Knowledge

Ordinal arithmetic

Source 📝

846: 899: 6064: 4900:
showed that the ordinals satisfy a form of the unique factorization theorem: every nonzero ordinal can be written as a product of a finite number of prime ordinals. This factorization into prime ordinals is in general not unique, but there is a "minimal" factorization into primes that is unique up to
3982: 6416: 4175: 4769: 5958: 6234: 3228: 4301: 6491: 5913: 7735:. The ordinals do not have unique factorization into primes under the natural product. While the full polynomial ring does have unique factorization, the subset of polynomials with non-negative coefficients does not: for example, if 7697:. The natural product is associative and commutative and distributes over the natural sum. The natural product is always greater or equal to the usual product, but it may be strictly greater. For example, the natural product of 6306: 4536: 6775: 3637: 2496: 2309: 1160: 2107: 4889:, and so on. At the first occurrence of inequality, the ordinal that has the larger component is the larger ordinal. If they are the same until one terminates before the other, then the one that terminates first is smaller. 5806: 4637: 643: 587: 5584: 315: 5518: 3706: 3356: 7082: 7216: 7139: 5329:. We can do away with the infinitely many numerals by using just the constant symbol 0 and the operation of successor, S (for example, the natural number 4 may be expressed as S(S(S(S(0))))). This describes an 3865: 6622: 6712: 6311: 6558: 6110: 4066: 6956: 5676: 6851: 6816: 5630: 6996: 7036: 5728: 6156: 5979: 4074: 6884: 6917: 4413: 757: 4648: 3543: 3291: 7242: 5837: 4444: 4335: 3477: 7165: 3799: 5832: 5325:
can be expressed in an alphabet containing only the function symbols for addition, multiplication and exponentiation, as well as constant symbols for each natural number and for
4366: 6584: 3510: 2659:
with finite support, typically a set of much smaller cardinality. To avoid confusing ordinal exponentiation with cardinal exponentiation, one can use symbols for ordinals (e.g.
6648: 6520: 4567: 7458: 2159:
can be viewed as triples of natural numbers, ordered lexicographically with least significant position first. This agrees with the ordinary exponentiation of natural numbers.
7414: 6161: 1474:
Multiplication of ordinals is not in general commutative. Specifically, a natural number greater than 1 never commutes with any infinite ordinal, and two infinite ordinals
6674: 3123: 2688: 4860: 4806: 3853: 3826: 3424: 6496:
The natural sum and product are commutative and associative, and natural product distributes over natural sum. The operations are also monotonic, in the sense that if
5933: 3766: 3444: 783: 6421: 5953: 4887: 4833: 4206:
The Cantor normal form also allows us to compute sums and products of ordinals: to compute the sum, for example, one need merely know (see the properties listed in
7370: 7341: 7682:
The natural sum is associative and commutative. It is always greater or equal to the usual sum, but it may be strictly greater. For example, the natural sum of
7304: 7284: 6059:{\displaystyle \alpha \otimes \beta =\bigoplus _{\begin{aligned}&1\leq i\leq k\\&1\leq j\leq \ell \end{aligned}}\omega ^{\alpha _{i}\oplus \beta _{j}}.} 6239: 4449: 6720: 3562: 2391: 2204: 1105: 2044: 5351:, but because there are only countably many finite-length strings over any finite alphabet, for any given ordinal notation there will be ordinals below 5733: 4908:
A prime ordinal is an ordinal greater than 1 that cannot be written as a product of two smaller ordinals. Some of the first primes are 2, 3, 5, ... ,
598: 542: 5523: 4220: 260: 5457: 5054:
If two consecutive primes of the prime factorization are both limits or both finite, the second one must be less than or equal to the first one.
3646: 361:
is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing
7966: 4575: 3296: 3092:
There are ordinal operations that continue the sequence begun by addition, multiplication, and exponentiation, including ordinal versions of
5372: 7041: 3977:{\displaystyle \omega ^{\omega ^{\omega ^{7}\cdot 6+\omega +42}\cdot 1729+\omega ^{9}+88}\cdot 3+\omega ^{\omega ^{\omega }}\cdot 5+65537} 3748:
that are built from the natural numbers by a finite number of arithmetical operations of addition, multiplication and exponentiation base-
7170: 7090: 66:. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the 7792:
has two incompatible expressions as a natural product of polynomials with non-negative coefficients that cannot be decomposed further.
6411:{\displaystyle \alpha \otimes \beta =\omega ^{\omega ^{\omega }+\omega }+\omega ^{\omega ^{\omega }+5}+\omega ^{\omega +1}+\omega ^{6}} 7679:
for the definition of natural multiplication in that context; however, it uses surreal subtraction, which is not defined on ordinals.
6589: 6679: 7987: 4992: 4971: 1763: 828: 7882: 6525: 6069: 4024: 533: 7847: 6922: 5635: 5335:: a system for naming ordinals over a finite alphabet. This particular system of ordinal notation is called the collection of 4002:
of the finite-length arithmetical expressions of Cantor normal form that are hereditarily non-trivial where non-trivial means
6821: 6783: 5589: 3545:. In that case Cantor normal form does not express the ordinal in terms of smaller ones; this can happen as explained below. 6961: 7001: 5681: 6115: 3995: 3074: 1755:, since they are not even a ring; furthermore the Euclidean "norm" would be ordinal-valued using the left division here. 7998: 7898: 4170:{\displaystyle 0,\,1=\omega ^{0},\,\omega =\omega ^{1},\,\omega ^{\omega },\,\omega ^{\omega ^{\omega }},\,\ldots \,.} 1303:
As is the case with addition, ordinal multiplication on the natural numbers is the same as standard multiplication.
6856: 4764:{\displaystyle \alpha n=\omega ^{\beta _{1}}c_{1}n+\omega ^{\beta _{2}}c_{2}+\cdots +\omega ^{\beta _{k}}c_{k}\,,} 4068:, i.e. in Cantor normal form the exponent is not smaller than the ordinal itself. It is the limit of the sequence 3559:
equal to 1 and allow the exponents to be equal. In other words, every ordinal number α can be uniquely written as
3548:
A minor variation of Cantor normal form, which is usually slightly easier to work with, is to set all the numbers
6889: 5361: 3396: 1508:" is an equivalence relation on the ordinals greater than 1, and all equivalence classes are countably infinite. 718: 7956: 8042: 4185: 3515: 3237: 4446:
the expression is already in Cantor normal form); and to compute products, the essential facts are that when
2179:
expresses the fact that finite sequences of zeros and ones can be identified with natural numbers, using the
7994: 7806:
There are arithmetic operations on ordinals by virtue of the one-to-one correspondence between ordinals and
7716: 7221: 5365: 4371: 3449: 2620: 7144: 3771: 7878: 5811: 979:. The order-type of the Cartesian product is the ordinal that results from multiplying the order-types of 7843: 7247:
The natural sum and product are the same as the addition and multiplication (restricted to ordinals) of
6563: 3482: 1859: 1322: 968: 141: 91: 63: 6627: 6499: 5047:. However, there is a unique factorization into primes satisfying the following additional conditions: 4418: 4309: 7725:. Under natural addition and multiplication, the ordinals can be identified with the elements of the 7419: 6229:{\displaystyle \alpha \oplus \beta =\omega ^{\omega ^{\omega }}+\omega ^{\omega }+\omega ^{5}+\omega } 8003:, Polska Akademia Nauk Monografie Matematyczne, vol. 34, Warsaw: Państwowe Wydawnictwo Naukowe, 7877:
Philip W. Carruth, Arithmetic of ordinals with applications to the theory of ordered Abelian groups,
7866: 7375: 3223:{\displaystyle \omega ^{\beta _{1}}c_{1}+\omega ^{\beta _{2}}c_{2}+\cdots +\omega ^{\beta _{k}}c_{k}} 4340: 8037: 7263: 7252: 1863: 529: 6653: 5375:, and more general primitive recursive ordinal functions can be used to describe larger ordinals. 5153:. Repeating this and factorizing the natural numbers into primes gives the prime factorization of 4541: 7913: 5392: 2666: 2623:, the two operations are quite different and should not be confused. The cardinal exponentiation 7504:
is the maximum order type of a total order extending the direct product (as a partial order) of
7486:
is the maximum order type of a total order extending the disjoint union (as a partial order) of
4838: 4784: 3831: 3804: 3402: 6486:{\displaystyle \alpha \beta =\omega ^{\omega ^{\omega }+\omega }+\omega ^{\omega ^{\omega }+5}} 5908:{\displaystyle \alpha \oplus \beta =\omega ^{\gamma _{1}}+\cdots +\omega ^{\gamma _{k+\ell }}.} 7983: 7962: 7815: 7811: 4189: 1598: 946: 649: 251: 95: 5918: 4017:. It is the smallest ordinal that does not have a finite arithmetical expression in terms of 3751: 3429: 762: 7923: 5938: 5331: 5272:
should be replaced by its factorization into a non-increasing sequence of finite primes and
4897: 3008: 1947:
The definition of exponentiation can also be given by transfinite recursion on the exponent
1752: 58:. Each can be defined in essentially two different ways: either by constructing an explicit 8008: 4865: 4811: 8004: 7676: 7346: 7317: 7256: 3105: 330: 5058:
This prime factorization can easily be read off using the Cantor normal form as follows:
2189:
can be viewed as the order type of finite sequences of natural numbers; every element of
6301:{\displaystyle \alpha +\beta =\omega ^{\omega ^{\omega }}+\omega ^{\omega }+\omega ^{5}} 4531:{\displaystyle 0<\alpha =\omega ^{\beta _{1}}c_{1}+\cdots +\omega ^{\beta _{k}}c_{k}} 3744:
The Cantor normal form allows us to uniquely express—and order—the ordinals
1300:, showing that multiplication of ordinals is not in general commutative, c.f. pictures. 7289: 7269: 6770:{\displaystyle \underbrace {\alpha \oplus \cdots \oplus \alpha } _{n}=\alpha \otimes n} 2827:
Ordinal exponentiation is strictly increasing and continuous in the right argument: If
1814: 1810: 1748: 1511: 55: 51: 43: 7810:. Three common operations on nimbers are nimber addition, nimber multiplication, and 4195:: that is, Peano's axioms can show transfinite induction up to any ordinal less than ε 3632:{\displaystyle \omega ^{\beta _{1}}+\omega ^{\beta _{2}}+\cdots +\omega ^{\beta _{k}}} 2491:{\displaystyle \alpha ^{b_{1}}a_{1}+\alpha ^{b_{2}}a_{2}+\cdots +\alpha ^{b_{k}}a_{k}} 2304:{\displaystyle \omega ^{n_{1}}c_{1}+\omega ^{n_{2}}c_{2}+\cdots +\omega ^{n_{k}}c_{k}} 1155:{\displaystyle \alpha \cdot \beta =\bigcup _{\delta <\beta }(\alpha \cdot \delta )} 592:
but the analogous relation does not hold for the left argument; instead we only have:
8031: 7975: 7858: 7531: 7520:
are both subsets of some larger total order; then their union has order type at most
7087:
Natural sum and product are not continuous in the right argument, since, for example
2180: 2102:{\displaystyle \alpha ^{\beta }=\bigcup _{0<\delta <\beta }(\alpha ^{\delta })} 1740: 1652: 681: 322: 7460:. One may take this relation as a definition of the natural operations by choosing 4184:
is important for various reasons in arithmetic (essentially because it measures the
3859:
and so on recursively, we get a system of notation for these ordinals (for example,
7862: 7311: 4192: 5371:
The operations of addition, multiplication and exponentiation are all examples of
930:, under lexicographic order with least significant position first, has order type 883:, using lexicographic order with least significant position first, has order type 845: 17: 5801:{\displaystyle \alpha _{1},\ldots ,\alpha _{k},\beta _{1},\ldots ,\beta _{\ell }} 7952: 7715:
Under natural addition, the ordinals can be identified with the elements of the
7248: 898: 495: 424: 31: 1389:. Multiplication is strictly increasing and continuous in the right argument: ( 990:
The definition of multiplication can also be given by transfinite recursion on
638:{\displaystyle \alpha <\beta \Rightarrow \alpha +\gamma \leq \beta +\gamma } 7307: 971:
that puts the least significant position first. Effectively, each element of
582:{\displaystyle \alpha <\beta \Rightarrow \gamma +\alpha <\gamma +\beta } 488: 59: 35: 5347:. There are other ordinal notations capable of capturing ordinals well past ε 5579:{\displaystyle \beta =\omega ^{\beta _{1}}+\cdots +\omega ^{\beta _{\ell }}} 4296:{\displaystyle \omega ^{\beta }c+\omega ^{\beta '}c'=\omega ^{\beta '}c'\,,} 3097: 3093: 2162:
But for infinite exponents, the definition may not be obvious. For example,
1656: 310:{\displaystyle \alpha +\beta =\bigcup _{\delta <\beta }(\alpha +\delta )} 7927: 5513:{\displaystyle \alpha =\omega ^{\alpha _{1}}+\cdots +\omega ^{\alpha _{k}}} 3701:{\displaystyle \beta _{1}\geq \beta _{2}\geq \ldots \geq \beta _{k}\geq 0} 7726: 3101: 1815:
Von Neumann's definition of an ordinal as the set of all smaller ordinals
47: 7708:(the usual product), but this is also the natural product of 2 and  2619:
While the same exponent-notation is used for ordinal exponentiation and
4632:{\displaystyle \alpha \omega ^{\beta '}=\omega ^{\beta _{1}+\beta '}\,} 3351:{\displaystyle \beta _{1}>\beta _{2}>\ldots >\beta _{k}\geq 0} 123:
keep the order they already have, and likewise for comparisons within
7807: 7801: 4991:. These are the infinite successor primes, and are the successors of 4781:
To compare two ordinals written in Cantor normal form, first compare
7077:{\displaystyle \alpha \otimes \beta <\omega ^{\omega ^{\gamma }}} 1428:
strictly increasing in the left argument, for example, 1 < 2 but
7918: 7565:, as the smallest ordinal strictly greater than the natural sum of 7211:{\displaystyle \lim _{n<\omega }\alpha \otimes n=\alpha \omega } 7134:{\displaystyle \lim _{n<\omega }\alpha \oplus n=\alpha +\omega } 5149:
is a product of a smaller ordinal and a prime and a natural number
4368:
one can apply the distributive law on the left and rewrite this as
333:
is the same as standard addition. The first transfinite ordinal is
5210:
into a minimal product of infinite primes and natural numbers is
7842:
Ernst Jacobsthal, Vertauschbarkeit transfiniter Ordnungszahlen,
7693:(the usual sum), but this is also the natural sum of 1 and  6617:{\displaystyle \alpha \otimes \gamma \leq \beta \otimes \gamma } 4974:, the transfinite ordinals that are closed under multiplication. 2168:
can be identified with a set of finite sequences of elements of
380:
0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...
