Knowledge (XXG)

Midsphere

Source đź“ť

33: 974: 780: 690: 1124:, one of whose two opposite faces is combinatorially equivalent to any given three-dimensional polyhedron. It is unknown whether every three-dimensional polyhedron can be used directly as a face of a four-dimensional antiprism, without replacing it by its canonical polyhedron, but it is not always possible to do so using both an arbitrary three-dimensional polyhedron and its polar dual. 703:
the centers of four spheres that are all externally tangent to each other. In this case, the six edge lengths of the tetrahedron are the pairwise sums of the four radii of these spheres. The midsphere of such a tetrahedron touches its edges at the points where two of the four generating spheres are tangent to each other, and is perpendicular to all four generating spheres.
1136:. Given such a body, every polyhedron has a combinatorially equivalent realization whose edges are tangent to this body. This has been described as "caging an egg": the smooth body is the egg and the polyhedral realization is its cage. Moreover, fixing three edges of the cage to have three specified points of tangency on the egg causes this realization to become unique. 1091:
in the Euclidean plane, applying a stereographic projection to transform it into a pair of circle packings on a sphere, searching numerically for a Möbius transformation that brings the centroid of the crossing points to the center of the sphere, and placing the vertices of the polyhedron at points
1003:
is the given graph: its circles do not cross each other and are tangent to each other exactly when the vertices they correspond to are adjacent. Although every polyhedron has a combinatorially equivalent form with a midsphere, some polyhedra do not have any equivalent form with an inscribed sphere,
838:
of the vertex with respect to the midsphere) that equals the distance from that vertex to the point of tangency of each edge that touches it. For each edge, the sum of the two numbers assigned to its endpoints is just the edge's length. For instance, Crelle's tetrahedra can be parameterized by the
702:
has a midsphere. The tetrahedra that have a midsphere have been called "Crelle's tetrahedra"; they form a four-dimensional subfamily of the six-dimensional space of all tetrahedra (as parameterized by their six edge lengths). More precisely, Crelle's tetrahedra are exactly the tetrahedra formed by
990:
can be represented by the vertices and edges of a polyhedron with a midsphere. Equivalently, any convex polyhedron can be transformed into a combinatorially equivalent form, with corresponding vertices, edges, and faces, that has a midsphere. The horizon circles of the resulting polyhedron can be
1111:
works directly with the coordinates of the polyhedron vertices, adjusting their positions in an attempt to make the edges have equal distance from the origin, to make the points of minimum distance from the origin have the origin as their centroid, and to make the faces of the polyhedron remain
977:
A circle packing in the plane (blue) obtained by stereographically projecting the horizon circles on the midsphere of an octahedron. The yellow vertices and red edges represent the octahedron itself, centrally projected onto the midsphere and then stereographically projected onto the
965:, the sum of the lengths of the edges in the cycle can be subdivided in the same way into twice the sum of the powers of the vertices. Because this sum of powers of vertices does not depend on the choice of edges in the cycle, all Hamiltonian cycles have equal lengths. 933:
for the origin. These four numbers (three equal and one smaller) are the four numbers that parameterize this tetrahedron. Three of the tetrahedron edges connect two points that both have the larger radius; the length of these edges is the sum of these equal radii,
842:
As an example, the four points (0,0,0), (1,0,0), (0,1,0), and (0,0,1) form one of Crelle's tetrahedra, with three isosceles right triangles and one equilateral triangle for a face. These four points are the centers of four pairwise tangent spheres, with radii
1112:
planar. Unlike the circle packing method, this has not been proven to converge to the canonical polyhedron, and it is not even guaranteed to produce a polyhedron combinatorially equivalent to the given one, but it appears to work well on small examples.
693:
The centers of four pairwise tangent spheres form the vertices of a Crelle's tetrahedron. Here, four equal spheres form a regular tetrahedron. The midsphere passes through the six points of tangency of these spheres, which in this case form a regular
265: 1042:
among all combinatorially equivalent forms of the same polyhedron. For polyhedra with a non-cyclic group of orientation-preserving symmetries, the two choices of transformation coincide. For example, the canonical polyhedron of a
154:
is defined to be a sphere that is tangent to every edge of the polyhedron. That is to say, each edge must touch it, at an interior point of the edge, without crossing it. Equivalently, it is a sphere that contains the
159:
of every face of the polyhedron. When a midsphere exists, it is unique. Not every convex polyhedron has a midsphere; to have a midsphere, every face must have an inscribed circle (that is, it must be a
736:
has an inscribed circle, and these circles are tangent to each other exactly when the faces they lie in share an edge. (Not all systems of circles with these properties come from midspheres, however.)
931: 883: 652: 471: 549: 583: 1249: 300: 1281: 509: 335: 1031:. A different choice of transformation takes any polyhedron with a midsphere into one that maximizes the minimum distance of a vertex from the midsphere. It can be found in 1015:
of three-dimensional space that leaves the midsphere in the same position. This transformation leaves the sphere in place, but moves points within the sphere according to a
771:
of the midsphere, as viewed from the vertex. The circles formed in this way are tangent to each other exactly when the vertices they correspond to are connected by an edge.
