in an expression for 36: 1711: 77: 1584: 597: 235: 2101: 1002: 62: 2139: 1827: 1822: 1646: 1469: 1242: 231: 174: 1523:
either have no 1s in them (in which case they are formed by doubling each term in an expression for
624:
is the sequence of rational numbers generated by a breadth-first traversal of the Calkin–Wilf tree,
2207: 2148: 1264: 998: 58: 2128: 2087: 2048: 1989: 1937: 1736: 1598: 1594: 1567:
6 = 4 + 2 = 4 + 1 + 1 = 2 + 2 + 1 + 1
1172: 1133: 1010: 593: 76:. The tree is rooted at the number 1, and any rational number expressed in simplest terms as the 2189: 2170: 2005: 1832: 1571:
has three representations as a sum of powers of two with at most two copies of each power, so
2143: 1263:, named according to the obfuscating appearance of the sequence of values and defined by the 592:
As each vertex has two children, the Calkin–Wilf tree is a binary tree. However, it is not a
2118: 2110: 2077: 2040: 1967: 1953: 1929: 1890: 1858: 1221: 243: 206: 166: 1981: 1872: 600:: the vertices at each level of the two trees coincide, and are related to each other by a 2193: 2001: 1977: 1949: 1868: 1642: 239: 202: 162: 73: 70: 24: 1908: 616:
The Calkin–Wilf sequence, depicted as the red spiral tracing through the Calkin–Wilf tree
238:. Even earlier, a similar tree (including only the fractions between 0 and 1) appears in 2020: 2016: 2059: 1994: 268: 1895: 1431:
th rational number in a breadth-first traversal of the Calkin–Wilf tree is the number
2227: 2174: 2132: 1818: 153:. Every positive rational number appears exactly once in the tree. It is named after 50: 2091: 1972: 1536:), so the number of representations is the sum of the number of representations for 197: 2217: 1904: 1513: 1207: 223: 219: 158: 612: 215: 154: 1879:
Berstel, Jean; de Luca, Aldo (1997), "Sturmian words, Lyndon words and trees",
255: 2211: 2123: 2082: 1863: 1176: 1175:
is . But to use this method, the length of the continued fraction must be an
2198: 2179: 1549:, matching the recurrence. Similarly, each representation for an odd number 1203: 234:, a 19th-century German mathematician who also invented the closely related 66: 1846: 2114: 2099:
Raney, George N. (1973), "On continued fractions and finite automata",
2052: 2028: 1941: 1179:. So should be replaced by the equivalent continued fraction . Hence 260: 2044: 2027:
Knuth, Donald E.; Rupert, C.P.; Smith, Alex; Stong, Richard (2003),
1933: 935:{\displaystyle q_{i+1}={\frac {1}{2\lfloor q_{i}\rfloor -q_{i}+1}}} 1202: 611: 254: 196: 181:. Its sequence of numerators (or, offset by one, denominators) is 2023:, pp. 230–232, reprints of notes originally written in 1976. 1671: 1669: 1227:
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, … (sequence
1663:
fact that the resulting structure is a tree requires a proof.
2021:
EWD 578: More about the function "fusc" (A sequel to EWD570)
1831:(3rd ed.), Berlin; New York: Springer, pp. 94–97, 1091:
In the other direction, using the continued fraction of any
1563:
and adding 1, again matching the recurrence. For instance,
1229: 1100:
as the run-length encoding of a binary number gives back
2066:(2006), "Functional pearl: Enumerating the rationals", 1714:
techniques for performing this breadth first traversal.