6707:{\displaystyle \alpha \otimes \gamma <\beta \otimes \gamma } 7958:
Set Theory: The Third Millennium Edition, revised and expanded
5321:
As discussed above, the Cantor normal form of ordinals below ε
3828:
in Cantor normal form, and making the same assumption for the
2002:. Writing the successor and limit ordinals cases separately: 1791:. These consist of the ordinal 2 and the ordinals of the form 1054:. Writing the successor and limit ordinals cases separately: 204:. Writing the successor and limit ordinals cases separately: 6553:{\displaystyle \alpha \oplus \gamma <\beta \oplus \gamma } 3801:
in the Cantor normal form, we can also express the exponents
1944:. This is a well-ordering and hence gives an ordinal number. 4970:. These are the prime ordinals that are limits, and are the 6105:{\displaystyle \alpha =\omega ^{\omega ^{\omega }}+\omega } 4061:{\displaystyle \varepsilon _{0}=\omega ^{\varepsilon _{0}}} 94:
with least significant position first, on the union of the
8022: 6951:{\displaystyle \alpha \oplus \beta <\omega ^{\gamma }} 5671:{\displaystyle \beta _{1}\geq \cdots \geq \beta _{\ell }} 5339:
ordinal expressions, and can express all ordinals below ε
3711:
Another variation of the Cantor normal form is the "base
186:
is the smallest ordinal strictly greater than the sum of
5454:
The natural sum and product are defined as follows. Let
62:
that represents the result of the operation or by using
7899:"Intermediate arithmetic operations on ordinal numbers" 7861:
and R. Parikh, Well-partial orderings and hierarchies,
6846:{\displaystyle \alpha \beta \leq \alpha \otimes \beta } 6811:{\displaystyle \alpha +\beta \leq \alpha \oplus \beta } 5625:{\displaystyle \alpha _{1}\geq \cdots \geq \alpha _{k}} 5364:) that are not expressible. Such ordinals are known as 5161:
So the factorization of the Cantor normal form ordinal
5051:
Every limit prime must occur before any successor prime
2117:
Both definitions simplify considerably if the exponent
712:. On the other hand, right cancellation does not work: 27:
Operations on ordinals that extend classical arithmetic
6991:{\displaystyle \alpha <\omega ^{\omega ^{\gamma }}} 4999:
Factorization into primes is not unique: for example,
7422: 7378: 7349: 7320: 7292: 7272: 7224: 7173: 7147: 7093: 7044: 7031:{\displaystyle \beta <\omega ^{\omega ^{\gamma }}} 7004: 6964: 6925: 6892: 6859: 6824: 6786: 6723: 6682: 6656: 6630: 6592: 6566: 6528: 6502: 6424: 6314: 6242: 6164: 6118: 6072: 5961: 5941: 5921: 5840: 5814: 5736: 5723:{\displaystyle \gamma _{1},\ldots ,\gamma _{k+\ell }} 5684: 5638: 5592: 5526: 5460: 4868: 4841: 4814: 4787: 4651: 4578: 4544: 4452: 4421: 4374: 4343: 4312: 4223: 4077: 4027: 3868: 3834: 3807: 3774: 3754: 3649: 3565: 3518: 3485: 3452: 3432: 3405: 3299: 3240: 3126: 2669: 2394: 2207: 2047: 1108: 765: 721: 601: 545: 263: 6151:{\displaystyle \beta =\omega ^{\omega }+\omega ^{5}} 1866:
with the least significant position first: we write
1858:(essentially, we consider the functions with finite 2629:is defined to be the cardinal number of the set of 7980:Set Theory: An Introduction to Independence Proofs 7452: 7408: 7364: 7335: 7298: 7278: 7236: 7210: 7159: 7133: 7076: 7030: 6990: 6950: 6911: 6878: 6845: 6810: 6769: 6706: 6668: 6642: 6616: 6578: 6552: 6514: 6485: 6410: 6300: 6228: 6150: 6104: 6058: 5947: 5927: 5907: 5826: 5800: 5722: 5670: 5624: 5578: 5512: 4881: 4854: 4827: 4800: 4763: 4631: 4561: 4530: 4438: 4407: 4360: 4329: 4295: 4169: 4060: 3976: 3847: 3820: 3793: 3760: 3700: 3631: 3537: 3504: 3471: 3438: 3418: 3350: 3285: 3222: 2682: 2490: 2303: 2101: 1154: 777: 751: 637: 581: 309: 1982:is the smallest ordinal greater than or equal to 1443:. However, it is (non-strictly) increasing, i.e. 1029:is the smallest ordinal greater than or equal to 7262:The natural operations come up in the theory of 7175: 7095: 5391:operations on ordinals were defined in 1906 by 2663:) in the former and symbols for cardinals (e.g. 466:0 < 1 < 2 < ... < 0' < 1' < 2' 447:0 < 1 < 2 < 0' < 1' < 2' < ... 7601:. Similarly, we can define the natural product 4953:, ... There are three sorts of prime ordinals: 2376:The same is true in general: every element of 1813:via order types is most easily explained using 7814:. Nimber addition is a generalization of the 2566:. This expression corresponds to the function 1347:. The ordinal 1 is a multiplicative identity, 1170:As an example, here is the order relation for 831:). These are exactly the ordinals of the form 819:are closed under addition and contain 0, then 337:, the set of all natural numbers, followed by 7881:48 (1942), 262–271. See Theorem 1. Available 7822:of a set of ordinals is the smallest ordinal 1536:. However, the distributive law on the right 8: 6879:{\displaystyle \alpha <\omega ^{\gamma }} 5097:in Cantor normal form gives an expansion of 4901:changing the order of finite prime factors ( 2877:. Note, for instance, that 2 < 3 and yet 1710:. Right division does not work: there is no 397:does not have a direct predecessor while in 6912:{\displaystyle \beta <\omega ^{\gamma }} 1274:and after relabeling, this looks just like 752:{\displaystyle 3+\omega =0+\omega =\omega } 90:is the ordinal representing the variant of 7416:, while the type of the direct product is 5400: 4902: 7961:. Springer Science & Business Media. 7917: 7611:by simultaneous transfinite recursion on 7557:by simultaneous transfinite recursion on 7421: 7377: 7348: 7319: 7291: 7271: 7223: 7178: 7172: 7146: 7098: 7092: 7066: 7061: 7043: 7020: 7015: 7003: 6980: 6975: 6963: 6942: 6924: 6903: 6891: 6870: 6858: 6823: 6785: 6749: 6725: 6722: 6681: 6655: 6629: 6591: 6565: 6527: 6501: 6469: 6464: 6443: 6438: 6423: 6402: 6383: 6362: 6357: 6336: 6331: 6313: 6292: 6279: 6264: 6259: 6241: 6214: 6201: 6186: 6181: 6163: 6142: 6129: 6117: 6088: 6083: 6071: 6045: 6032: 6027: 5978: 5960: 5940: 5920: 5888: 5883: 5862: 5857: 5839: 5813: 5792: 5773: 5760: 5741: 5735: 5708: 5689: 5683: 5662: 5643: 5637: 5616: 5597: 5591: 5568: 5563: 5542: 5537: 5525: 5502: 5497: 5476: 5471: 5459: 4995:, the additively indecomposable ordinals. 4873: 4867: 4846: 4840: 4819: 4813: 4792: 4786: 4757: 4751: 4739: 4734: 4715: 4703: 4698: 4682: 4670: 4665: 4650: 4628: 4609: 4604: 4586: 4577: 4543: 4522: 4510: 4505: 4486: 4474: 4469: 4451: 4420: 4379: 4373: 4342: 4311: 4289: 4270: 4244: 4228: 4222: 4163: 4159: 4148: 4143: 4138: 4129: 4124: 4115: 4104: 4095: 4084: 4076: 4050: 4045: 4032: 4026: 3954: 3949: 3922: 3883: 3878: 3873: 3867: 3839: 3833: 3812: 3806: 3779: 3773: 3753: 3686: 3667: 3654: 3648: 3621: 3616: 3595: 3590: 3575: 3570: 3564: 3538:{\displaystyle \alpha =\omega ^{\alpha }} 3529: 3517: 3490: 3484: 3457: 3451: 3431: 3410: 3404: 3358:are ordinal numbers. The degenerate case 3336: 3317: 3304: 3298: 3286:{\displaystyle c_{1},c_{2},\ldots ,c_{k}} 3277: 3258: 3245: 3239: 3214: 3202: 3197: 3178: 3166: 3161: 3148: 3136: 3131: 3125: 2674: 2668: 2482: 2470: 2465: 2446: 2434: 2429: 2416: 2404: 2399: 2393: 2295: 2283: 2278: 2259: 2247: 2242: 2229: 2217: 2212: 2206: 2090: 2065: 2052: 2046: 1817:. Then, to construct a set of order type 1636:. Right cancellation does not work, e.g. 1125: 1107: 764: 720: 600: 544: 280: 262: 7892: 7890: 7534:, then their sum has order type at most 7512:. A useful application of this is when 897: 844: 798:: for example, there does not exist any 42:describes the three usual operations on 7835: 1764:Multiplicatively indecomposable ordinal 67: 7237:{\displaystyle \alpha \otimes \omega } 5104:Now look at the Cantor normal form of 4408:{\displaystyle \omega ^{\beta }(c+c')} 3472:{\displaystyle \beta _{1}\leq \alpha } 2388:) can be uniquely written in the form 2201:) can be uniquely written in the form 788:Nor does right subtraction, even when 71: 7160:{\displaystyle \alpha \oplus \omega } 5373:primitive recursive ordinal functions 5062:First write the ordinal as a product 4021:, and the smallest ordinal such that 3794:{\displaystyle \beta _{1}<\alpha } 423:Ordinal addition is, in general, not 7: 7530:. If they are both subsets of some 7372:, the type of the disjoint union is 5827:{\displaystyle \alpha \oplus \beta } 5808:sorted in nonincreasing order. Then 967:can be well-ordered by a variant of 7846:, Bd 64 (1907), 475-488. Available 7818:operation on natural numbers. The 7547:We can also define the natural sum 4211: 2643:, while the ordinal exponentiation 1848:for all but finitely many elements 6579:{\displaystyle \alpha \leq \beta } 3505:{\displaystyle \beta _{1}=\alpha } 3011:showed that the only solutions of 2671: 2562:are nonzero ordinals smaller than 1823:consider the set of all functions 975:is replaced by a disjoint copy of 25: 6643:{\displaystyle \alpha <\beta } 6515:{\displaystyle \alpha <\beta } 4439:{\displaystyle \beta '<\beta } 4330:{\displaystyle \beta '>\beta } 3392:, and can be considered the base- 3293:are nonzero natural numbers, and 2382:(i.e. every ordinal smaller than 2355:are nonzero natural numbers, and 2195:(i.e. every ordinal smaller than 2172:, properly ordered. The equation 1597:, which is different. There is a 1492:for some nonzero natural numbers 1361:. Multiplication is associative, 1217:which has the same order type as 829:additively indecomposable ordinal 415:do not have direct predecessors. 