119:, which has the same midsphere. The length of each polyhedron edge is the sum of the distances from its two endpoints to their corresponding circles in this circle packing. 1069: 956: 403: 607: 1304: 427: 1092:
in space having the dual circles of the transformed packing as their horizons. However, the coordinates and radii of the circles in the circle packing step can be
186: 1649: 367: 818:
as their apexes. The edges of the polar polyhedron have the same points of tangency with the midsphere, at which they are perpendicular to the edges of
1047:, defined in either of these two ways, is a cube, with the distance from its centroid to its edge midpoints equal to one and its edge length equal to 1023:
of the points of tangency is at the center of the sphere. The result of this transformation is an equivalent form of the given polyhedron, called the
1647:(2015), "The Galois complexity of graph drawing: why numerical solutions are ubiquitous for force-directed, spectral, and circle packing drawings", 1019:. Any polyhedron with a midsphere, scaled so that the midsphere is the unit sphere, can be transformed in this way into a polyhedron for which the 1843: 115:
on the midsphere, one corresponding to the adjacencies between vertices of the polyhedron, and the other corresponding in the same way to its
168:
has a midsphere only when it is a cube, because otherwise it has non-square rectangles as faces, and these do not have inscribed circles.
732:
is a circle that lies within the face, and is tangent to its edges at the same points where the midsphere is tangent. Thus, each face of
1707:, WADS 2001, 8-10 August, Providence, Rhode Island, Lecture Notes in Computer Science, vol. 2125, Springer-Verlag, pp. 14–25, 2452: 2164: 1825: 1027:, with the property that all combinatorially equivalent polyhedra will produce the same canonical polyhedra as each other, up to 1926: 1587: 888: 783: 2488:, IAS/Park City Mathematics Series, vol. 13, Providence, Rhode Island: American Mathematical Society, pp. 617–691, 2194: 2115: 1807: 846: 1437: 682:
all have midspheres. In the regular polyhedra, the inscribed sphere, midsphere, and circumscribed sphere all exist and are
180: 618: 435: 2289:
Springborn, Boris A. (2005), "A unique representation of polyhedral types: Centering via Möbius transformations",
520: 2291: 1703: 1430:, but that Koebe only proved this result for polyhedra with triangular faces. Schramm credits the full result to 1012: 556: 1214: 2396: 2237: 2048: 1816: 992: 779: 1016: 2546: 839:
four numbers assigned in this way to their four vertices, showing that they form a four-dimensional family.
671: 270: 131: 85: 1350:: it is not true that only the regular polyhedra have all three of a midsphere, insphere, and circumsphere. 138:. Any canonical polyhedron and its polar dual can be used to form two opposite faces of a four-dimensional 1254: 1097: 1088: 983: 675: 482: 135: 112: 89: 1028: 764: 305: 41: 1120:
The canonical polyhedron and its polar dual can be used to construct a four-dimensional analogue of an
689: 2477: 2432: 2246: 2067: 1870: 1755: 1093: 370: 176: 973: 2350: 1644: 2536: 2489: 2421: 2413: 2383: 2326: 2300: 2270: 2091: 2057: 1903: 1887: 1788: 1772: 1708: 1658: 1620: 1604: 1050: 1000: 937: 683: 667: 663: 165: 161: 156: 81: 77: 1922: 1426:. Schramm states that the existence of an equivalent polyhedron with a midsphere was claimed by 1107:
Alternatively, a simpler numerical method for constructing the canonical polyhedron proposed by
302:
from the origin. Therefore, for this cube, the midsphere is centered at the origin, with radius
1608: 376: 134:
can construct the canonical polyhedron, but its coordinates cannot be represented exactly as a
2448: 2160: 1821: 1346:. The irregular tetrahedra with a midsphere provide a counterexample to an incorrect claim of 962: 592: 151: 61: 1811: 2541: 2515: 2499: 2466: 2440: 2405: 2367: 2359: 2334: 2310: 2278: 2254: 2221: 2203: 2178: 2154: 2142: 2124: 2099: 2075: 2035: 2000: 1992: 1949: 1911: 1879: 1857: 1796: 1764: 1746: 1734: 1718: 1686: 1668: 1628: 1596: 1431: 1286: 1145: 1132:
The midsphere in the construction of the canonical polyhedron can be replaced by any smooth
1080: 987: 835: 338: 260:{\textstyle {\bigl (}{\pm {\tfrac {1}{2}}},\pm {\tfrac {1}{2}},\pm {\tfrac {1}{2}}{\bigr )}} 2511: 2462: 2379: 2322: 2266: 2217: 2174: 2138: 2087: 2031: 1945: 1899: 1853: 1835: 1784: 1730: 1682: 1616: 412: 314: 279: 2519: 2507: 2470: 2458: 2375: 2371: 2338: 2318: 2282: 2262: 2225: 2213: 2182: 2170: 2146: 2134: 2103: 2083: 2039: 2027: 2004: 1996: 1953: 1941: 1915: 1895: 1861: 1849: 1831: 1800: 1780: 1738: 1726: 1690: 1678: 1632: 1612: 1585:
Aravind, P. K. (March 2011), "How spherical are the Archimedean solids and their duals?",
1441: 1036: 996: 799: 748: 679: 116: 93: 73: 1891: 1776: 2250: 2071: 2345: 1964: 1960: 1698: 1640: 1108: 406: 810:
as its midsphere. The face planes of the polar polyhedron pass through the circles on
2530: 2425: 2387: 2274: 2208: 2129: 2095: 1907: 1792: 1624: 760: 344: 164:), and all of these inscribed circles must belong to a single sphere. For example, a 97: 37: 1701:(2001), "Optimal Möbius transformations for information visualization and meshing", 1600: 17: 2439:, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, pp. 117–118, 2330: 2232: 1008: 655: 610: 986:, on representing planar graphs by systems of tangent circles, states that every 2189: 2110: 2012: 1435: 1133: 1032: 958:. The other three edges connect two points with different radii summing to one. 831: 699: 586: 474: 2444: 2363: 2314: 2079: 1980: 1883: 1768: 1084: 512: 2020:
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
1148:, a hyperbolic polyhedron in which each vertex lies on the sphere at infinity 2503: 1722: 1121: 172: 139: 2484:-vector shapes", in Miller, Ezra; Reiner, Victor; Sturmfels, Bernd (eds.), 2394:
Wheeler, Roger F. (December 1958), "25. Quadrilaterals", Classroom Notes,
1039: 1020: 127: 122:
Every convex polyhedron has a combinatorially equivalent polyhedron, the
49: 2417: 2258: 1673: 1283:
is Coxeter's notation for the midradius, noting also that Coxeter uses
768: 69: 2013:"An inequality and some equalities for the midradius of a tetrahedron" 1713: 36:
A polyhedron and its midsphere. The red circles are the boundaries of
32: 2494: 2305: 1044: 65: 2409: 1444:
again only states the result explicitly for triangulated polyhedra.
1035:, and the canonical polyhedron defined in this alternative way has 2062: 2046:
Liu, Jinsong; Zhou, Ze (2016), "How many cages midscribe an egg",
1663: 1079:
A numerical approximation to the canonical polyhedron for a given
972: 778: 688: 111:
When a polyhedron has a midsphere, one can form two perpendicular
31: 2348:(1928), "Ăśber isoperimetrische Probleme bei konvexen Polyedern", 1704:
Proceedings of the 7th Workshop on Algorithms and Data Structures
100:) all have midspheres. The radius of the midsphere is called the 76:
of the polyhedron. Not every polyhedron has a midsphere, but the
1544: 1011:
and the same midsphere can be transformed into each other by a
830:
For a polyhedron with a midsphere, it is possible to assign a
885:
for the three nonzero points on the equilateral triangle and
1848:(2nd ed.), Oxford University Press, pp. 79, 117, 1868:
Fetter, Hans L. (2012), "A polyhedron full of surprises",
2192:(1994), "Coin graphs, polyhedra, and conformal mapping", 926:{\displaystyle 1-{\tfrac {1}{2}}{\sqrt {2}}\approx 0.293} 1434:, but the relevant portion of Thurston's lecture notes 878:{\displaystyle {\tfrac {1}{2}}{\sqrt {2}}\approx 0.707} 686:, and the midsphere touches each edge at its midpoint. 2480:(2007), "Convex polytopes: extremal constructions and 2113:(1993), "A polynomial time circle packing algorithm", 1165: 1163: 1161: 899: 851: 623: 561: 525: 487: 440: 379: 347: 308: 239: 221: 202: 189: 1289: 1257: 1217: 1180: 1178: 1083:
can be constructed by representing the graph and its