1996:
Selected Writings on Computing: A Personal Perspective
1845:
Bates, Bruce; Bunder, Martin; Tognetti, Keith (2010),
222:, who considered it in a 2000 paper. In a 1997 paper, 1723: 1275: 865: 1801: 1993: 1403: 934: 1707: 1675: 1952:(1964), "A problem in partitions related to the 1847:"Linking the Calkin-Wilf and Stern-Brocot trees" 1506:, and also counts the number of ways of writing 2149:Journal für die reine und angewandte Mathematik 1617: 1959:Bulletin of the American Mathematical Society 563:has one child whose value is greater than 1, 8: 2029:"Recounting the Rationals, Continued: 10906" 907: 894: 1557:is formed by doubling a representation for 1748: 1687: 501:has one child whose value is less than 1, 226:and Aldo de Luca called the same tree the 2122: 2081: 1971: 1894: 1862: 1276: 1274: 960:th number in the sequence, starting from 917: 901: 885: 870: 864: 267:The Calkin–Wilf tree may be defined as a 2144:"Ueber eine zahlentheoretische Funktion" 2017:EWD 570: An exercise for Dr.R.M.Burstall 177:of the Calkin–Wilf tree is known as the 42:How values are derived from their parent 1773: 1760: 1610: 271:in which each positive rational number 161:, but appears in other works including 1251:th value in the sequence is the value 173:The sequence of rational numbers in a 1629: 259:The Calkin–Wilf tree, drawn using an 7: 1772:The OEIS entry credits this fact to 1726:credit this formula to Moshe Newman. 214:The Calkin–Wilf tree is named after 101:has as its two children the numbers 1926:Mathematical Association of America 1802:Bates, Bunder & Tognetti (2010) 1735:The fusc name was given in 1976 by 1583:The Calkin–Wilf tree resembles the 1062:: The continued fraction is hence 1030:: The continued fraction is hence 1193:Minkowski's question mark function 14: 2069:Journal of Functional Programming 2033:The American Mathematical Monthly 1851:European Journal of Combinatorics 1708:Gibbons, Lester & Bird (2006) 1676:Gibbons, Lester & Bird (2006) 1198: 988:It's also possible to calculate 35: 23: 1973:10.1090/S0002-9904-1964-11118-6 16:Binary tree of rational numbers 1391: 1379: 1367: 1361: 1345: 1330: 1317: 1311: 1295: 1286: 1: 2213:Fractions on a Binary Tree II 1917:American Mathematical Monthly 1896:10.1016/S0304-3975(96)00101-6 1579:Relation to Stern–Brocot tree 185:, and can be computed by the 1882:Theoretical Computer Science 1618:Berstel & de Luca (1997) 1651:, vol. III, p. 27 2255: 1909:"Recounting the rationals" 2194:"Stern's Diatomic Series" 2083:10.1017/S0956796806005880 1864:10.1016/j.ejc.2010.04.002 1218:Stern's diatomic sequence 1199:Stern's diatomic sequence 541:. Similarly, each vertex 2019:, pp. 215–216, and 1749:Calkin & Wilf (2000) 1739:; see EWD570 and EWD578. 