115:is smaller than every element of 82:The sum of two well-ordered sets 7453:{\displaystyle o(S)\otimes o(T)} 7266:; given two well partial orders 5395:, and are sometimes called the 2612:and sends all other elements of 1958:, ordinary exponentiation gives 1739:The ordinal numbers form a left 1001:, ordinary multiplication gives 68:"natural" arithmetic of ordinals 7729:generated by the delta numbers 7719:generated by the gamma numbers 7409:{\displaystyle o(S)\oplus o(T)} 5586:be in Cantor normal form (i.e. 3998:) is the set of ordinal values 3737:are nonzero ordinals less than 1751:. Hence the ordinals are not a 1651:, but 1 and 2 are different. A 498:; one can see for example that 468:has a largest element (namely, 7865:39 (1977), 195–206. Available 7447: 7441: 7432: 7426: 7403: 7397: 7388: 7382: 7359: 7353: 7330: 7324: 5076:in the Cantor normal form and 4957:The finite primes 2, 3, 5, ... 4778:is a non-zero natural number. 4402: 4385: 4361:{\displaystyle \beta '=\beta } 2096: 2083: 1149: 1137: 680:. Furthermore, one can define 611: 555: 491:, but not order isomorphic). 304: 292: 111:. This way, every element of 1: 5431:, and the natural product by 5101:as a product of limit primes. 4538:is in Cantor normal form and 4207: 2127:is then just the product of 438:since the order relation for 8000:Cardinal and ordinal numbers 7906:Mathematical Logic Quarterly 7897:Altman, Harry (2017-11-01). 6669:{\displaystyle \gamma >0} 4562:{\displaystyle 0<\beta '} 2649:only contains the functions 1876:if and only if there exists 449:, which can be relabeled to 7675:. Also, see the article on 3768:: in other words, assuming 3719:is replaced by any ordinal 3120:can be uniquely written as 2683:{\displaystyle \aleph _{0}} 959:, of two well-ordered sets 363:0' < 1' < 2' < ... 130:The definition of addition 8059: 8023:ordCalc ordinal calculator 7799: 7739:is any delta number, then 7619:, as the smallest ordinal 4855:{\displaystyle \beta _{2}} 4801:{\displaystyle \beta _{1}} 3848:{\displaystyle \beta _{i}} 3821:{\displaystyle \beta _{i}} 3419:{\displaystyle \beta _{1}} 2522:are ordinals smaller than 2028:, for a successor ordinal 1089:, for a successor ordinal 815:If the ordinals less than 494:Ordinal addition is still 155:, ordinary addition gives 7727:free commutative semiring 5362:first uncountable ordinal 5072:is the smallest power of 4977:The ordinals of the form 4960:The ordinals of the form 4893:Factorization into primes 3643:is a natural number, and 3397:positional numeral system 3380:s. This decomposition of 3059:is any limit ordinal and 1864:ordered lexicographically 1770:greater than 1 such that 890:. This is different from 823:is occasionally called a 464:since the order relation 148:. When the right addend 7812:minimum excludance (mex) 5366:large countable ordinals 5317:Large countable ordinals 4186:proof-theoretic strength 3426:is called the degree of 3399:. The highest exponent 2953:then there exist unique 1674:, then there are unique 1659:property holds: for all 994:. When the right factor 329:Ordinal addition on the 7717:free commutative monoid 5928:{\displaystyle \alpha } 5915:The natural product of 5403:). The natural sum of 3761:{\displaystyle \omega } 3512:applies if and only if 3439:{\displaystyle \alpha } 2621:cardinal exponentiation 1482:commute if and only if 778:{\displaystyle 3\neq 0} 536:in the right argument: 385:This is different from 7928:10.1002/malq.201600006 7879:Bull. Amer. Math. Soc. 7454: 7410: 7366: 7337: 7300: 7280: 7238: 7212: 7161: 7135: 7078: 7032: 6992: 6952: 6913: 6880: 6847: 6812: 6771: 6708: 6670: 6644: 6618: 6580: 6554: 6516: 6487: 6412: 6302: 6230: 6152: 6106: 6060: 5949: 5948:{\displaystyle \beta } 5929: 5909: 5828: 5802: 5724: 5672: 5626: 5580: 5514: 5343:, but cannot express ε 5128:+ smaller terms, then 4883: 4856: 4829: 4802: 4765: 4633: 4563: 4532: 4440: 4409: 4362: 4331: 4297: 4171: 4062: 3978: 3849: 3822: 3795: 3762: 3702: 3633: 3539: 3506: 3473: 3440: 3420: 3352: 3287: 3224: 2684: 2492: 2305: 2153:, and the elements of 2103: 1156: 942: 895: 779: 753: 639: 583: 311: 7844:Mathematische Annalen 7532:ordered abelian group 7455: 7411: 7367: 7338: 7301: 7281: 7239: 7213: 7162: 7136: 7079: 7033: 6993: 6953: 6914: 6881: 6848: 6813: 6772: 6709: 6671: 6645: 6619: 6581: 6555: 6517: 6488: 6413: 6303: 6231: 6153: 6107: 6066:For example, suppose 6061: 5950: 5930: 5910: 5829: 5803: 5725: 5673: 5627: 5581: 5515: 5411:is often denoted by 4884: 4882:{\displaystyle c_{2}} 4857: 4830: 4828:{\displaystyle c_{1}} 4803: 4766: 4634: 4564: 4533: 4441: 4410: 4363: 4332: 4298: 4212:§ Multiplication 4172: 4063: 3987:denotes an ordinal). 3979: 3850: 3823: 3796: 3763: 3708:are ordinal numbers. 3703: 3634: 3540: 3507: 3474: 3441: 3421: 3353: 3288: 3234:is a natural number, 3225: 3116:Every ordinal number 3088:Beyond exponentiation 2928:this is not the case. 2685: 2502:is a natural number, 2493: 2335:are natural numbers, 2306: 2104: 1323:zero-product property 1157: 969:lexicographical order 901: 848: 780: 754: 640: 584: 365:for the second copy, 312: 142:transfinite recursion 140:can also be given by 119:, comparisons within 92:lexicographical order 64:transfinite recursion 7826:present in the set. 7816:bitwise exclusive or 7420: 7376: 7365:{\displaystyle o(T)} 7347: 7336:{\displaystyle o(S)} 7318: 7290: 7270: 7222: 7171: 7145: 7091: 7042: 7002: 6962: 6923: 6890: 6857: 6822: 6784: 6721: 6680: 6654: 6628: 6590: 6564: 6526: 6500: 6422: 6312: 6240: 6162: 6116: 6070: 5959: 5939: 5919: 5838: 5812: 5734: 5682: 5636: 5590: 5524: 5458: 4866: 4839: 4812: 4785: 4649: 4576: 4542: 4450: 4419: 4372: 4341: 4310: 4221: 4075: 4025: 3866: 3832: 3805: 3772: 3752: 3647: 3563: 3516: 3483: 3450: 3430: 3403: 3297: 3238: 3124: 2667: 2392: 2205: 2183:system. The ordinal 2121:is a finite number: 2045: 1951:. When the exponent 1514:holds, on the left: 1424:. Multiplication is 1106: 937:, which is equal to 763: 719: 694:: there is a unique 648:Ordinal addition is 599: 543: 261: 7264:well partial orders 2113:is a limit ordinal. 1166:is a limit ordinal. 849:The disjoint union 530:strictly increasing 351:, etc. The ordinal 7995:Sierpiński, Wacław 7450: 7406: 7362: 7333: 7296: 7276: 7234: 7208: 7189: 7157: 7131: 7109: 7074: 7028: 6988: 6948: 6909: 6876: 6843: 6808: 6767: 6754: 6747: 6704: 6666: 6640: 6614: 6576: 6550: 6512: 6483: 6408: 6298: 6226: 6148: 6102: 6056: 6022: 6020: 5945: 5925: 5905: 5824: 5798: 5720: 5668: 5622: 5576: 5510: 5393:Gerhard Hessenberg 5379:Natural operations 4879: 4852: 4825: 4798: 4761: 4629: 4559: 4528: 4436: 4405: 4358: 4327: 4293: 4167: 4058: 3974: 3845: 3818: 3791: 3758: 3726:, and the numbers 3715:expansion", where 3698: 3629: 3535: 3502: 3469: 3436: 3416: 3386:Cantor normal form 3348: 3283: 3220: 3112:Cantor normal form 2680: 2488: 2301: 2099: 2082: 1809:The definition of 1152: 1136: 943: 896: 775: 749: 635: 579: 307: 291: 96:Cartesian products 40:ordinal arithmetic 18:Cantor normal form 7968:978-3-540-44085-7 7955:(21 March 2006). 7859:D. H. J. De Jongh 7796:Nimber arithmetic 7299:{\displaystyle T} 7279:{\displaystyle S} 7174: 7094: 6726: 6724: 5974: 5730:be the exponents 5140:+ smaller terms)( 3372:and there are no 2690:) in the latter. 