1053: 940: 891: 849: 621: 595: 559: 523: 485: 438: 415: 273: 1983:(1936), "Kontaktprobleme der Konformen Abbildung", 1927:"Are prisms and antiprisms really boring? (Part 3)" 1516: 1514: 1298: 1275: 1243: 1063: 950: 925: 877: 646: 601: 577: 543: 503: 465: 421: 397: 361: 329: 294: 259: 130:of the points of tangency of its edges. Numerical 1267: 1227: 814:that are tangent to cones having the vertices of 759:in a circle; this circle forms the boundary of a 319: 284: 1985:Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 104:A polyhedron that has a midsphere is said to be 2351:Journal fĂĽr die reine und angewandte Mathematik 647:{\displaystyle {\tfrac {\varphi ^{2}}{2}}\ell } 466:{\displaystyle {\tfrac {1}{2{\sqrt {2}}}}\ell } 1650:Journal of Graph Algorithms & Applications 126:, that does have a midsphere, centered at the 2159:, University of California Press, p. 4, 267:, the midpoints of the edges are at distance 252: 192: 8: 1639:Bannister, Michael J.; Devanny, William E.; 1493: 1383: 1359: 1319: 767:from the vertex. That is, the circle is the 544:{\displaystyle {\tfrac {1}{\sqrt {2}}}\ell } 29:Sphere tangent to every edge of a polyhedron 578:{\displaystyle {\tfrac {\varphi }{2}}\ell } 1812:"2.1 Regular polyhedra; 2.2 Reciprocation" 1505: 1244:{\displaystyle {}_{1}\!\mathrm {R} /\ell } 2493: 2304: 2207: 2128: 2061: 1712: 1672: 1662: 1288: 1268: 1261: 1259: 1256: 1233: 1228: 1221: 1219: 1216: 1054: 1052: 961:When a polyhedron with a midsphere has a 941: 939: 910: 898: 890: 862: 850: 848: 629: 622: 620: 594: 560: 558: 524: 522: 486: 484: 449: 439: 437: 414: 385: 380: 378: 351: 346: 320: 313: 312: 307: 285: 278: 277: 272: 251: 250: 238: 220: 201: 197: 191: 190: 188: 1457: 1169: 720:is the midsphere of a convex polyhedron 337:. This is larger than the radius of the 1820:(3rd ed.), Dover, pp. 16–17, 1568: 1556: 1481: 1453: 1419: 1371: 1315: 1211:, Table I(i), pp. 292–293. See column " 1208: 1196: 1184: 1157: 1007:Any two convex polyhedra with the same 40:within which the surface of the sphere 1407: 1395: 1343: 295:{\displaystyle 1{\big /}\!{\sqrt {2}}} 1969:Mathematica in Education and Research 1842:Cundy, H. M.; Rollett, A. P. (1961), 1749:(2015), "Mutually tangent spheres in 1532: 1469: 1427: 1423: 763:within which the sphere's surface is 369:, and smaller than the radius of the 7: 1520: 1347: 1331: 1276:{\displaystyle {}_{1}\!\mathrm {R} } 504:{\displaystyle {\tfrac {1}{2}}\ell } 183:, with vertices at the eight points 1318:states this for regular polyhedra; 330:{\textstyle 1{\big /}\!{\sqrt {2}}} 150:A midsphere of a three-dimensional 1269: 1229: 25: 1965:"Calculating canonical polyhedra" 1004:or with a circumscribed sphere. 1609:10.4169/college.math.j.42.2.098 1601:10.4169/college.math.j.42.2.098 1588:The College Mathematics Journal 995:, into a circle packing in the 2235:(1992), "How to cage an egg", 1306:as the edge length (see p. 2). 1: 2209:10.1016/0012-365X(93)E0068-F 2156:Polyhedra: A Visual Approach 2130:10.1016/0012-365X(93)90340-Y 1064:{\displaystyle {\sqrt {2}}} 951:{\displaystyle {\sqrt {2}}} 724:, then the intersection of 181:Cartesian coordinate system 2563: 1494:Bern & Eppstein (2001) 1384:Cundy & Rollett (1961) 1360:Byer & Smeltzer (2015) 1322:for Archimedean polyhedra. 405:. More generally, for any 398:{\textstyle {\sqrt {3/4}}} 2445:10.1007/978-1-4613-8431-1 2364:10.1515/crll.1928.159.133 2315:10.1007/s00209-004-0713-5 2292:Mathematische Zeitschrift 2080:10.1007/s00222-015-0602-z 1892:10.4169/math.mag.85.5.334 1884:10.4169/math.mag.85.5.334 1777:10.4169/math.mag.88.2.146 1769:10.4169/math.mag.88.2.146 1094:non-constructible numbers 1013:projective transformation 982:One stronger form of the 2397:The Mathematical Gazette 2238:Inventiones Mathematicae 2049:Inventiones Mathematicae 1320:Cundy & Rollett 1961 993:stereographic projection 784:Cube and dual octahedron 602:{\displaystyle \varphi } 132:approximation algorithms 2486:Geometric Combinatorics 1723:10.1007/3-540-44634-6_3 