1688:Calkin & Wilf (2000) 1590:bit-reversal permutation 602:bit-reversal permutation 251:Definition and structure 2239:Trees (data structures) 608:Breadth first traversal 320:greatest common divisor 183:Stern's diatomic series 175:breadth-first traversal 1712:functional programming 1405: 1214: 1058:i = 1990 = 11111000110 1026:i = 1081 = 10000111001 936: 617: 264: 211: 2102:Mathematische Annalen 1470:binomial coefficients 1468:is the number of odd 1406: 1206: 1003:binary representation 937: 615: 258: 200: 2208:Bogomolny, Alexander 1828:Proofs from THE BOOK 1414:with the base cases 1273: 1265:recurrence relations 1243:zero-based numbering 863: 622:Calkin–Wilf sequence 527:, because of course 232:Moritz Abraham Stern 179:Calkin–Wilf sequence 30:The Calkin–Wilf tree 1990:Dijkstra, Edsger W. 1724:Knuth et al. (2003) 999:run-length encoding 2190:Weisstein, Eric W. 2175:"Calkin–Wilf Tree" 2171:Weisstein, Eric W. 2124:10338.dmlcz/128216 2115:10.1007/BF01355980 1823:Ziegler, Günter M. 1737:Edsger W. Dijkstra 1710:discuss efficient 1599:binary search tree 1595:continued fraction 1401: 1399: 1215: 1173:continued fraction 1134:continued fraction 1013:representation of 1011:continued fraction 997:directly from the 932: 618: 594:binary search tree 265: 212: 2234:Integer sequences 2062:; Lester, David; 1838:978-3-540-40460-6 1585:Stern–Brocot tree 1104:itself. Example: 930: 598:Stern–Brocot tree 236:Stern–Brocot tree 2246: 2220: 2203: 2202: 2184: 2183: 2157: 2140:Stern, Moritz A. 2135: 2126: 2094: 2085: 2055: 2014: 1999: 1984: 1975: 1954:Stirling numbers 1944: 1913: 1899: 1898: 1889:(1–2): 171–203, 1875: 1866: 1857:(7): 1637–1661, 1841: 1805: 1799: 1793: 1791: 1783: 1770: 1764: 1758: 1752: 1746: 1740: 1733: 1727: 1721: 1715: 1705: 1703: 1702: 1699: 1696: 1685: 1679: 1673: 1664: 1660: 1654: 1652: 1648:Harmonices Mundi 1639: 1633: 1627: 1621: 1615: 1574: 1562: 1556: 1548: 1541: 1535: 1528: 1522: 1511: 1505: 1494: 1488: 1487: 1467: 1456: 1455: 1453: 1452: 1445: 1442: 1430: 1421: 1417: 1410: 1408: 1407: 1402: 1400: 1258: 1250: 1232: 1222:integer sequence 1213: 1182: 1170: 1169: 1167: 1166: 1163: 1160: 1139: 1131: 1130: 1128: 1127: 1124: 1121: 1103: 1099: 1086: 1085: 1083: 1082: 1079: 1076: 1054: 1053: 1051: 1050: 1047: 1044: 1021: 1008: 996: 980: 969: 959: 953: 941: 939: 938: 933: 931: 929: 922: 921: 906: 905: 886: 881: 880: 850: 848: 847: 844: 841: 834: 832: 831: 828: 825: 818: 816: 815: 812: 809: 802: 800: 799: 796: 793: 786: 784: 783: 780: 777: 770: 768: 767: 764: 761: 754: 752: 751: 748: 745: 738: 736: 735: 732: 729: 722: 720: 719: 716: 713: 706: 704: 703: 700: 697: 690: 688: 687: 684: 681: 674: 672: 671: 668: 665: 658: 656: 655: 652: 649: 642: 640: 639: 636: 633: 588: 587: 585: 584: 579: 576: 562: 561: 559: 558: 553: 550: 540: 526: 525: 523: 522: 513: 510: 500: 499: 497: 496: 491: 488: 475: 