2061: 1599:left cancellation 1234:looks like this: 1121: 947:Cartesian product 650:left-cancellative 407:the two elements 276: 72:nimber operations 16:(Redirected from 8050: 8011: 7972: 7938: 7937: 7935: 7934: 7921: 7903: 7894: 7885: 7875: 7869: 7856: 7850: 7840: 7821: 7788: 7738: 7734: 7724: 7711: 7707: 7700: 7696: 7692: 7685: 7674: 7664: 7654: 7622: 7618: 7614: 7610: 7600: 7590: 7586: 7582: 7572: 7568: 7564: 7560: 7556: 7543: 7529: 7519: 7515: 7511: 7507: 7503: 7493: 7489: 7485: 7475: 7471: 7467: 7463: 7459: 7457: 7456: 7451: 7415: 7413: 7412: 7407: 7371: 7369: 7368: 7363: 7342: 7340: 7339: 7334: 7305: 7303: 7302: 7297: 7285: 7283: 7282: 7277: 7243: 7241: 7240: 7235: 7217: 7215: 7214: 7209: 7188: 7166: 7164: 7163: 7158: 7140: 7138: 7137: 7132: 7108: 7083: 7081: 7080: 7075: 7073: 7072: 7071: 7070: 7037: 7035: 7034: 7029: 7027: 7026: 7025: 7024: 6997: 6995: 6994: 6989: 6987: 6986: 6985: 6984: 6957: 6955: 6954: 6949: 6947: 6946: 6918: 6916: 6915: 6910: 6908: 6907: 6885: 6883: 6882: 6877: 6875: 6874: 6852: 6850: 6849: 6844: 6817: 6815: 6814: 6809: 6776: 6774: 6773: 6768: 6753: 6748: 6743: 6713: 6711: 6710: 6705: 6675: 6673: 6672: 6667: 6649: 6647: 6646: 6641: 6623: 6621: 6620: 6615: 6585: 6583: 6582: 6577: 6559: 6557: 6556: 6551: 6521: 6519: 6518: 6513: 6492: 6490: 6489: 6484: 6482: 6481: 6474: 6473: 6456: 6455: 6448: 6447: 6417: 6415: 6414: 6409: 6407: 6406: 6394: 6393: 6375: 6374: 6367: 6366: 6349: 6348: 6341: 6340: 6307: 6305: 6304: 6299: 6297: 6296: 6284: 6283: 6271: 6270: 6269: 6268: 6235: 6233: 6232: 6227: 6219: 6218: 6206: 6205: 6193: 6192: 6191: 6190: 6157: 6155: 6154: 6149: 6147: 6146: 6134: 6133: 6111: 6109: 6108: 6103: 6095: 6094: 6093: 6092: 6065: 6063: 6062: 6057: 6052: 6051: 6050: 6049: 6037: 6036: 6021: 6001: 5981: 5954: 5952: 5951: 5946: 5934: 5932: 5931: 5926: 5914: 5912: 5911: 5906: 5901: 5900: 5899: 5898: 5869: 5868: 5867: 5866: 5833: 5831: 5830: 5825: 5807: 5805: 5804: 5799: 5797: 5796: 5778: 5777: 5765: 5764: 5746: 5745: 5729: 5727: 5726: 5721: 5719: 5718: 5694: 5693: 5677: 5675: 5674: 5669: 5667: 5666: 5648: 5647: 5631: 5629: 5628: 5623: 5621: 5620: 5602: 5601: 5585: 5583: 5582: 5577: 5575: 5574: 5573: 5572: 5549: 5548: 5547: 5546: 5519: 5517: 5516: 5511: 5509: 5508: 5507: 5506: 5483: 5482: 5481: 5480: 5450: 5440: 5430: 5420: 5410: 5406: 5359: 5332:ordinal notation 5328: 5311: 5293: 5271: 5257: 5205: 5187: 5156: 5152: 5148: 5127: 5107: 5100: 5096: 5092: 5079: 5075: 5071: 5067: 5046: 5032: 5013: 5002: 4990: 4984:for any ordinal 4983: 4969: 4966:for any ordinal 4965: 4952: 4945: 4938: 4932: 4925: 4918: 4911: 4898:Ernst Jacobsthal 4888: 4886: 4885: 4880: 4878: 4877: 4861: 4859: 4858: 4853: 4851: 4850: 4834: 4832: 4831: 4826: 4824: 4823: 4807: 4805: 4804: 4799: 4797: 4796: 4777: 4770: 4768: 4767: 4762: 4756: 4755: 4746: 4745: 4744: 4743: 4720: 4719: 4710: 4709: 4708: 4707: 4687: 4686: 4677: 4676: 4675: 4674: 4638: 4636: 4635: 4630: 4627: 4626: 4625: 4614: 4613: 4596: 4595: 4594: 4568: 4566: 4565: 4560: 4558: 4537: 4535: 4534: 4529: 4527: 4526: 4517: 4516: 4515: 4514: 4491: 4490: 4481: 4480: 4479: 4478: 4445: 4443: 4442: 4437: 4429: 4414: 4412: 4411: 4406: 4401: 4384: 4383: 4367: 4365: 4364: 4359: 4351: 4336: 4334: 4333: 4328: 4320: 4302: 4300: 4299: 4294: 4288: 4280: 4279: 4278: 4262: 4254: 4253: 4252: 4233: 4232: 4193:Peano arithmetic 4176: 4174: 4173: 4168: 4155: 4154: 4153: 4152: 4134: 4133: 4120: 4119: 4100: 4099: 4067: 4065: 4064: 4059: 4057: 4056: 4055: 4054: 4037: 4036: 4020: 3983: 3981: 3980: 3975: 3961: 3960: 3959: 3958: 3935: 3934: 3927: 3926: 3908: 3907: 3888: 3887: 3858: 3854: 3852: 3851: 3846: 3844: 3843: 3827: 3825: 3824: 3819: 3817: 3816: 3800: 3798: 3797: 3792: 3784: 3783: 3767: 3765: 3764: 3759: 3747: 3740: 3736: 3725: 3718: 3714: 3707: 3705: 3704: 3699: 3691: 3690: 3672: 3671: 3659: 3658: 3642: 3638: 3636: 3635: 3630: 3628: 3627: 3626: 3625: 3602: 3601: 3600: 3599: 3582: 3581: 3580: 3579: 3558: 3544: 3542: 3541: 3536: 3534: 3533: 3511: 3509: 3508: 3503: 3495: 3494: 3478: 3476: 3475: 3470: 3462: 3461: 3446:, and satisfies 3445: 3443: 3442: 3437: 3425: 3423: 3422: 3417: 3415: 3414: 3395: 3391: 3383: 3379: 3375: 3371: 3364: 3357: 3355: 3354: 3349: 3341: 3340: 3322: 3321: 3309: 3308: 3292: 3290: 3289: 3284: 3282: 3281: 3263: 3262: 3250: 3249: 3233: 3229: 3227: 3226: 3221: 3219: 3218: 3209: 3208: 3207: 3206: 3183: 3182: 3173: 3172: 3171: 3170: 3153: 3152: 3143: 3142: 3141: 3140: 3119: 3083: 3077: 3072: 3068: 3058: 3054: 3047: 3040: 3030: 3020: 3003: 2993: 2982: 2964: 2960: 2956: 2952: 2945: 2938: 2934: 2927: 2920: 2913: 2903: 2893: 2883: 2876: 2866: 2853: 2843: 2833: 2823: 2800:. For instance, 2799: 2780: 2776: 2772: 2765: 2752: 2736: 2724: 2718: 2714: 2704: 2689: 2687: 2686: 2681: 2679: 2678: 2662: 2658: 2648: 2642: 2628: 2615: 2611: 2601: 2590: 2579: 2565: 2561: 2543: 2525: 2521: 2510: 2501: 2497: 2495: 2494: 2489: 2487: 2486: 2477: 2476: 2475: 2474: 2451: 2450: 2441: 2440: 2439: 2438: 2421: 2420: 2411: 2410: 2409: 2408: 2387: 2381: 2372: 2354: 2343: 2334: 2323: 2314: 2310: 2308: 2307: 2302: 2300: 2299: 2290: 2289: 2288: 2287: 2264: 2263: 2254: 2253: 2252: 2251: 2234: 2233: 2224: 2223: 2222: 2221: 2200: 2194: 2188: 2178: 2171: 2167: 2158: 2152: 2134: 2130: 2126: 2120: 2112: 2108: 2106: 2105: 2100: 2095: 2094: 2081: 2057: 2056: 2038: 2027: 2011: 2001: 1991: 1981: 1975: 1968: 1964: 1957: 1950: 1943: 1933: 1923: 1904: 1885: 1875: 1862:). This set is 1857: 1847: 1836: 1822: 1800: 1790: 1779: 1769: 1766:) is an ordinal 1761: 1753:Euclidean domain 1735: 1713: 1709: 1699: 1681: 1677: 1673: 1666: 1662: 1650: 1635: 1625: 1607: 1596: 1577: 1563:generally true: 1558: 1535: 1507: 1503: 1500:. The relation " 1499: 1495: 1491: 1481: 1477: 1470: 1452: 1442: 1423: 1405: 1398: 1388: 1360: 1346: 1339: 1320: 1299: 1277: 1233: 1226: 1176: 1165: 1161: 1159: 1158: 1153: 1135: 1099: 1088: 1060: 1053: 1043: 1028: 1018: 1011: 1007: 1000: 993: 986: 982: 978: 974: 966: 962: 958: 940: 936: 929: 919: 911: 893: 889: 882: 881: 865: 836: 826: 822: 818: 811: 801: 797: 784: 782: 781: 776: 758: 756: 755: 750: 711: 697: 693: 682:left subtraction 679: 669: 644: 642: 641: 636: 588: 586: 585: 580: 524: 486: 479: 475: 471: 467: 463: 460:is not equal to 459: 452: 448: 444: 437: 414: 410: 406: 396: 392: 388: 381: 374: 364: 360: 350: 343: 336: 320: 316: 314: 313: 308: 290: 248: 244: 216: 203: 193: 189: 185: 175: 168: 164: 154: 147: 139: 126: 122: 118: 114: 110: 103: 89: 85: 60:well-ordered set 21: 8058: 8057: 8053: 8052: 8051: 8049: 8048: 8047: 8043:Ordinal numbers 8028: 8027: 8019: 8014: 7993: 7969: 7951: 7947: 7942: 7941: 7932: 7930: 7912:(3–4): 228–42. 7901: 7896: 7895: 7888: 7876: 7872: 7857: 7853: 7841: 7837: 7832: 7819: 7804: 7798: 7743: 7736: 7730: 7720: 7709: 7702: 7698: 7694: 7687: 7683: 7677:surreal numbers 7666: 7656: 7624: 7620: 7616: 7612: 7602: 7592: 7588: 7584: 7574: 7570: 7566: 7562: 7558: 7548: 7535: 7521: 7517: 7513: 7509: 7505: 7495: 7491: 7487: 7477: 7473: 7469: 7468:to be ordinals 7465: 7461: 7418: 7417: 7374: 7373: 7345: 7344: 7316: 7315: 7288: 7287: 7268: 7267: 7257:surreal numbers 7220: 7219: 7169: 7168: 7143: 7142: 7089: 7088: 7062: 7057: 7040: 7039: 7016: 7011: 7000: 6999: 6976: 6971: 6960: 6959: 6938: 6921: 6920: 6899: 6888: 6887: 6866: 6855: 6854: 6820: 6819: 6782: 6781: 6780:We always have 6727: 6719: 6718: 6678: 6677: 6652: 6651: 6626: 6625: 6588: 6587: 6562: 6561: 6524: 6523: 6498: 6497: 6465: 6460: 6439: 6434: 6420: 6419: 6398: 6379: 6358: 6353: 6332: 6327: 6310: 6309: 6288: 6275: 6260: 6255: 6238: 6237: 6210: 6197: 6182: 6177: 6160: 6159: 6138: 6125: 6114: 6113: 6084: 6079: 6068: 6067: 6041: 6028: 6023: 6019: 6018: 5999: 5998: 5957: 5956: 5937: 5936: 5917: 5916: 5884: 5879: 5858: 5853: 5836: 5835: 5810: 5809: 5788: 5769: 5756: 5737: 5732: 5731: 5704: 5685: 5680: 5679: 5658: 5639: 5634: 5633: 5612: 5593: 5588: 5587: 5564: 5559: 5538: 5533: 5522: 5521: 5498: 5493: 5472: 5467: 5456: 5455: 5442: 5432: 5422: 5412: 5408: 5404: 5401:Sierpiński 1958 5389:natural product 5381: 5358: 5352: 5350: 5346: 5342: 5326: 5324: 5319: 5310: 5301: 5295: 5284: 5276: 5270: 5262: 5256: 5245: 5231: 5214: 5204: 5195: 5189: 5186: 5174: 5165: 5154: 5150: 5129: 5109: 5105: 5098: 5094: 5084: 5080:is a successor. 