1545:Bannister et al. (2015) 755:and that is tangent to 146:Definition and examples 2153:Pugh, Anthony (1976), 2011:LászlĂł, Lajos (2017), 1300: 1299:{\displaystyle 2\ell } 1277: 1245: 1098:closed-form expression 1065: 984:circle packing theorem 979: 952: 927: 879: 787: 695: 648: 603: 579: 545: 505: 467: 423: 399: 363: 331: 296: 261: 136:closed-form expression 45: 2437:Lectures on Polytopes 1569:Liu & Zhou (2016) 1301: 1278: 1246: 1100:using arithmetic and 1066: 1017:Möbius transformation 976: 953: 928: 880: 786:with common midsphere 782: 751:that has its apex at 692: 649: 604: 580: 546: 506: 468: 424: 422:{\displaystyle \ell } 400: 364: 332: 297: 262: 35: 2195:Discrete Mathematics 2116:Discrete Mathematics 1871:Mathematics Magazine 1756:Mathematics Magazine 1747:Smeltzer, Deirdre L. 1645:Goodrich, Michael T. 1287: 1255: 1215: 1104:th-root operations. 1051: 1025:canonical polyhedron 969:Canonical polyhedron 938: 889: 847: 834:to each vertex (the 698:Not every irregular 678:polyhedra and their 619: 593: 557: 521: 483: 436: 413: 377: 371:circumscribed sphere 345: 306: 271: 187: 124:canonical polyhedron 92:polyhedra and their 18:Canonical polyhedron 2504:10.1090/pcms/013/10 2251:1992InMat.107..543S 2072:2016InMat.203..655L 1845:Mathematical Models 1096:that have no exact 551:for a regular cube, 429:, the midradius is 108:about this sphere. 2478:Ziegler, GĂĽnter M. 2433:Ziegler, GĂĽnter M. 2259:10.1007/BF01231901 1674:10.7155/jgaa.00349 1440:2021-01-21 at the 1296: 1273: 1241: 1061: 1001:intersection graph 980: 948: 923: 908: 875: 860: 788: 747:, then there is a 696: 644: 639: 599: 575: 570: 541: 536: 501: 496: 463: 458: 419: 395: 359: 327: 292: 257: 248: 230: 211: 166:rectangular cuboid 162:tangential polygon 46: 1817:Regular Polytopes 1808:Coxeter, H. S. M. 1506:Springborn (2005) 1087:as perpendicular 1059: 963:Hamiltonian cycle 946: 915: 907: 867: 859: 728:with any face of 664:uniform polyhedra 638: 569: 535: 534: 495: 457: 454: 393: 325: 290: 247: 229: 210: 152:convex polyhedron 78:uniform polyhedra 62:convex polyhedron 44:from each vertex. 16:(Redirected from 2554: 2522: 2497: 2483: 2473: 2428: 2404:(342): 275–276, 2390: 2358:(159): 133–143, 2341: 2308: 2285: 2228: 2211: 2202:(1–3): 133–138, 2185: 2149: 2132: 2123:(1–3): 257–263, 2106: 2065: 2042: 2017: 2007: 1976: 1956: 1931: 1923:GrĂĽnbaum, Branko 1918: 1864: 1838: 1803: 1752: 1741: 1716: 1693: 1676: 1666: 1635: 1572: 1566: 1560: 1554: 1548: 1542: 1536: 1530: 1524: 1518: 1509: 1503: 1497: 1491: 1485: 1479: 1473: 1467: 1461: 1451: 1445: 1432:William Thurston 1417: 1411: 1405: 1399: 1393: 1387: 1381: 1375: 1369: 1363: 1357: 1351: 1341: 1335: 1329: 1323: 1313: 1307: 1305: 1303: 1302: 1297: 1282: 1280: 1279: 1274: 1272: 1266: 1265: 1260: 1250: 1248: 1247: 1242: 1237: 1232: 1226: 1225: 1220: 1206: 1200: 1194: 1188: 1182: 1173: 1167: 1146:Ideal polyhedron 1103: 1081:polyhedral graph 1070: 1068: 1067: 1062: 1060: 1055: 991:transformed, by 988:polyhedral graph 957: 955: 954: 949: 947: 942: 932: 930: 929: 924: 916: 911: 909: 900: 884: 882: 881: 876: 868: 863: 861: 852: 821: 817: 813: 809: 805: 802:with respect to 800:polar polyhedron 797: 794:has a midsphere 793: 790:If a polyhedron 758: 754: 746: 742: 735: 731: 727: 723: 719: 666:, including the 653: 651: 650: 645: 640: 634: 633: 624: 608: 606: 605: 600: 584: 582: 581: 576: 571: 562: 550: 548: 547: 542: 537: 530: 526: 510: 508: 507: 502: 497: 488: 472: 470: 469: 464: 459: 456: 455: 450: 441: 428: 426: 425: 420: 404: 402: 401: 396: 394: 389: 381: 368: 366: 365: 362:{\textstyle 1/2} 360: 355: 339:inscribed sphere 336: 334: 333: 328: 326: 321: 318: 317: 301: 299: 298: 293: 291: 286: 283: 282: 266: 264: 263: 258: 256: 255: 249: 240: 231: 222: 213: 212: 203: 196: 195: 175:centered at the 157:inscribed circle 117:polar polyhedron 80:, including the 21: 2562: 2561: 2557: 2556: 2555: 2553: 2552: 2551: 2527: 2526: 2525: 2481: 2476: 2455: 2431: 2410:10.2307/3610439 2393: 2344: 2288: 2231: 2188: 