474: 472: 471: 466: 463: 449: 448: 446: 445: 440: 437: 428:, the parent of 427: 425: 423: 422: 417: 414: 404: 403: 401: 400: 391: 388: 378: 377: 375: 374: 369: 366: 357:, the parent of 356: 354: 352: 351: 346: 343: 333: 327: 317: 316: 314: 313: 308: 305: 292: 291: 289: 288: 283: 280: 244:Harmonices Mundi 207:Harmonices Mundi 167:Harmonices Mundi 152: 151: 149: 148: 143: 140: 126: 125: 123: 122: 113: 110: 100: 99: 97: 96: 91: 88: 74:rational numbers 55:Calkin–Wilf tree 39: 27: 2254: 2253: 2249: 2248: 2247: 2245: 2244: 2243: 2224: 2223: 2206: 2188: 2187: 2169: 2168: 2165: 2138: 2098: 2060:Gibbons, Jeremy 2058: 2045:10.2307/3647762 2026: 2012: 2002:Springer-Verlag 1988: 1948: 1934:10.2307/2589182 1911: 1902: 1878: 1844: 1839: 1817: 1814: 1809: 1808: 1800: 1796: 1785: 1777: 1771: 1767: 1759: 1755: 1747: 1743: 1734: 1730: 1722: 1718: 1700: 1697: 1694: 1693: 1691: 1686: 1682: 1674: 1667: 1661: 1657: 1641: 1640: 1636: 1628: 1624: 1616: 1612: 1607: 1581: 1573:fusc(6 + 1) = 3 1572: 1558: 1550: 1543: 1537: 1530: 1524: 1517: 1507: 1496: 1493: 1492: 1486: 1481: 1480: 1479: 1478: 1477: 1473: 1461: 1446: 1443: 1436: 1435: 1433: 1432: 1426: 1419: 1415: 1398: 1397: 1348: 1321: 1320: 1298: 1271: 1270: 1252: 1246: 1228: 1211: 1201: 1186: 1180: 1164: 1161: 1158: 1157: 1155: 1152: 1147: 1143: 1137: 1125: 1122: 1119: 1118: 1116: 1113: 1108: 1101: 1097: 1092: 1080: 1077: 1074: 1073: 1071: 1069: 1063: 1061: 1048: 1045: 1042: 1041: 1039: 1037: 1031: 1029: 1019: 1014: 1006: 994: 989: 981:represents the 977: 971: 967: 961: 955: 951: 946: 913: 897: 890: 866: 861: 860: 845: 842: 839: 838: 836: 829: 826: 823: 822: 820: 813: 810: 807: 806: 804: 797: 794: 791: 790: 788: 781: 778: 775: 774: 772: 765: 762: 759: 758: 756: 749: 746: 743: 742: 740: 733: 730: 727: 726: 724: 717: 714: 711: 710: 708: 701: 698: 695: 694: 692: 685: 682: 679: 678: 676: 669: 666: 663: 662: 660: 653: 650: 647: 646: 644: 637: 634: 631: 630: 628: 610: 580: 577: 568: 567: 565: 564: 554: 551: 546: 545: 543: 542: 528: 514: 511: 506: 505: 503: 502: 492: 489: 484: 483: 481: 480: 467: 464: 455: 454: 452: 451: 441: 438: 433: 432: 430: 429: 418: 415: 410: 409: 407: 406: 392: 389: 384: 383: 381: 380: 370: 367: 362: 361: 359: 358: 347: 344: 339: 338: 336: 335: 329: 323: 309: 306: 301: 300: 298: 297: 284: 281: 276: 275: 273: 272: 253: 195: 144: 141: 132: 131: 129: 128: 114: 111: 106: 105: 103: 102: 92: 89: 84: 83: 81: 80: 47: 46: 45: 44: 43: 40: 32: 31: 28: 17: 12: 11: 5: 2252: 2250: 2242: 2241: 2236: 2226: 2225: 2222: 2221: 2204: 2185: 2164: 2163:External links 2161: 2160: 2159: 2136: 2109:(4): 265–283, 2096: 2076:(3): 281–291, 2056: 2039:(7): 642–643, 2024: 2010: 1986: 1966:(2): 275–278, 1946: 1903:Calkin, Neil; 1900: 1876: 1842: 1837: 1819:Aigner, Martin 1813: 1810: 1807: 1806: 1794: 