5077: 5073: 5069: 5063: 5034: 5015: 5004: 5000: 4985: 4978: 4967: 4961: 4947: 4940: 4934: 4927: 4920: 4913: 4909: 4903:Sierpiński 1958 4895: 4869: 4864: 4863: 4842: 4837: 4836: 4815: 4810: 4809: 4788: 4783: 4782: 4775: 4747: 4735: 4730: 4711: 4699: 4694: 4678: 4666: 4661: 4647: 4646: 4618: 4605: 4600: 4587: 4582: 4574: 4573: 4551: 4540: 4539: 4518: 4506: 4501: 4482: 4470: 4465: 4448: 4447: 4422: 4417: 4416: 4394: 4375: 4370: 4369: 4344: 4339: 4338: 4313: 4308: 4307: 4281: 4271: 4266: 4255: 4245: 4240: 4224: 4219: 4218: 4208:§ Addition 4202: 4199:but not up to ε 4198: 4183: 4144: 4139: 4125: 4111: 4091: 4073: 4072: 4046: 4041: 4028: 4023: 4022: 4018: 4008: 3993: 3950: 3945: 3918: 3879: 3874: 3869: 3864: 3863: 3856: 3835: 3830: 3829: 3808: 3803: 3802: 3775: 3770: 3769: 3750: 3749: 3745: 3738: 3735: 3727: 3720: 3716: 3712: 3682: 3663: 3650: 3645: 3644: 3640: 3617: 3612: 3591: 3586: 3571: 3566: 3561: 3560: 3557: 3549: 3525: 3514: 3513: 3486: 3481: 3480: 3479:. The equality 3453: 3448: 3447: 3428: 3427: 3406: 3401: 3400: 3393: 3389: 3381: 3377: 3373: 3366: 3359: 3332: 3313: 3300: 3295: 3294: 3273: 3254: 3241: 3236: 3235: 3231: 3210: 3198: 3193: 3174: 3162: 3157: 3144: 3132: 3127: 3122: 3121: 3117: 3114: 3106:Veblen function 3090: 3081: 3075: 3070: 3060: 3056: 3049: 3042: 3032: 3022: 3012: 2995: 2984: 2966: 2962: 2958: 2954: 2947: 2940: 2936: 2932: 2922: 2915: 2905: 2895: 2888: 2878: 2868: 2858: 2845: 2835: 2828: 2801: 2782: 2778: 2774: 2770: 2756: 2740: 2728: 2722: 2716: 2709: 2699: 2696: 2670: 2665: 2664: 2660: 2650: 2644: 2634: 2624: 2613: 2603: 2600: 2592: 2589: 2581: 2567: 2563: 2560: 2551: 2545: 2542: 2533: 2527: 2523: 2520: 2512: 2509: 2503: 2499: 2478: 2466: 2461: 2442: 2430: 2425: 2412: 2400: 2395: 2390: 2389: 2383: 2377: 2371: 2362: 2356: 2353: 2345: 2342: 2336: 2333: 2325: 2322: 2316: 2312: 2291: 2279: 2274: 2255: 2243: 2238: 2225: 2213: 2208: 2203: 2202: 2196: 2190: 2184: 2173: 2169: 2163: 2154: 2136: 2132: 2128: 2122: 2118: 2110: 2086: 2048: 2043: 2042: 2029: 2015: 2006: 1993: 1983: 1977: 1976:, the value of 1970: 1966: 1959: 1952: 1948: 1935: 1925: 1906: 1887: 1877: 1867: 1849: 1838: 1824: 1818: 1807: 1792: 1781: 1771: 1767: 1759: 1715: 1711: 1701: 1683: 1679: 1675: 1668: 1664: 1660: 1637: 1627: 1609: 1602: 1579: 1564: 1537: 1515: 1505: 1501: 1497: 1493: 1483: 1479: 1475: 1454: 1444: 1429: 1407: 1400: 1390: 1362: 1348: 1341: 1326: 1311: 1309: 1279: 1275: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1228: 1227:. In contrast, 1218: 1212: 1208: 1204: 1200: 1197:< ... < 0 1196: 1192: 1188: 1184: 1171: 1163: 1104: 1103: 1090: 1064: 1058: 1045: 1030: 1020: 1019:, the value of 1013: 1009: 1002: 995: 991: 984: 980: 976: 972: 964: 960: 950: 938: 931: 913: 905: 903: 891: 884: 867: 851: 850: 843: 832: 824: 820: 816: 803: 799: 789: 761: 760: 717: 716: 699: 695: 685: 671: 653: 597: 596: 541: 540: 499: 481: 477: 473: 469: 465: 461: 454: 450: 446: 439: 428: 427:. For example, 421: 412: 408: 398: 394: 390: 386: 379: 366: 362: 352: 345: 338: 334: 331:natural numbers 318: 259: 258: 246: 219: 208: 195: 191: 187: 177: 176:, the value of 170: 166: 156: 149: 145: 131: 124: 120: 116: 112: 105: 98: 87: 83: 80: 44:ordinal numbers 28: 23: 22: 15: 12: 11: 5: 8056: 8054: 8046: 8045: 8040: 8030: 8029: 8026: 8025: 8018: 8017:External links 8015: 8013: 8012: 7991: 7976:Kunen, Kenneth 7973: 7967: 7948: 7946: 7943: 7940: 7939: 7886: 7870: 7851: 7834: 7833: 7831: 7828: 7800:Main article: 7797: 7794: 7790: 7789: 7449: 7446: 7443: 7440: 7437: 7434: 7431: 7428: 7425: 7405: 7402: 7399: 7396: 7393: 7390: 7387: 7384: 7381: 7361: 7358: 7355: 7352: 7332: 7329: 7326: 7323: 7312:linearizations 7295: 7275: 7233: 7230: 7227: 7207: 7204: 7201: 7198: 7195: 7192: 7187: 7184: 7181: 7177: 7156: 7153: 7150: 7130: 7127: 7124: 7121: 7118: 7115: 7112: 7107: 7104: 7101: 7097: 7069: 7065: 7060: 7056: 7053: 7050: 7047: 7023: 7019: 7014: 7010: 7007: 6983: 6979: 6974: 6970: 6967: 6945: 6941: 6937: 6934: 6931: 6928: 6906: 6902: 6898: 6895: 6873: 6869: 6865: 6862: 6842: 6839: 6836: 6833: 6830: 6827: 6807: 6804: 6801: 6798: 6795: 6792: 6789: 6766: 6763: 6760: 6757: 6752: 6746: 6742: 6739: 6736: 6733: 6730: 6703: 6700: 6697: 6694: 6691: 6688: 6685: 6665: 6662: 6659: 6639: 6636: 6633: 6613: 6610: 6607: 6604: 6601: 6598: 6595: 6575: 6572: 6569: 6549: 6546: 6543: 6540: 6537: 6534: 6531: 6511: 6508: 6505: 6480: 6477: 6472: 6468: 6463: 6459: 6454: 6451: 6446: 6442: 6437: 6433: 6430: 6427: 6405: 6401: 6397: 6392: 6389: 6386: 6382: 6378: 6373: 6370: 6365: 6361: 6356: 6352: 6347: 6344: 6339: 6335: 6330: 6326: 6323: 6320: 6317: 6295: 6291: 6287: 6282: 6278: 6274: 6267: 6263: 6258: 6254: 6251: 6248: 6245: 6225: 6222: 6217: 6213: 6209: 6204: 6200: 6196: 6189: 6185: 6180: 6176: 6173: 6170: 6167: 6145: 6141: 6137: 6132: 6128: 6124: 6121: 6101: 6098: 6091: 6087: 6082: 6078: 6075: 6055: 6048: 6044: 6040: 6035: 6031: 6026: 6017: 6014: 6011: 6008: 6005: 6002: 6000: 5997: 5994: 5991: 5988: 5985: 5982: 5980: 5977: 5973: 5970: 5967: 5964: 5955:is defined as 5944: 5924: 5904: 5897: 5894: 5891: 5887: 5882: 5878: 5875: 5872: 5865: 5861: 5856: 5852: 5849: 5846: 5843: 5834:is defined as 5823: 5820: 5817: 5795: 5791: 5787: 5784: 5781: 5776: 5772: 5768: 5763: 5759: 5755: 5752: 5749: 5744: 5740: 5717: 5714: 5711: 5707: 5703: 5700: 5697: 5692: 5688: 5665: 5661: 5657: 5654: 5651: 5646: 5642: 5619: 5615: 5611: 5608: 5605: 5600: 5596: 5571: 5567: 5562: 5558: 5555: 5552: 5545: 5541: 5536: 5532: 5529: 5505: 5501: 5496: 5492: 5489: 5486: 5479: 5475: 5470: 5466: 5463: 5399:(or product) ( 5397:Hessenberg sum 5380: 5377: 5356: 5348: 5344: 5340: 5322: 5318: 5315: 5314: 5313: 5306: 5299: 5280: 5266: 5259: 5258: 5254: 5240: 5227: 5208: 5207: 5200: 5193: 5182: 5172: 5159: 5158: 5102: 5081: 5056: 5055: 5052: 4997: 4996: 4975: 4958: 4894: 4891: 4876: 4872: 4849: 4845: 4822: 4818: 4795: 4791: 4772: 4771: 4760: 4754: 4750: 4742: 4738: 4733: 4729: 4726: 4723: 4718: 4714: 4706: 4702: 4697: 4693: 4690: 4685: 4681: 4673: 4669: 4664: 4660: 4657: 4654: 4640: 4639: 4624: 4621: 4617: 4612: 4608: 4603: 4599: 4593: 4590: 4585: 4581: 4557: 4554: 4550: 4547: 4525: 4521: 4513: 4509: 4504: 4500: 4497: 4494: 4489: 4485: 4477: 4473: 4468: 4464: 4461: 4458: 4455: 4435: 4432: 4428: 4425: 4404: 4400: 4397: 4393: 4390: 4387: 4382: 4378: 4357: 4354: 4350: 4347: 4326: 4323: 4319: 4316: 4304: 4303: 4292: 4287: 4284: 4277: 4274: 4269: 4265: 4261: 4258: 4251: 4248: 4243: 4239: 4236: 4231: 4227: 4200: 4196: 4181: 4178: 4177: 4166: 4162: 4158: 4151: 4147: 4142: 4137: 4132: 4128: 4123: 4118: 4114: 4110: 4107: 4103: 4098: 4094: 4090: 4087: 4083: 4080: 4053: 4049: 4044: 4040: 4035: 4031: 4006: 3996:epsilon nought 3991: 3985: 3984: 3973: 3970: 3967: 3964: 3957: 3953: 3948: 3944: 3941: 3938: 3933: 3930: 3925: 3921: 3917: 3914: 3911: 3906: 3903: 3900: 3897: 3894: 3891: 3886: 3882: 3877: 3872: 3842: 3838: 3815: 3811: 3790: 3787: 3782: 3778: 3757: 3731: 3697: 3694: 3689: 3685: 3681: 3678: 3675: 3670: 3666: 3662: 3657: 3653: 3624: 3620: 3615: 3611: 3608: 3605: 3598: 3594: 3589: 3585: 3578: 3574: 3569: 3553: 3532: 3528: 3524: 3521: 3501: 3498: 3493: 3489: 3468: 3465: 3460: 3456: 3435: 3413: 3409: 3384:is called the 3347: 3344: 3339: 3335: 3331: 3328: 3325: 3320: 3316: 3312: 3307: 3303: 3280: 3276: 3272: 3269: 3266: 3261: 3257: 3253: 3248: 3244: 3217: 3213: 3205: 3201: 3196: 3192: 3189: 3186: 3181: 3177: 3169: 3165: 3160: 3156: 3151: 3147: 3139: 3135: 3130: 3113: 3110: 3089: 3086: 3006: 3005: 2929: 2885: 2855: 2825: 2767: 2754: 2738: 2726: 2720: 2706: 2695: 2692: 2677: 2673: 2596: 2585: 2556: 2549: 2538: 2534:> ... > 2531: 2516: 2507: 2485: 2481: 2473: 2469: 2464: 2460: 2457: 2454: 2449: 2445: 2437: 2433: 2428: 2424: 2419: 2415: 2407: 2403: 2398: 2367: 2363:> ... > 2360: 2349: 2340: 2329: 2320: 2298: 2294: 2286: 2282: 2277: 2273: 2270: 2267: 2262: 2258: 2250: 2246: 2241: 2237: 2232: 2228: 2220: 2216: 2211: 2115: 2114: 2098: 2093: 2089: 2085: 2080: 2077: 2074: 2071: 2068: 2064: 2060: 2055: 2051: 2040: 2013: 1811:exponentiation 1806: 1805:Exponentiation 1803: 1512:Distributivity 1504:commutes with 1308: 1305: 1272: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1215: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1168: 1167: 1151: 1148: 1145: 1142: 1139: 1134: 1131: 1128: 1124: 1120: 1117: 1114: 1111: 1101: 1062: 842: 841:Multiplication 839: 786: 785: 774: 771: 768: 748: 745: 742: 739: 736: 733: 730: 727: 724: 646: 645: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 590: 589: 578: 575: 572: 569: 566: 563: 560: 557: 554: 551: 548: 453:. In contrast 420: 417: 383: 382: 327: 326: 306: 303: 300: 297: 294: 289: 286: 283: 279: 275: 272: 269: 266: 256: 217: 79: 76: 56:exponentiation 52:multiplication 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8055: 8044: 8041: 8039: 8036: 8035: 8033: 8024: 8021: 8020: 8016: 8010: 8006: 8002: 8001: 7996: 7992: 7989: 7988:0-444-86839-9 7985: 7982:. Elsevier. 