2167: 2152: 2109: 2045: 2015: 2010: 1979: 1961:Hart, George W. 1959: 1929: 1921: 1867: 1841: 1828: 1806: 1750: 1745:Byer, Owen D.; 1744: 1696: 1641:Eppstein, David 1638: 1584: 1580: 1575: 1567: 1563: 1555: 1551: 1543: 1539: 1531: 1527: 1519: 1512: 1504: 1500: 1492: 1488: 1480: 1476: 1468: 1464: 1458:Steinitz (1928) 1452: 1448: 1442:Wayback Machine 1418: 1414: 1406: 1402: 1394: 1390: 1382: 1378: 1370: 1366: 1358: 1354: 1342: 1338: 1330: 1326: 1314: 1310: 1285: 1284: 1258: 1253: 1252: 1218: 1213: 1212: 1207: 1203: 1195: 1191: 1183: 1176: 1170:GrĂĽnbaum (2005) 1168: 1159: 1155: 1142: 1130: 1118: 1101: 1089:circle packings 1077: 1049: 1048: 997:Euclidean plane 971: 936: 935: 887: 886: 845: 844: 828: 819: 815: 811: 807: 803: 795: 791: 777: 756: 752: 744: 743:is a vertex of 740: 733: 729: 725: 721: 717: 714: 712:Tangent circles 709: 625: 617: 616: 591: 590: 555: 554: 519: 518: 481: 480: 445: 434: 433: 411: 410: 409:of edge length 375: 374: 343: 342: 304: 303: 269: 268: 185: 184: 148: 113:circle packings 30: 23: 22: 15: 12: 11: 5: 2560: 2558: 2550: 2549: 2547:Circle packing 2544: 2539: 2529: 2528: 2524: 2523: 2474: 2453: 2429: 2391: 2342: 2299:(3): 513–517, 2286: 2245:(3): 543–560, 2229: 2186: 2165: 2150: 2107: 2056:(2): 655–673, 2043: 2008: 1977: 1957: 1934:Geombinatorics 1919: 1878:(5): 334–342, 1865: 1839: 1826: 1804: 1763:(2): 146–150, 1742: 1694: 1657:(2): 619–656, 1636: 1581: 1579: 1576: 1574: 1573: 1561: 1557:Schramm (1992) 1549: 1537: 1525: 1510: 1498: 1486: 1482:Ziegler (1995) 1474: 1462: 1454:Schramm (1992) 1446: 1420:Schramm (1992) 1412: 1400: 1388: 1376: 1372:Ziegler (2007) 1364: 1352: 1336: 1324: 1316:Coxeter (1973) 1308: 1295: 1292: 1271: 1264: 1240: 1236: 1231: 1224: 1209:Coxeter (1973) 1201: 1197:Wheeler (1958) 1189: 1185:Coxeter (1973) 1174: 1156: 1154: 1151: 1150: 1149: 1141: 1138: 1129: 1126: 1117: 1114: 1109:George W. Hart 1076: 1073: 1058: 970: 967: 945: 922: 919: 914: 906: 903: 897: 894: 874: 871: 866: 858: 855: 827: 824: 776: 773: 713: 710: 708: 705: 660: 659: 654:for a regular 643: 637: 632: 628: 614: 598: 585:for a regular 574: 568: 565: 552: 540: 533: 529: 516: 511:for a regular 500: 494: 491: 478: 473:for a regular 462: 453: 448: 444: 418: 407:Platonic solid 392: 388: 384: 358: 354: 350: 324: 316: 311: 289: 281: 276: 254: 246: 243: 237: 234: 228: 225: 219: 216: 209: 206: 200: 194: 147: 144: 98:Catalan solids 38:spherical caps 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2559: 2548: 2545: 2543: 2540: 2538: 2535: 2534: 2532: 2521: 2517: 2513: 2509: 2505: 2501: 2496: 2491: 2487: 2479: 2475: 2472: 2468: 2464: 2460: 2456: 2454:0-387-94365-X 2450: 2446: 2442: 2438: 2434: 2430: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2398: 2392: 2389: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2352: 2347: 2343: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2307: 2302: 2298: 2294: 2293: 2287: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2239: 2234: 2233:Schramm, Oded 2230: 2227: 2223: 2219: 2215: 2210: 2205: 2201: 2197: 2196: 2191: 2187: 2184: 2180: 2176: 2172: 2168: 2166:9780520030565 2162: 2158: 2157: 2151: 2148: 2144: 2140: 2136: 2131: 2126: 2122: 2118: 2117: 2112: 2108: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2064: 2059: 2055: 2051: 2050: 2044: 2041: 2037: 2033: 2029: 2025: 2021: 2014: 2009: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1955: 1951: 1947: 1943: 1939: 1935: 1928: 1924: 1920: 1917: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1872: 1866: 1863: 1859: 1855: 1851: 1847: 1846: 1840: 1837: 1833: 1829: 1827:0-486-61480-8 1823: 1819: 1818: 1813: 1809: 1805: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1757: 1748: 1743: 1740: 1736: 1732: 1728: 1724: 1720: 1715: 1714:cs.CG/0101006 1710: 1706: 1705: 1700: 1695: 1692: 1688: 1684: 1680: 1675: 1670: 1665: 1660: 1656: 1652: 1651: 1646: 1642: 1637: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1595:(2): 98–107, 1594: 1590: 1589: 1583: 1582: 1577: 1570: 1565: 