1784:instead of by 1774:Carlitz (1964) 1765: 1761:Carlitz (1964) 1753: 1741: 1728: 1716: 1680: 1665: 1655: 1634: 1622: 1609: 1608: 1606: 1603: 1580: 1577: 1569: 1568: 1490: 1489: 1482: 1475: 1474: 1412: 1411: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1349: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1326: 1323: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1299: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1278: 1239: 1238: 1212:fusc(0...4096) 1200: 1197: 1189: 1188: 1184: 1150: 1145: 1141: 1111: 1095: 1089: 1088: 1067: 1059: 1056: 1035: 1027: 1017: 992: 975: 965: 949: 943: 942: 928: 925: 920: 916: 912: 909: 904: 900: 896: 893: 889: 884: 879: 876: 873: 869: 853: 852: 609: 606: 269:directed graph 252: 249: 201:The tree from 194: 191: 41: 34: 33: 29: 22: 21: 20: 19: 18: 15: 13: 10: 9: 6: 4: 3: 2: 2251: 2240: 2237: 2235: 2232: 2231: 2229: 2219: 2215: 2214: 2209: 2205: 2201: 2200: 2195: 2191: 2186: 2182: 2181: 2176: 2172: 2167: 2166: 2162: 2155: 2151: 2150: 2145: 2141: 2137: 2134: 2130: 2125: 2120: 2116: 2112: 2108: 2104: 2103: 2097: 2093: 2089: 2084: 2079: 2075: 2071: 2070: 2065: 2064:Bird, Richard 2061: 2057: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2025: 2022: 2018: 2013: 2011:0-387-90652-5 2007: 2003: 1998: 1997: 1991: 1987: 1983: 1979: 1974: 1969: 1965: 1961: 1960: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1918: 1910: 1906: 1905:Wilf, Herbert 1901: 1897: 1892: 1888: 1884: 1883: 1877: 1874: 1870: 1865: 1860: 1856: 1852: 1848: 1843: 1840: 1834: 1830: 1829: 1824: 1820: 1816: 1815: 1811: 1803: 1798: 1795: 1789: 1781: 1775: 1769: 1766: 1762: 1757: 1754: 1750: 1745: 1742: 1738: 1732: 1729: 1725: 1720: 1717: 1713: 1709: 1689: 1684: 1681: 1677: 1672: 1670: 1666: 1659: 1656: 1650: 1649: 1644: 1638: 1635: 1631: 1626: 1623: 1619: 1614: 1611: 1604: 1602: 1600: 1596: 1591: 1586: 1578: 1576: 1566: 1565: 1564: 1561: 1554: 1546: 1540: 1533: 1527: 1521: 1515: 1514:powers of two 1510: 1504: 1500: 1485: 1471: 1465: 1460:The function 1458: 1450: 1440: 1429: 1423: 1394: 1388: 1385: 1382: 1376: 1373: 1370: 1364: 1358: 1355: 1352: 1350: 1342: 1339: 1336: 1333: 1327: 1324: 1314: 1308: 1305: 1302: 1300: 1292: 1289: 1283: 1280: 1269: 1268: 1267: 1266: 1262: 1261:fusc function 1256: 1249: 1244: 1236: 1231: 1226: 1225: 1224: 1223: 1219: 1209: 1205: 1196: 1194: 1178: 1174: 1153: 1146: 1135: 1114: 1107: 1106: 1105: 1098: 1066: 1057: 1034: 1025: 1024: 1023: 1020: 1012: 1004: 1000: 995: 986: 984: 983:integral part 978: 964: 958: 952: 926: 923: 918: 914: 910: 902: 898: 891: 887: 882: 877: 874: 871: 867: 859: 858: 857: 627: 626: 625: 623: 614: 607: 605: 603: 599: 595: 590: 583: 575: 571: 557: 549: 539: 535: 531: 521: 517: 509: 495: 487: 477: 470: 462: 458: 444: 436: 421: 413: 399: 395: 387: 373: 365: 350: 342: 