7981: 7977: 7974: 7970: 7964: 7960: 7959: 7954: 7950: 7949: 7944: 7929: 7925: 7920: 7915: 7911: 7907: 7900: 7893: 7891: 7887: 7884: 7880: 7874: 7871: 7868: 7864: 7860: 7855: 7852: 7849: 7845: 7839: 7836: 7829: 7827: 7825: 7817: 7813: 7809: 7803: 7795: 7793: 7786: 7782: 7778: 7774: 7770: 7766: 7762: 7758: 7754: 7750: 7746: 7742: 7741: 7740: 7733: 7728: 7723: 7718: 7713: 7705: 7690: 7680: 7678: 7673: 7669: 7663: 7659: 7652: 7648: 7644: 7640: 7636: 7632: 7628: 7609: 7605: 7599: 7595: 7581: 7577: 7555: 7551: 7545: 7542: 7538: 7533: 7528: 7524: 7502: 7498: 7484: 7480: 7444: 7438: 7435: 7429: 7423: 7400: 7394: 7391: 7385: 7379: 7356: 7350: 7327: 7321: 7313: 7309: 7293: 7273: 7265: 7260: 7258: 7254: 7250: 7245: 7231: 7228: 7225: 7205: 7202: 7199: 7196: 7193: 7190: 7185: 7182: 7179: 7154: 7151: 7148: 7128: 7125: 7122: 7119: 7116: 7113: 7110: 7105: 7102: 7099: 7085: 7067: 7063: 7058: 7054: 7051: 7048: 7045: 7021: 7017: 7012: 7008: 7005: 6981: 6977: 6972: 6968: 6965: 6943: 6939: 6935: 6932: 6929: 6926: 6904: 6900: 6896: 6893: 6871: 6867: 6863: 6860: 6840: 6837: 6834: 6831: 6828: 6825: 6805: 6802: 6799: 6796: 6793: 6790: 6787: 6778: 6764: 6761: 6758: 6755: 6750: 6744: 6740: 6737: 6734: 6731: 6728: 6715: 6701: 6698: 6695: 6692: 6689: 6686: 6683: 6663: 6660: 6657: 6637: 6634: 6631: 6611: 6608: 6605: 6602: 6599: 6596: 6593: 6573: 6570: 6567: 6547: 6544: 6541: 6538: 6535: 6532: 6529: 6509: 6506: 6503: 6494: 6478: 6475: 6470: 6466: 6461: 6457: 6452: 6449: 6444: 6440: 6435: 6431: 6428: 6425: 6403: 6399: 6395: 6390: 6387: 6384: 6380: 6376: 6371: 6368: 6363: 6359: 6354: 6350: 6345: 6342: 6337: 6333: 6328: 6324: 6321: 6318: 6315: 6293: 6289: 6285: 6280: 6276: 6272: 6265: 6261: 6256: 6252: 6249: 6246: 6243: 6223: 6220: 6215: 6211: 6207: 6202: 6198: 6194: 6187: 6183: 6178: 6174: 6171: 6168: 6165: 6143: 6139: 6135: 6130: 6126: 6122: 6119: 6099: 6096: 6089: 6085: 6080: 6076: 6073: 6053: 6046: 6042: 6038: 6033: 6029: 6024: 6015: 6012: 6009: 6006: 6003: 5995: 5992: 5989: 5986: 5983: 5975: 5971: 5968: 5965: 5962: 5942: 5922: 5902: 5895: 5892: 5889: 5885: 5880: 5876: 5873: 5870: 5863: 5859: 5854: 5850: 5847: 5844: 5841: 5821: 5818: 5815: 5793: 5789: 5785: 5782: 5779: 5774: 5770: 5766: 5761: 5757: 5753: 5750: 5747: 5742: 5738: 5715: 5712: 5709: 5705: 5701: 5698: 5695: 5690: 5686: 5663: 5659: 5655: 5652: 5649: 5644: 5640: 5617: 5613: 5609: 5606: 5603: 5598: 5594: 5569: 5565: 5560: 5556: 5553: 5550: 5543: 5539: 5534: 5530: 5527: 5503: 5499: 5494: 5490: 5487: 5484: 5477: 5473: 5468: 5464: 5461: 5452: 5449: 5445: 5439: 5435: 5429: 5425: 5419: 5415: 5402: 5398: 5394: 5390: 5386: 5378: 5376: 5374: 5369: 5367: 5363: 5355: 5338: 5334: 5333: 5316: 5309: 5305: 5298: 5292: 5288: 5283: 5279: 5275: 5274: 5273: 5269: 5265: 5253: 5249: 5243: 5239: 5235: 5230: 5226: 5222: 5218: 5213: 5212: 5211: 5203: 5199: 5192: 5185: 5181: 5178: 5171: 5168: 5164: 5163: 5162: 5147: 5143: 5139: 5136: 5132: 5126: 5123: 5119: 5116: 5112: 5103: 5093:then writing 5091: 5087: 5082: 5066: 5061: 5060: 5059: 5053: 5050: 5049: 5048: 5045: 5041: 5037: 5031: 5027: 5023: 5019: 5012: 5008: 4994: 4993:gamma numbers 4988: 4981: 4976: 4973: 4972:delta numbers 4964: 4959: 4956: 4955: 4954: 4950: 4943: 4937: 4930: 4923: 4916: 4906: 4904: 4899: 4892: 4890: 4874: 4870: 4847: 4843: 4820: 4816: 4793: 4789: 4779: 4758: 4752: 4748: 4740: 4736: 4731: 4727: 4724: 4721: 4716: 4712: 4704: 4700: 4695: 4691: 4688: 4683: 4679: 4671: 4667: 4662: 4658: 4655: 4652: 4645: 4644: 4643: 4622: 4619: 4615: 4610: 4606: 4601: 4597: 4591: 4588: 4583: 4579: 4572: 4571: 4570: 4555: 4552: 4548: 4545: 4523: 4519: 4511: 4507: 4502: 4498: 4495: 4492: 4487: 4483: 4475: 4471: 4466: 4462: 4459: 4456: 4453: 4433: 4430: 4426: 4423: 4398: 4395: 4391: 4388: 4380: 4376: 4355: 4352: 4348: 4345: 4324: 4321: 4317: 4314: 4290: 4285: 4282: 4275: 4272: 4267: 4263: 4259: 4256: 4249: 4246: 4241: 4237: 4234: 4229: 4225: 4217: 4216: 4215: 4213: 4209: 4204: 4194: 4191: 4187: 4180:The ordinal ε 4164: 4160: 4156: 4149: 4145: 4140: 4135: 4130: 4126: 4121: 4116: 4112: 4108: 4105: 4101: 4096: 4092: 4088: 4085: 4081: 4078: 4071: 4070: 4069: 4051: 4047: 4042: 4038: 4033: 4029: 4016: 4012: 4005: 4001: 3997: 3990:The ordinal ε 3988: 3971: 3968: 3965: 3962: 3955: 3951: 3946: 3942: 3939: 3936: 3931: 3928: 3923: 3919: 3915: 3912: 3909: 3904: 3901: 3898: 3895: 3892: 3889: 3884: 3880: 3875: 3870: 3862: 3861: 3860: 3840: 3836: 3813: 3809: 3788: 3785: 3780: 3776: 3755: 3742: 3734: 3730: 3723: 3709: 3695: 3692: 3687: 3683: 3679: 3676: 3673: 3668: 3664: 3660: 3655: 3651: 3622: 3618: 3613: 3609: 3606: 3603: 3596: 3592: 3587: 3583: 3576: 3572: 3567: 3556: 3552: 3546: 3530: 3526: 3522: 3519: 3499: 3496: 3491: 3487: 3466: 3463: 3458: 3454: 3433: 3411: 3407: 3398: 3387: 3369: 3362: 3345: 3342: 3337: 3333: 3329: 3326: 3323: 3318: 3314: 3310: 3305: 3301: 3278: 3274: 3270: 3267: 3264: 3259: 3255: 3251: 3246: 3242: 3215: 3211: 3203: 3199: 3194: 3190: 3187: 3184: 3179: 3175: 3167: 3163: 3158: 3154: 3149: 3145: 3137: 3133: 3128: 3111: 3109: 3107: 3103: 3099: 3095: 3087: 3085: 3079: 3067: 3063: 3052: 3045: 3039: 3035: 3031:are given by 3029: 3025: 3019: 3015: 3010: 3002: 2998: 2992: 2988: 2981: 2977: 2973: 2969: 2950: 2943: 2930: 2925: 2918: 2912: 2908: 2902: 2898: 2891: 2886: 2882: 2875: 2871: 2865: 2861: 2856: 2852: 2848: 2842: 2838: 2831: 2826: 2821: 2817: 2813: 2809: 2805: 2798: 2794: 2790: 2786: 2768: 2764: 2760: 2755: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2721: 2713: 2707: 2702: 2698: 2697: 2693: 2691: 2675: 2657: 2653: 2647: 2641: 2637: 2632: 2627: 2622: 2617: 2610: 2606: 2599: 2595: 2588: 2584: 2578: 2574: 2570: 2559: 2555: 2548: 2541: 2537: 2530: 2519: 2515: 2506: 2483: 2479: 2471: 2467: 2462: 2458: 2455: 2452: 2447: 2443: 2435: 2431: 2426: 2422: 2417: 2413: 2405: 2401: 2396: 2386: 2380: 2374: 2370: 2366: 2359: 2352: 2348: 2339: 2332: 2328: 2319: 2296: 2292: 2284: 2280: 2275: 2271: 2268: 2265: 2260: 2256: 2248: 2244: 2239: 2235: 2230: 2226: 2218: 2214: 2209: 2199: 2193: 2187: 2182: 2181:binary number 2177: 2166: 2160: 2157: 2151: 2147: 2143: 2139: 2125: 2091: 2087: 2078: 2075: 2072: 2069: 2066: 2062: 2058: 2053: 2049: 2041: 2036: 2032: 2026: 2022: 2018: 2014: 2009: 2005: 2004: 2003: 2000: 1996: 1990: 1986: 1980: 1973: 1962: 1955: 1945: 1942: 1938: 1932: 1928: 1921: 1917: 1913: 1909: 1902: 1898: 1894: 1890: 1884: 1880: 1874: 1870: 1865: 1861: 1856: 1852: 1845: 1841: 1835: 1831: 1827: 1821: 1816: 1812: 1804: 1802: 1799: 1795: 1789: 1785: 1778: 1774: 1765: 1762:-number (see 1756: 1754: 1750: 1746: 1742: 1741:near-semiring 1737: 1734: 1730: 1726: 1722: 1718: 1708: 1704: 1698: 1694: 1690: 1686: 1671: 1658: 1654: 1653:left division 1649: 1645: 1641: 1634: 1630: 1624: 1620: 1616: 1612: 1605: 1600: 1595: 1591: 1587: 1583: 1576: 1572: 1568: 1562: 1557: 1553: 1549: 1545: 1541: 1534: 1530: 1526: 1522: 1518: 1513: 1509: 1490: 1486: 1472: 1469: 1465: 1461: 1457: 1451: 1447: 1441: 1437: 1433: 1427: 1422: 1418: 1414: 1410: 1403: 1397: 1393: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1355: 1351: 1344: 1337: 1333: 1329: 1324: 1318: 1314: 1306: 1304: 1301: 1298: 1294: 1290: 1286: 1282: 1237: 1236: 1235: 1232: 1225: 1221: 1180: 1179: 1178: 1174: 1146: 1143: 1140: 1132: 1129: 1126: 1122: 1118: 1115: 1112: 1109: 1102: 1097: 1093: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1057: 1056: 1055: 1052: 1048: 1042: 1038: 1034: 1027: 1023: 1016: 1005: 998: 988: 970: 957: 953: 948: 935: 927: 923: 