1562: 1558: 1553: 1550: 1546: 1541: 1538: 1534: 1529: 1526: 1522: 1517: 1515: 1511: 1507: 1502: 1499: 1495: 1490: 1487: 1483: 1478: 1475: 1471: 1466: 1463: 1459: 1455: 1450: 1447: 1443: 1439: 1436: 1433: 1429: 1425: 1421: 1416: 1413: 1409: 1408:Fetter (2012) 1404: 1401: 1397: 1396:LászlĂł (2017) 1392: 1389: 1385: 1380: 1377: 1373: 1368: 1365: 1361: 1356: 1353: 1349: 1345: 1344:LászlĂł (2017) 1340: 1337: 1333: 1328: 1325: 1321: 1317: 1312: 1309: 1293: 1290: 1262: 1238: 1234: 1222: 1210: 1205: 1202: 1198: 1193: 1190: 1186: 1181: 1179: 1175: 1171: 1166: 1164: 1162: 1158: 1152: 1147: 1144: 1143: 1139: 1137: 1135: 1128:Caging an egg 1127: 1125: 1123: 1115: 1113: 1110: 1105: 1099: 1095: 1090: 1086: 1082: 1074: 1072: 1056: 1046: 1041: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1005: 1002: 998: 994: 989: 985: 975: 968: 966: 964: 959: 943: 920: 917: 912: 904: 901: 895: 892: 872: 869: 864: 856: 853: 840: 837: 833: 825: 823: 801: 785: 781: 774: 772: 770: 766: 762: 761:spherical cap 750: 737: 711: 706: 704: 701: 691: 687: 685: 681: 677: 673: 669: 665: 657: 641: 635: 630: 626: 615: 612: 596: 588: 572: 566: 563: 553: 538: 531: 527: 517: 514: 498: 492: 489: 479: 476: 460: 451: 446: 442: 432: 431: 430: 416: 408: 390: 386: 382: 372: 356: 352: 348: 340: 322: 309: 287: 274: 244: 241: 235: 232: 226: 223: 217: 214: 207: 204: 198: 182: 178: 174: 169: 167: 163: 158: 153: 145: 143: 141: 137: 133: 129: 125: 120: 118: 114: 109: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 43: 39: 34: 27: 19: 2495:math/0411400 2485: 2436: 2401: 2395: 2355: 2349: 2346:Steinitz, E. 2306:math/0401005 2296: 2290: 2242: 2236: 2199: 2193: 2190:Sachs, Horst 2155: 2120: 2114: 2111:Mohar, Bojan 2053: 2047: 2023: 2019: 1988: 1984: 1972: 1968: 1940:(2): 69–78, 1937: 1933: 1875: 1869: 1844: 1815: 1760: 1754: 1702: 1699:Eppstein, D. 1654: 1648: 1592: 1586: 1564: 1552: 1540: 1533:Mohar (1993) 1528: 1501: 1489: 1477: 1470:Sachs (1994) 1465: 1449: 1428:Koebe (1936) 1424:Sachs (1994) 1415: 1403: 1391: 1379: 1367: 1355: 1339: 1327: 1311: 1204: 1192: 1131: 1119: 1116:Applications 1106: 1078: 1075:Construction 1024: 1009:face lattice 1006: 981: 960: 841: 829: 826:Edge lengths 789: 738: 715: 697: 672:quasiregular 661: 656:dodecahedron 611:golden ratio 609:denotes the 170: 149: 123: 121: 110: 105: 101: 86:quasiregular 57: 53: 47: 26: 2026:: 165–176, 1991:: 141–164, 1981:Koebe, Paul 1521:Hart (1997) 1348:Pugh (1976) 1332:Pugh (1976) 1134:convex body 1033:linear time 832:real number 798:, then the 739:Dually, if 700:tetrahedron 694:octahedron. 676:semiregular 587:icosahedron 475:tetrahedron 90:semiregular 58:intersphere 42:can be seen 2531:Categories 2520:1134.52018 2471:0823.52002 2372:54.0527.04 2339:1068.52015 2283:0726.52003 2226:0808.05043 2183:0387.52006 2147:0785.52006 2104:1339.52010 2040:1399.51014 2005:0017.21701 1997:62.1217.04 1954:1094.52007 1916:1274.52018 1862:0095.38001 1801:1325.51011 1739:0997.68536 1697:Bern, M.; 1691:1328.05128 1633:1272.97023 1578:References 1085:dual graph 1029:congruence 707:Properties 684:concentric 513:octahedron 106:midscribed 102:midradius. 2537:Polyhedra 2426:250434576 2388:199546274 2275:189830473 2096:253741720 2063:1412.5430 1975:(3): 5–10 1908:118482074 1793:125524102 1753:-space", 1664:1408.1422 1625:116393034 1294:ℓ 1251:", where 1239:ℓ 1122:antiprism 918:≈ 896:− 870:≈ 806:also has 642:ℓ 627:φ 597:φ 573:ℓ 564:φ 539:ℓ 499:ℓ 461:ℓ 417:ℓ 236:± 218:± 199:± 173:unit cube 140:antiprism 72:to every 68:which is 54:midsphere 2435:(1995), 1963:(1997), 1925:(2005), 1810:(1973), 1438:Archived 1140:See also 1040:symmetry 1021:centroid 589:, where 128:centroid 50:geometry 2542:Spheres 2512:2383133 2463:1311028 2418:3610439 2380:1581158 2331:7624380 2323:2121737 2267:1150601 2247:Bibcode 2218:1303402 2175:0451161 2139:1226147 2088:3455159 2068:Bibcode 2032:3722672 1946:2298896 1900:3007214 1854:0124167 1836:0370327 1785:3359040 1731:1936397 1683:3430492 1617:2793141 1037:maximal 775:Duality 769:horizon 765:visible 668:regular 179:of the 82:regular 70:tangent 2518:  2510:  2469:  2461:  2451:  2424:  2416:  2386:  2378:  2370:  2337:  2329:  2321:  2281:  2273:  2265:  2224:  2216:  2181:  2173:  2163:  2145:  2137:  2102:  2094:  2086:  2038:  2030:  2003:  1995:  1952:  1944:  1914:  1906:  1898:  1890:  1860:  1852:  1834:  1824:  1799:  1791:  1783:  1775:  1737:  1729:  1689:  1681:  1631:  1623:  1615:  1607:  1045:cuboid 999:whose 978:plane. 