332: 326: 321: 312: 304: 294: 287: 279: 270: 262: 257: 250: 248: 246: 245: 241: 237: 233: 229: 225: 221: 217: 209: 208: 204: 199: 192: 190: 188: 187:fusc function 184: 180: 176: 171: 169: 168: 164: 160: 156: 147: 139: 135: 121: 117: 109: 95: 87: 79: 75: 72: 68: 64: 61:in which the 60: 56: 52: 51:number theory 38: 26: 2218:Cut-the-knot 2212: 2197: 2178: 2153: 2147: 2106: 2100: 2073: 2067: 2036: 2032: 1995: 1963: 1957: 1921: 1915: 1886: 1880: 1854: 1850: 1826: 1797: 1787: 1779: 1768: 1756: 1751:, Theorem 1. 1744: 1731: 1719: 1683: 1658: 1647: 1637: 1630:Raney (1973) 1625: 1620:, Section 6. 1613: 1582: 1570: 1559: 1552: 1544: 1538: 1531: 1525: 1519: 1512:as a sum of 1508: 1502: 1498: 1483: 1472:of the form 1463: 1459: 1448: 1438: 1427: 1424: 1413: 1260: 1254: 1247: 1240: 1217: 1216: 1190: 1148: 1109: 1093: 1090: 1064: 1032: 1015: 990: 987: 973: 962: 956: 954:denotes the 947: 944: 854: 621: 619: 591: 581: 573: 569: 555: 547: 537: 533: 529: 519: 515: 507: 493: 485: 478: 468: 460: 456: 442: 434: 419: 411: 397: 393: 385: 371: 363: 348: 340: 330: 324: 310: 302: 295: 285: 277: 266: 242: 227: 224:Jean Berstel 220:Herbert Wilf 213: 205: 186: 182: 178: 172: 165: 159:Herbert Wilf 145: 137: 133: 119: 115: 107: 93: 85: 54: 48: 1950:Carlitz, L. 1928:: 360–363, 1420:fusc(1) = 1 1416:fusc(0) = 0 1208:Scatterplot 216:Neil Calkin 155:Neil Calkin 65:correspond 2228:Categories 1812:References 1643:Kepler, J. 1177:odd number 1136:is hence 1022:.Example: 318:for which 228:Raney tree 67:one-to-one 2199:MathWorld 2180:MathWorld 2156:: 193–220 2133:120933574 1377:⁡ 1359:⁡ 1328:⁡ 1309:⁡ 1284:⁡ 911:− 908:⌋ 895:⌊ 334:is 1. If 2142:(1858), 2092:14237968 1992:(1982), 1907:(2000), 1825:(2004), 1645:(1619), 1542:and for 247:(1619). 240:Kepler's 203:Kepler's 163:Kepler's 78:fraction 71:positive 63:vertices 2053:3647762 1982:0157907 1942:2589182 1873:2673006 1704:⁠ 1692:⁠ 1454:⁠ 1434:⁠ 1259:of the 1233:in the 1230:A002487 1220:is the 1168:⁠ 1156:⁠ 1129:⁠ 1117:⁠ 1084:⁠ 1072:⁠ 1052:⁠ 1040:⁠ 1001:of the 849:⁠ 837:⁠ 833:⁠ 821:⁠ 817:⁠ 805:⁠ 801:⁠ 789:⁠ 785:⁠ 773:⁠ 769:⁠ 757:⁠ 753:⁠ 741:⁠ 737:⁠ 725:⁠ 721:⁠ 709:⁠ 705:⁠ 693:⁠ 689:⁠ 677:⁠ 673:⁠ 661:⁠ 657:⁠ 645:⁠ 641:⁠ 629:⁠ 586:⁠ 566:⁠ 560:⁠ 544:⁠ 524:⁠ 504:⁠ 498:⁠ 482:⁠ 473:⁠ 453:⁠ 447:⁠ 431:⁠ 424:⁠ 408:⁠ 402:⁠ 382:⁠ 376:⁠ 360:⁠ 353:⁠ 337:⁠ 315:⁠ 299:⁠ 290:⁠ 274:⁠ 263:layout. 193:History 150:⁠ 130:⁠ 124:⁠ 104:⁠ 98:⁠ 82:⁠ 69:to the 2131:  2090:  2051:  2008:  1980:  1940:  1871:  1835:  1245:, the 1241:Using 1183:= 1001 1171:: The 1140:= 1110 1132:: The 970:, and 945:where 426:> 1 355:< 1 261:H tree 210:(1619) 53:, the 2129:S2CID 2088:S2CID 2049:JSTOR 1938:JSTOR 1924:(4), 1912:(PDF) 1786:fusc( 1778:fusc( 1605:Notes 1501:< 1497:0 ≤ 2 1462:fusc( 1447:fusc( 1437:fusc( 1253:fusc( 1144:= 14. 