917: 909: 900: 887: 879: 875: 871: 863: 859: 855: 847: 840: 838: 835: 830: 827:-number (see 813: 810: 806: 796: 792: 772: 769: 766: 746: 743: 740: 737: 734: 731: 728: 725: 722: 715: 714: 713: 710: 706: 702: 692: 688: 684:for ordinals 683: 678: 674: 668: 664: 660: 656: 651: 632: 629: 626: 623: 620: 617: 614: 608: 605: 602: 595: 594: 593: 576: 573: 570: 567: 564: 561: 558: 552: 549: 546: 539: 538: 537: 535: 531: 526: 523: 519: 515: 511: 507: 503: 497: 492: 490: 484: 457: 443: 436: 432: 426: 418: 416: 405: 401: 378: 377: 376: 373: 369: 359: 355: 348: 341: 332: 324: 323:limit ordinal 301: 298: 295: 287: 284: 281: 277: 273: 270: 267: 264: 257: 254: 253: 242: 238: 234: 230: 226: 222: 218: 215: 211: 207: 206: 205: 202: 198: 184: 180: 173: 163: 159: 152: 143: 138: 134: 128: 108: 101: 97: 93: 77: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 7999: 7979: 7957: 7931:. Retrieved 7909: 7905: 7873: 7863:Indag. Math. 7854: 7838: 7823: 7805: 7791: 7784: 7780: 7776: 7772: 7768: 7764: 7760: 7756: 7752: 7748: 7744: 7731: 7721: 7714: 7703: 7688: 7681: 7671: 7667: 7661: 7657: 7650: 7646: 7642: 7638: 7634: 7630: 7626: 7607: 7603: 7597: 7593: 7579: 7575: 7553: 7549: 7546: 7540: 7536: 7526: 7522: 7500: 7496: 7482: 7478: 7261: 7246: 7086: 6779: 6716: 6495: 5453: 5447: 5443: 5437: 5433: 5427: 5423: 5417: 5413: 5396: 5388: 5384: 5382: 5370: 5353: 5337:arithmetical 5336: 5330: 5320: 5307: 5303: 5296: 5290: 5286: 5281: 5277: 5267: 5263: 5260: 5251: 5247: 5241: 5237: 5233: 5228: 5224: 5220: 5216: 5209: 5201: 5197: 5196:> ⋯ > 5190: 5183: 5179: 5176: 5169: 5166: 5160: 5145: 5141: 5137: 5134: 5130: 5124: 5121: 5117: 5114: 5110: 5089: 5085: 5064: 5057: 5043: 5039: 5035: 5029: 5025: 5021: 5017: 5010: 5006: 4998: 4986: 4979: 4962: 4948: 4941: 4935: 4928: 4921: 4914: 4907: 4896: 4780: 4773: 4641: 4305: 4205: 4179: 4014: 4010: 4003: 3999: 3989: 3986: 3743: 3732: 3728: 3721: 3710: 3554: 3550: 3547: 3385: 3367: 3365:occurs when 3360: 3115: 3091: 3080:larger than 3065: 3061: 3050: 3043: 3037: 3033: 3027: 3023: 3017: 3013: 3007: 3000: 2996: 2990: 2986: 2979: 2975: 2971: 2967: 2948: 2941: 2923: 2916: 2910: 2906: 2900: 2896: 2889: 2880: 2873: 2869: 2863: 2859: 2850: 2846: 2840: 2836: 2829: 2819: 2815: 2811: 2807: 2803: 2796: 2792: 2788: 2784: 2762: 2758: 2749: 2745: 2741: 2733: 2729: 2711: 2700: 2655: 2651: 2645: 2639: 2635: 2630: 2625: 2618: 2608: 2604: 2597: 2593: 2586: 2582: 2580:which sends 2576: 2572: 2568: 2557: 2553: 2546: 2539: 2535: 2528: 2517: 2513: 2504: 2384: 2378: 2375: 2368: 2364: 2357: 2350: 2346: 2337: 2330: 2326: 2317: 2197: 2191: 2185: 2175: 2164: 2161: 2155: 2149: 2145: 2141: 2137: 2123: 2116: 2034: 2030: 2024: 2020: 2016: 2007: 1998: 1994: 1988: 1984: 1978: 1971: 1960: 1953: 1946: 1940: 1936: 1930: 1926: 1919: 1915: 1911: 1907: 1900: 1896: 1892: 1888: 1882: 1878: 1872: 1868: 1854: 1850: 1843: 1839: 1833: 1829: 1825: 1819: 1808: 1797: 1793: 1787: 1783: 1776: 1772: 1757: 1744: 1738: 1732: 1728: 1724: 1720: 1716: 1706: 1702: 1696: 1692: 1688: 1684: 1669: 1647: 1643: 1639: 1632: 1628: 1622: 1618: 1614: 1610: 1603: 1593: 1589: 1585: 1581: 1574: 1570: 1566: 1560: 1555: 1551: 1547: 1543: 1539: 1532: 1528: 1524: 1520: 1516: 1510: 1488: 1484: 1473: 1467: 1463: 1459: 1455: 1449: 1445: 1439: 1435: 1431: 1425: 1420: 1416: 1412: 1408: 1401: 1395: 1391: 1384: 1380: 1376: 1372: 1368: 1364: 1357: 1353: 1349: 1342: 1335: 1331: 1327: 1316: 1312: 1310: 1302: 1296: 1292: 1288: 1284: 1280: 1273: 1230: 1223: 1219: 1216: 1172: 1169: 1095: 1091: 1085: 1081: 1077: 1073: 1069: 1065: 1050: 1046: 1040: 1036: 1032: 1025: 1021: 1014: 1003: 996: 989: 955: 951: 944: 933: 925: 921: 915: 907: 885: 877: 873: 869: 861: 857: 853: 833: 814: 808: 804: 794: 790: 787: 708: 704: 700: 690: 686: 676: 672: 666: 662: 658: 654: 647: 591: 528:Addition is 527: 521: 517: 513: 509: 505: 501: 493: 482: 455: 441: 434: 430: 422: 403: 399: 384: 371: 367: 357: 353: 346: 339: 328: 250: 249:denotes the 240: 236: 232: 228: 224: 220: 213: 209: 200: 196: 182: 178: 171: 161: 157: 150: 136: 132: 129: 106: 99: 81: 39: 32:mathematical 29: 7953:Thomas Jech 7249:John Conway 5385:natural sum 5261:where each 4190:first-order 3104:. See also 872:,1) : 856:,0) : 496:associative 425:commutative 389:because in 375:looks like 8038:Set theory 8032:Categories 7945:References 7933:2024-08-28 7919:1501.05747 7623:such that 7218:, and not 7141:, and not 6958:. If both 6853:. If both 6418:, whereas 6236:, whereas 4013:when 0< 3009:Jacobsthal 2983:such that 2965:such that 2781:for which 2769:There are 2694:Properties 2633:functions 2607:= 1, ..., 2131:copies of 1837:such that 1714:such that 1682:such that 1565:(1 + 1) · 1352:· 1 = 1 · 1321:, and the 1315:· 0 = 0 · 1307:Properties 802:such that 698:such that 534:continuous 489:equipotent 476:does not ( 419:Properties 36:set theory 7701:and 2 is 7686:and 1 is 7436:⊗ 7392:⊕ 7310:(maximum 7232:ω 7229:⊗ 7226:α 7206:ω 7203:α 7194:⊗ 7191:α 7186:ω 7155:ω 7152:⊕ 7149:α 7129:ω 7123:α 7114:⊕ 7111:α 7106:ω 7068:γ 7064:ω 7059:ω 7052:β 7049:⊗ 7046:α 7022:γ 7018:ω 7013:ω 7006:β 6982:γ 6978:ω 6973:ω 6966:α 6944:γ 6940:ω 6933:β 6930:⊕ 6927:α 6905:γ 6901:ω 6894:β 6872:γ 6868:ω 6861:α 6841:β 6838:⊗ 6835:α 6832:≤ 6829:β 6826:α 6806:β 6803:⊕ 6800:α 6797:≤ 6794:β 6788:α 6762:⊗ 6759:α 6745:⏟ 6741:α 6738:⊕ 6735:⋯ 6732:⊕ 6729:α 6702:γ 6699:⊗ 6696:β 6690:γ 6687:⊗ 6684:α 6658:γ 6638:β 6632:α 6624:; and if 6612:γ 6609:⊗ 6606:β 6603:≤ 6600:γ 6597:⊗ 6594:α 6574:β 6571:≤ 6568:α 6548:γ 6545:⊕ 6542:β 6536:γ 6533:⊕ 6530:α 6510:β 6504:α 6471:ω 6467:ω 6462:ω 6453:ω 6445:ω 6441:ω 6436:ω 6429:β 6426:α 6400:ω 6385:ω 6381:ω 6364:ω 6360:ω 6355:ω 6346:ω 6338:ω 6334:ω 6329:ω 6322:β 6319:⊗ 6316:α 6290:ω 6281:ω 6277:ω 6266:ω 6262:ω 6257:ω 6250:β 6244:α 6224:ω 6212:ω 6203:ω 6199:ω 6188:ω 6184:ω 6179:ω 6172:β 6169:⊕ 6166:α 6140:ω 6131:ω 6127:ω 6120:β 6100:ω 6090:ω 6086:ω 6081:ω 6074:α 6043:β 6039:⊕ 6030:α 6025:ω 6016:ℓ 6013:≤ 6007:≤ 5993:≤ 5987:≤ 5976:⨁ 5969:β 5966:⊗ 5963:α 5943:β 5923:α 5896:ℓ 5886:γ 5881:ω 5874:⋯ 5860:γ 5855:ω 5848:β 5845:⊕ 5842:α 5822:β 5819:⊕ 5816:α 5794:ℓ 5790:β 5783:… 5771:β 5758:α 5751:… 5739:α 5716:ℓ 5706:γ 5699:… 5687:γ 5664:ℓ 5660:β 5656:≥ 5653:⋯ 5650:≥ 5641:β 5614:α 5610:≥ 5607:⋯ 5604:≥ 5595:α 5570:ℓ 5566:β 5561:ω 5554:⋯ 5540:β 5535:ω 5528:β 5500:α 5495:ω 5488:⋯ 5474:α 5469:ω 5462:α 5001:2×3 = 3×2 4844:β 4790:β 4737:β 4732:ω 4725:⋯ 4701:β 4696:ω 4668:β 4663:ω 4653:α 4620:β 4607:β 4602:ω 4589:β 4584:ω 4580:α 4553:β 4508:β 4503:ω 4496:⋯ 4472:β 4467:ω 4460:α 4434:β 4424:β 4415:, and if 4381:β 4377:ω 4356:β 4346:β 4325:β 4315:β 4273:β 4268:ω 4247:β 4242:ω 4230:β 4226:ω 4203:itself). 4161:… 4150:ω 4146:ω 4141:ω 4131:ω 4127:ω 4113:ω 4106:ω 4093:ω 4048:ε 4043:ω 4030:ε 3963:⋅ 3956:ω 3952:ω 3947:ω 3937:⋅ 3920:ω 3910:⋅ 3899:ω 3890:⋅ 3881:ω 3876:ω 3871:ω 3837:β 3810:β 3789:α 3777:β 3756:ω 3693:≥ 3684:β 3680:≥ 3677:… 3674:≥ 3665:β 3661:≥ 3652:β 3619:β 3614:ω 3607:⋯ 3593:β 3588:ω 3573:β 3568:ω 3531:α 3527:ω 3520:α 3500:α 3488:β 3467:α 3464:≤ 3455:β 3434:α 3408:β 3343:≥ 3334:β 3327:… 3315:β 3302:β 3268:… 3200:β 3195:ω 3188:⋯ 3164:β 3159:ω 3134:β 3129:ω 3098:pentation 3094:tetration 2672:ℵ 2463:α 2456:⋯ 2427:α 2397:α 2276:ω 2269:⋯ 2240:ω 2210:ω 2092:δ 2088:α 2079:β 2073:δ 2063:⋃ 2054:β 2050:α 1780:whenever 1743:, but do 1657:remainder 1601:law: If 1213:< ..., 1147:δ 1144:⋅ 1141:α 1133:β 1127:δ 1123:⋃ 1116:β 1113:⋅ 1110:α 770:≠ 747:ω 741:ω 729:ω 633:γ 627:β 624:≤ 621:γ 615:α 612:⇒ 609:β 603:α 577:β 571:γ 565:α 559:γ 556:⇒ 553:β 547:α 302:δ 296:α 288:β 282:δ 278:⋃ 271:β 265:α 255:function. 252:successor 34:field of 7997:(1958), 7978:, 1980. 7775:+ 1) = ( 7655:for all 7591:for all 7573:for all 7494:; while 6717:We have 4623:′ 4592:′ 4556:′ 4427:′ 4399:′ 4349:′ 4318:′ 4286:′ 4276:′ 4260:′ 4250:′ 3639:, where 3230:, where 3102:hexation 2931:For all 2879:2 = 3 = 2571: : 1992:for all 1965:for any 1929:∈ 1924:for all 1881:∈ 1853:∈ 1828: : 1278:. Thus, 1270:< ... 1061:· 0 = 0. 