Knowledge (XXG)

Perfect set property

Source đź“ť

108:
of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable
461: 372: 302: 329: 269: 242: 211: 176: 400: 131:
but not the axiom of choice, every set of reals has the perfect set property, so the use of the axiom of choice is necessary. Every
480: 66: 128: 427: 338: 58:
subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a
32: 277: 384: 78: 307: 247: 220: 189: 154: 124: 396: 214: 332: 392: 119:
implies the existence of sets of reals that do not have the perfect set property, such as
116: 82: 17: 179: 140: 136: 105: 74: 474: 120: 48: 132: 40: 100:
have the perfect set property in a particularly strong form: any closed subset of
272: 183: 70: 59: 55: 28: 93: 73:
form a Polish space, a set of reals with the perfect set property cannot be a
135:
has the perfect set property. It follows from the existence of sufficiently
52: 109: 36: 464:". Fundamenta Mathematicae vol. 137, iss. 3, pp.187--199 (1991). 423: 65:
As nonempty perfect sets in a Polish space always have the
244:
with itself, any closed set is the disjoint union of an
430: 341: 310: 280: 250: 223: 192: 157: 455: 366: 323: 296: 263: 236: 205: 170: 85:of reals has the cardinality of the continuum. 8: 456:{\displaystyle \omega _{1}^{\omega _{1}}} 445: 440: 435: 429: 424:A Cantor-Bendixson theorem for the space 367:{\displaystyle \omega _{1}^{\omega _{1}}} 356: 351: 346: 340: 315: 309: 288: 279: 255: 249: 228: 222: 197: 191: 162: 156: 415: 331:-closedness of a set is defined via a 7: 285: 25: 389:Classical Descriptive Set Theory 297:{\displaystyle \leq \aleph _{1}} 127:, which satisfies all axioms of 81:, stated in the form that every 104:may be written uniquely as the 143:has the perfect set property. 1: 67:cardinality of the continuum 324:{\displaystyle \omega _{1}} 264:{\displaystyle \omega _{1}} 237:{\displaystyle \omega _{1}} 206:{\displaystyle \omega _{1}} 171:{\displaystyle \omega _{1}} 497: 271:-perfect set and a set of 178:be the least uncountable 90:Cantor–Bendixson theorem 18:Cantor-Bendixson theorem 481:Descriptive set theory 457: 368: 325: 298: 265: 238: 207: 172: 33:descriptive set theory 458: 385:Kechris, Alexander S. 369: 326: 299: 266: 239: 208: 173: 428: 391:, Berlin, New York: 339: 335:in which members of 308: 278: 248: 221: 190: 155: 79:continuum hypothesis 45:perfect set property 452: 363: 453: 431: 364: 342: 321: 294: 261: 234: 203: 182:. In an analog of 168: 96:of a Polish space 402:978-1-4612-8692-9 215:cartesian product 186:derived from the 16:(Redirected from 488: 465: 462: 460: 459: 454: 451: 450: 449: 439: 420: 405: 373: 371: 370: 365: 362: 361: 360: 350: 333:topological game 330: 328: 327: 322: 320: 319: 303: 301: 300: 295: 293: 292: 270: 268: 267: 262: 260: 259: 243: 241: 240: 235: 233: 232: 212: 210: 209: 204: 202: 201: 177: 175: 174: 169: 167: 166: 47:if it is either 21: 496: 495: 491: 490: 489: 487: 486: 485: 471: 470: 469: 468: 441: 426: 425: 421: 417: 412: 403: 393:Springer-Verlag 383: 380: 352: 337: 336: 311: 306: 305: 284: 276: 275: 251: 246: 245: 224: 219: 218: 193: 188: 187: 158: 153: 152: 149: 147:Generalizations 137:large cardinals 125:Solovay's model 117:axiom of choice 83:uncountable set 23: 22: 15: 12: 11: 5: 494: 492: 484: 483: 473: 472: 467: 466: 448: 444: 438: 434: 422:J. Väänänen, " 414: 413: 411: 408: 407: 406: 401: 379: 376: 359: 355: 349: 345: 318: 314: 291: 287: 283: 258: 254: 231: 227: 200: 196: 165: 161: 148: 145: 141:projective set 123:. However, in 121:Bernstein sets 106:disjoint union 75:counterexample 24: 14: 13: 10: 9: 6: 4: 3: 2: 493: 482: 479: 478: 476: 463: 446: 442: 436: 432: 419: 416: 409: 404: 398: 394: 390: 386: 382: 381: 377: 375: 357: 353: 347: 343: 334: 316: 312: 289: 281: 274: 256: 252: 229: 225: 216: 198: 194: 185: 181: 163: 159: 146: 144: 142: 138: 134: 130: 126: 122: 118: 113: 111: 107: 103: 99: 95: 91: 86: 84: 80: 76: 72: 68: 63: 61: 57: 54: 50: 46: 42: 38: 34: 30: 19: 418: 388: 374:are played. 150: 133:analytic set 114: 101: 97: 92:states that 89: 87: 64: 44: 41:Polish space 29:mathematical 26: 273:cardinality 184:Baire space 139:that every 94:closed sets 60:perfect set 378:References 69:, and the 443:ω 433:ω 410:Citations 354:ω 344:ω 313:ω 286:ℵ 282:≤ 253:ω 226:ω 195:ω 160:ω 51:or has a 49:countable 31:field of 475:Category 387:(1995), 304:, where 110:open set 53:nonempty 43:has the 180:ordinal 77:to the 56:perfect 27:In the 399:  213:-fold 37:subset 71:reals 39:of a 397:ISBN 151:Let 115:The 88:The 35:, a 217:of 477:: 395:, 129:ZF 112:. 62:. 447:1 437:1 358:1 348:1 317:1 290:1 257:1 230:1 199:1 164:1 102:X 98:X 20:)

Index

Cantor-Bendixson theorem
mathematical
descriptive set theory
subset
Polish space
countable
nonempty
perfect
perfect set
cardinality of the continuum
reals
counterexample
continuum hypothesis
uncountable set
closed sets
disjoint union
open set
axiom of choice
Bernstein sets
Solovay's model
ZF
analytic set
large cardinals
projective set
ordinal
Baire space
cartesian product
cardinality
topological game
Kechris, Alexander S.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