177:origin 171:For a 66:sphere 52:, the 2490:arXiv 2422:S2CID 2414:JSTOR 2384:S2CID 2327:S2CID 2301:arXiv 2271:S2CID 2092:S2CID 2058:arXiv 2016:(PDF) 1930:(PDF) 1904:S2CID 1888:JSTOR 1789:S2CID 1773:JSTOR 1709:arXiv 1659:arXiv 1621:S2CID 1605:JSTOR 1153:Notes 921:0.293 873:0.707 836:power 680:duals 613:, and 94:duals 64:is a 60:of a 2449:ISBN 2356:1928 2161:ISBN 1822:ISBN 749:cone 674:and 662:The 88:and 74:edge 2516:Zbl 2500:doi 2467:Zbl 2441:doi 2406:doi 2368:JFM 2360:doi 2335:Zbl 2311:doi 2297:249 2279:Zbl 2255:doi 2243:107 2222:Zbl 2204:doi 2200:134 2179:Zbl 2143:Zbl 2125:doi 2121:117 2100:Zbl 2076:doi 2054:203 2036:Zbl 2001:Zbl 1993:JFM 1950:Zbl 1912:Zbl 1880:doi 1858:Zbl 1797:Zbl 1765:doi 1735:Zbl 1719:doi 1687:Zbl 1669:doi 1629:Zbl 1597:doi 716:If 56:or 48:In 2533:: 2514:, 2508:MR 2506:, 2498:, 2465:, 2459:MR 2457:, 2447:, 2420:, 2412:, 2402:42 2400:, 2382:, 2376:MR 2374:, 2366:, 2354:, 2333:, 2325:, 2319:MR 2317:, 2309:, 2295:, 2277:, 2269:, 2263:MR 2261:, 2253:, 2241:, 2220:, 2214:MR 2212:, 2198:, 2177:, 2171:MR 2169:, 2141:, 2135:MR 2133:, 2119:, 2098:, 2090:, 2084:MR 2082:, 2074:, 2066:, 2052:, 2034:, 2028:MR 2024:46 2022:, 2018:, 1999:, 1989:88 1987:, 1971:, 1967:, 1948:, 1942:MR 1938:15 1936:, 1932:, 1910:, 1902:, 1896:MR 1894:, 1886:, 1876:85 1874:, 1856:, 1850:MR 1832:MR 1830:, 1814:, 1795:, 1787:, 1781:MR 1779:, 1771:, 1761:88 1759:, 1733:, 1727:MR 1725:, 1717:, 1685:, 1679:MR 1677:, 1667:, 1655:19 1653:, 1643:; 1627:, 1619:, 1613:MR 1611:, 1603:, 1593:42 1591:, 1513:^ 1456:; 1422:; 1177:^ 1160:^ 1071:. 822:. 670:, 373:, 341:, 142:. 84:, 2502:: 2492:: 2482:f 2443:: 2408:: 2362:: 2313:: 2303:: 2257:: 2249:: 2206:: 2127:: 2078:: 2070:: 2060:: 1973:6 1882:: 1767:: 1751:n 1721:: 1711:: 1671:: 1661:: 1599:: 1571:. 1559:. 1547:. 1535:. 1523:. 1508:. 1496:. 1484:. 1472:. 1460:. 1410:. 1398:. 1386:. 1374:. 1362:. 1334:. 1291:2 1270:R 1263:1 1235:/ 1230:R 1223:1 1199:. 1187:. 1172:. 1102:n 1057:2 944:2 913:2 905:2 902:1 893:1 865:2 857:2 854:1 820:P 816:P 812:O 808:O 804:O 796:O 792:P 757:O 753:v 745:P 741:v 734:P 730:P 726:O 722:P 718:O 658:. 636:2 631:2 567:2 532:2 528:1 515:, 493:2 490:1 477:, 452:2 447:2 443:1 391:4 387:/ 383:3 357:2 353:/ 349:1 323:2 315:/ 310:1 288:2 280:/ 275:1 253:) 245:2 242:1 233:, 227:2 224:1 215:, 208:2 205:1 193:( 96:( 20:)

Index

Canonical polyhedron
An opaque white polyhedron with four triangular faces and four quadrilateral faces is crossed by a transparent blue sphere of approximately the same size, tangent to each edge of the polyhedron. The visible portions of the sphere, outside the polyhedron, form circular caps on each face of the polyhedron, of two sizes: smaller in the triangular faces, and larger in the quadrilateral faces. Red circles on the surface of the sphere, passing through these caps, mark the horizons visible from each polyhedron vertex. The red circles have the same two sizes as the circular caps: smaller circles surround the polyhedron vertices where three faces meet, and larger circles surround the vertices where four faces meet.
spherical caps
can be seen
geometry
convex polyhedron
sphere
tangent
edge
uniform polyhedra
regular
quasiregular
semiregular
duals
Catalan solids
circle packings
polar polyhedron
centroid
approximation algorithms
closed-form expression
antiprism
convex polyhedron
inscribed circle
tangential polygon
rectangular cuboid
unit cube
origin
Cartesian coordinate system
inscribed sphere
circumscribed sphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