536:> 405:; if 57:is a 2006:ISBN 1833:ISBN 1790:+ 1) 1466:+ 1) 1451:+ 1) 1425:The 1418:and 1374:fusc 1356:fusc 1325:fusc 1306:fusc 1281:fusc 1235:OEIS 1187:= 9. 1068:1990 1036:1081 851:, …. 620:The 328:and 218:and 157:and 127:and 59:tree 2119:hdl 2111:doi 2107:206 2078:doi 2041:doi 2037:110 1968:doi 1956:", 1930:doi 1922:107 1891:doi 1887:178 1859:doi 1555:+ 1 1547:− 1 1534:− 1 1210:of 1005:of 968:= 1 450:is 379:is 322:of 49:In 2230:: 2216:, 2210:, 2196:, 2192:, 2177:, 2173:, 2154:55 2152:, 2146:, 2127:, 2117:, 2105:, 2086:, 2074:16 2072:, 2047:, 2035:, 2031:, 2015:. 2004:, 2000:, 1978:MR 1976:, 1964:70 1962:, 1936:, 1920:, 1914:, 1885:, 1869:MR 1867:, 1855:31 1853:, 1849:, 1821:; 1668:^ 1575:. 1495:, 1422:. 1237:). 1154:= 1115:= 1081:53 1075:37 1070:= 1049:37 1043:53 1038:= 985:. 972:⌊ 835:, 819:, 803:, 787:, 771:, 755:, 739:, 723:, 707:, 691:, 675:, 659:, 643:, 604:. 589:. 572:+ 532:+ 518:+ 459:− 396:− 189:. 170:. 136:+ 118:+ 2158:. 2121:: 2113:: 2095:. 2080:: 2043:: 1985:. 1970:: 1945:. 1932:: 1893:: 1861:: 1804:. 1792:. 1788:n 1782:) 1780:n 1763:. 1701:1 1698:/ 1695:1 1678:. 1653:. 1632:. 1560:n 1553:n 1551:2 1545:n 1539:n 1532:n 1526:n 1520:n 1518:2 1509:n 1503:n 1499:r 1491:) 1484:r 1476:( 1464:n 1449:n 1444:/ 1441:) 1439:n 1428:n 1395:, 1392:) 1389:1 1386:+ 1383:n 1380:( 1371:+ 1368:) 1365:n 1362:( 1353:= 1346:) 1343:1 1340:+ 1337:n 1334:2 1331:( 1318:) 1315:n 1312:( 1303:= 1296:) 1293:n 1290:2 1287:( 1257:) 1255:n 1248:n 1185:2 1181:i 1165:3 1162:/ 1159:4 1151:i 1149:q 1142:2 1138:i 1126:4 1123:/ 1120:3 1112:i 1110:q 1102:i 1096:i 1094:q 1087:. 1078:/ 1065:q 1060:2 1055:. 1046:/ 1033:q 1028:2 1018:i 1016:q 1007:i 993:i 991:q 979:⌋ 976:i 974:q 966:1 963:q 957:i 950:i 948:q 927:1 924:+ 919:i 915:q 903:i 899:q 892:2 888:1 883:= 878:1 875:+ 872:i 868:q 846:4 843:/ 840:3 830:3 827:/ 824:5 814:5 811:/ 808:2 798:2 795:/ 792:5 782:5 779:/ 776:3 766:3 763:/ 760:4 750:4 747:/ 744:1 734:1 731:/ 728:3 718:3 715:/ 712:2 702:2 699:/ 696:3 686:3 683:/ 680:1 670:1 667:/ 664:2 654:2 651:/ 648:1 638:1 635:/ 632:1 582:b 578:/ 574:b 570:a 556:b 552:/ 548:a 538:a 534:b 530:a 520:b 516:a 512:/ 508:a 494:b 490:/ 486:a 469:b 465:/ 461:b 457:a 443:b 439:/ 435:a 420:b 416:/ 412:a 398:a 394:b 390:/ 386:a 372:b 368:/ 364:a 349:b 345:/ 341:a 331:b 325:a 311:b 307:/ 303:a 286:b 282:/ 278:a 146:b 142:/ 138:b 134:a 120:b 116:a 112:/ 108:a 94:b 90:/ 86:a

Index



number theory
tree
vertices
one-to-one
positive
rational numbers
fraction
Neil Calkin
Herbert Wilf
Kepler's
Harmonices Mundi
breadth-first traversal

Kepler's
Harmonices Mundi
Neil Calkin
Herbert Wilf
Jean Berstel
Moritz Abraham Stern
Stern–Brocot tree
Kepler's
Harmonices Mundi

H tree
directed graph
greatest common divisor
binary search tree
Stern–Brocot tree

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.