1044:for all 1008:for any 920: : 902:The set 245:, where 194:for all 165:for any 78:Addition 70:and the 48:addition 8009:0095787 7808:nimbers 7763:+ 1 = ( 7641:) < 7583:and of 6158:. Then 5678:). Let 4933:, ..., 4862:, then 4835:, then 4808:, then 4569:, then 4214:) that 4188:of the 3855:as for 3078:-number 2985:0 < 2904:, then 2867:, then 2844:, then 2806:· 2) = 2715:, then 2710:0 < 2552:, ..., 2511:, ..., 2344:, ..., 2324:, ..., 2135:; e.g. 2109:, when 1969:. For 1895:) < 1860:support 1782:0 < 1747:form a 1731:+ 1) · 1626:, then 1325:holds: 1162:, when 1012:. For 1006:· 0 = 0 807:+ 42 = 670:, then 512:+ (4 + 504:+ 4) + 169:. For 30:In the 8007:  7986:  7965:  7802:Nimber 7783:+ 1) ( 7767:+ 1) ( 7633:) ⊕ ( 7167:; and 6308:. And 5302:≥ ⋯ ≥ 5289:+ ⋯ + 5188:(with 5175:+ ⋯ + 5068:where 4989:> 0 4015:α 4011:α 4004:β 4000:α 3724:> 1 3376:s nor 3100:, and 3073:is an 3069:where 2961:, and 2951:> 0 2944:> 1 2892:> 1 2832:> 1 2818:· 2 ≠ 2777:, and 2616:to 0. 2544:, and 2498:where 2311:where 1974:> 0 1672:> 0 1642:= 2 · 1606:> 0 1584:+ 1 · 1578:while 1569:= 2 · 1434:= 2 · 1404:> 0 1334:= 0 → 1295:= 2 · 1283:· 2 = 1266:< 1 1262:< 0 1258:< 1 1254:< 0 1250:< 1 1246:< 0 1242:< 1 1209:< 3 1205:< 2 1201:< 1 1193:< 3 1189:< 2 1185:< 1 1017:> 0 472:) and 212:+ 0 = 174:> 0 160:+ 0 = 54:, and 7914:arXiv 7902:(PDF) 7830:Notes 7670:< 7660:< 7596:< 7578:< 7476:; so 7308:types 7306:, of 7253:field 7038:then 6919:then 6676:then 6586:then 6560:; if 6522:then 5360:(the 5294:with 5108:. If 3972:65537 3055:, or 3041:, or 3021:with 2999:< 2989:< 2939:, if 2914:. If 2862:< 2849:< 2839:< 2814:·2 = 2723:1 = 1 2717:0 = 0 2526:with 1997:< 1939:< 1934:with 1886:with 1871:< 1846:) = 0 1786:< 1705:< 1667:, if 1655:with 1415:< 1394:< 1076:) = ( 1049:< 652:: if 393:only 321:is a 317:when 199:< 109:× {1} 102:× {0} 7984:ISBN 7963:ISBN 7883:here 7867:here 7848:here 7787:+ 1) 7665:and 7615:and 7587:and 7569:and 7561:and 7516:and 7508:and 7490:and 7472:and 7464:and 7343:and 7286:and 7183:< 7103:< 7055:< 7009:< 6998:and 6969:< 6936:< 6897:< 6886:and 6864:< 6818:and 6693:< 6661:> 6650:and 6635:< 6539:< 6507:< 6112:and 5935:and 5632:and 5520:and 5407:and 5387:and 5383:The 5250:+ 1) 5236:+ 1) 5144:+ 1) 5033:and 5020:+1)× 4642:and 4549:< 4457:< 4431:< 4337:(if 4322:> 4210:and 4009:< 3913:1729 3786:< 3330:> 3324:> 3311:> 3048:and 2994:and 2946:and 2935:and 2926:= 0 2919:= 1 2894:and 2834:and 2791:) ≠ 2761:) = 2602:for 2174:2 = 2076:< 2070:< 2023:) · 1914:) = 1905:and 1749:ring 1700:and 1678:and 1663:and 1638:1 · 1608:and 1580:1 · 1527:) = 1496:and 1478:and 1430:1 · 1406:) → 1399:and 1371:) · 1229:2 · 1130:< 1084:) + 1039:) + 983:and 963:and 945:The 932:2 • 759:but 606:< 568:< 550:< 532:and 516:) = 487:are 480:and 440:3 + 429:3 + 411:and 285:< 231:) = 190:and 104:and 86:and 7924:doi 7824:not 7820:mex 7706:· 2 7691:+ 1 7645:⊕ ( 7255:of 7251:'s 7176:lim 7096:lim 5441:or 5421:or 5246:⋯ ( 5133:= ( 5083:If 4982:+ 1 4951:+ 1 4944:+ 1 4931:+ 1 4924:+ 1 4917:+ 1 4905:). 4774:if 4306:if 3388:of 3370:= 0 3363:= 0 3053:= 4 3046:= 2 2921:or 2887:If 2857:If 2822:· 4 2810:·2· 2708:If 2703:= 1 2631:all 2591:to 2019:= ( 2010:= 1 1963:= 1 1956:= 0 1745:not 1727:≤ ( 1561:not 1559:is 1426:not 1379:· ( 1345:= 0 1340:or 1338:= 0 1319:= 0 1175:· 2 999:= 0 914:(1, 906:(0, 888:• 2 868:{ ( 852:{ ( 485:+ 3 458:+ 3 445:is 349:+ 2 342:+ 1 153:= 0 144:on 8034:: 8005:MR 7922:. 7910:63 7908:. 7904:. 7889:^ 7779:+ 7771:+ 7759:+ 7755:+ 7751:+ 7747:+ 7712:. 7649:⊗ 7637:⊗ 7629:⊗ 7606:⊗ 7552:⊕ 7544:. 7539:⊗ 7525:⊕ 7499:⊗ 7481:⊕ 7314:) 7259:. 7244:. 7084:. 6777:. 6714:. 6493:. 5451:. 5446:⨳ 5436:⊗ 5426:# 5416:⊕ 5368:. 5285:= 5244:−1 5219:⋯ 5120:+ 5113:= 5088:= 5065:αβ 5042:= 5024:= 5014:, 5009:= 5005:2× 5003:, 4946:, 4939:, 4926:, 4919:, 4912:, 3932:88 3905:42 3741:. 3108:. 3096:, 3084:. 3066:εα 3064:= 3036:= 3026:≤ 3016:= 2978:+ 2974:· 2970:= 2957:, 2909:= 2899:= 2872:≤ 2795:· 2787:· 2773:, 2748:= 2732:= 2654:→ 2638:→ 2575:→ 2373:. 2315:, 2140:= 1987:· 1832:→ 1801:. 1796:= 1775:= 1773:αβ 1758:A 1736:. 1723:≤ 1719:· 1695:+ 1691:· 1687:= 1646:= 1631:= 1621:· 1617:= 1613:· 1592:+ 1588:= 1573:= 1556:γα 1552:βα 1550:= 1542:+ 1533:αγ 1531:+ 1529:αβ 1523:+ 1487:= 1471:. 1462:≤ 1453:→ 1448:≤ 1438:= 1383:· 1375:= 1367:· 1356:= 1330:· 1291:≠ 1222:+ 1177:: 1080:· 1068:· 1035:· 1024:· 987:. 954:× 949:, 928:} 924:∈ 912:, 904:{ 880:} 876:∈ 866:∪ 864:} 860:∈ 837:. 812:. 793:≤ 707:+ 703:= 689:≤ 675:= 665:+ 661:= 657:+ 525:. 520:+ 508:= 470:2' 433:= 413:0' 402:+ 370:+ 356:+ 344:, 239:+ 223:+ 181:+ 135:+ 127:. 74:. 50:, 46:: 38:, 7990:. 7971:. 7936:. 7926:: 7916:: 7785:x 7781:x 7777:x 7773:x 7769:x 7765:x 7761:x 7757:x 7753:x 7749:x 7745:x 7737:x 7732:ω 7722:ω 7710:ω 7704:ω 7699:ω 7695:ω 7689:ω 7684:ω 7672:β 7668:δ 7662:α 7658:ε 7653:) 7651:δ 7647:ε 7643:γ 7639:β 7635:ε 7631:δ 7627:α 7625:( 7621:γ 7617:β 7613:α 7608:β 7604:α 7598:α 7594:γ 7589:β 7585:γ 7580:β 7576:γ 7571:γ 7567:α 7563:β 7559:α 7554:β 7550:α 7541:β 7537:α 7527:β 7523:α 7518:β 7514:α 7510:β 7506:α 7501:β 7497:α 7492:β 7488:α 7483:β 7479:α 7474:β 7470:α 7466:T 7462:S 7448:) 7445:T 7442:( 7439:o 7433:) 7430:S 7427:( 7424:o 7404:) 7401:T 7398:( 7395:o 7389:) 7386:S 7383:( 7380:o 7360:) 7357:T 7354:( 7351:o 7331:) 7328:S 7325:( 7322:o 7294:T 7274:S 7200:= 7197:n 7180:n 7126:+ 7120:= 7117:n 7100:n 6791:+ 6765:n 6756:= 6751:n 6664:0 6479:5 6476:+ 6458:+ 6450:+ 6432:= 6404:6 6396:+ 6391:1 6388:+ 6377:+ 6372:5 6369:+ 6351:+ 6343:+ 6325:= 6294:5 6286:+ 6273:+ 6253:= 6247:+ 6221:+ 6216:5 6208:+ 6195:+ 6175:= 6144:5 6136:+ 6123:= 6097:+ 6077:= 6054:. 6047:j 6034:i 6010:j 6004:1 5996:k 5990:i 5984:1 5972:= 5903:. 5893:+ 5890:k 5877:+ 5871:+ 5864:1 5851:= 5786:, 5780:, 5775:1 5767:, 5762:k 5754:, 5748:, 5743:1 5713:+ 5710:k 5702:, 5696:, 5691:1 5645:1 5618:k 5599:1 5557:+ 5551:+ 5544:1 5531:= 5504:k 5491:+ 5485:+ 5478:1 5465:= 5448:β 5444:α 5438:β 5434:α 5428:β 5424:α 5418:β 5414:α 5409:β 5405:α 5357:1 5354:ω 5349:0 5345:0 5341:0 5327:ω 5323:0 5312:. 5308:m 5304:β 5300:1 5297:β 5291:ω 5287:ω 5282:k 5278:α 5268:i 5264:n 5255:1 5252:n 5248:ω 5242:k 5238:n 5234:ω 5232:( 5229:k 5225:n 5223:) 5221:ω 5217:ω 5215:( 5206:) 5202:k 5198:α 5194:1 5191:α 5184:k 5180:n 5177:ω 5173:1 5170:n 5167:ω 5157:. 5155:β 5151:m 5146:m 5142:ω 5138:n 5135:ω 5131:β 5125:n 5122:ω 5118:m 5115:ω 5111:β 5106:β 5099:α 5095:γ 5090:ω 5086:α 5078:β 5074:ω 5070:α 5044:ω 5040:ω 5038:× 5036:ω 5030:ω 5028:× 5026:ω 5022:ω 5018:ω 5016:( 5011:ω 5007:ω 4987:α 4980:ω 4968:α 4963:ω 4949:ω 4942:ω 4936:ω 4929:ω 4922:ω 4915:ω 4910:ω 4875:2 4871:c 4848:2 4821:1 4817:c 4794:1 4776:n 4759:, 4753:k 4749:c 4741:k 4728:+ 4722:+ 4717:2 4713:c 4705:2 4692:+ 4689:n 4684:1 4680:c 4672:1 4659:= 4656:n 4616:+ 4611:1 4598:= 4546:0 4524:k 4520:c 4512:k 4499:+ 4493:+ 4488:1 4484:c 4476:1 4463:= 4454:0 4403:) 4396:c 4392:+ 4389:c 4386:( 4353:= 4291:, 4283:c 4264:= 4257:c 4238:+ 4235:c 4201:0 4197:0 4182:0 4165:. 4157:, 4136:, 4122:, 4117:1 4109:= 4102:, 4097:0 4089:= 4086:1 4082:, 4079:0 4052:0 4039:= 4034:0 4019:ω 4007:1 3994:( 3992:0 3969:+ 3966:5 3943:+ 3940:3 3929:+ 3924:9 3916:+ 3902:+ 3896:+ 3893:6 3885:7 3857:α 3841:i 3814:i 3781:1 3746:α 3739:δ 3733:i 3729:c 3722:δ 3717:ω 3713:δ 3696:0 3688:k 3669:2 3656:1 3641:k 3623:k 3610:+ 3604:+ 3597:2 3584:+ 3577:1 3555:i 3551:c 3523:= 3497:= 3492:1 3459:1 3412:1 3394:ω 3390:α 3382:α 3378:c 3374:β 3368:k 3361:α 3346:0 3338:k 3319:2 3306:1 3279:k 3275:c 3271:, 3265:, 3260:2 3256:c 3252:, 3247:1 3243:c 3232:k 3216:k 3212:c 3204:k 3191:+ 3185:+ 3180:2 3176:c 3168:2 3155:+ 3150:1 3146:c 3138:1 3118:α 3082:α 3076:ε 3071:ε 3062:β 3057:α 3051:β 3044:α 3038:β 3034:α 3028:β 3024:α 3018:β 3014:α 3004:. 3001:β 2997:ρ 2991:β 2987:δ 2980:ρ 2976:δ 2972:β 2968:α 2963:ρ 2959:δ 2955:γ 2949:α 2942:β 2937:β 2933:α 2924:α 2917:α 2911:γ 2907:β 2901:α 2897:α 2890:α 2884:. 2881:ω 2874:β 2870:α 2864:β 2860:α 2854:. 2851:γ 2847:γ 2841:β 2837:α 2830:γ 2824:. 2820:ω 2816:ω 2812:ω 2808:ω 2804:ω 2802:( 2797:β 2793:α 2789:β 2785:α 2783:( 2779:γ 2775:β 2771:α 2766:. 2763:α 2759:α 2757:( 2753:. 2750:α 2746:α 2744:· 2742:α 2737:. 2734:α 2730:α 2725:. 2719:. 2712:α 2705:. 2701:α 2676:0 2661:ω 2656:α 2652:β 2646:α 2640:A 2636:B 2626:A 2614:β 2609:k 2605:i 2598:i 2594:a 2587:i 2583:b 2577:α 2573:β 2569:f 2564:α 2558:k 2554:a 2550:1 2547:a 2540:k 2536:b 2532:1 2529:b 2524:β 2518:k 2514:b 2508:1 2505:b 2500:k 2484:k 2480:a 2472:k 2468:b 2459:+ 2453:+ 2448:2 2444:a 2436:2 2432:b 2423:+ 2418:1 2414:a 2406:1 2402:b 2385:α 2379:α 2369:k 2365:n 2361:1 2358:n 2351:k 2347:c 2341:1 2338:c 2331:k 2327:n 2321:1 2318:n 2313:k 2297:k 2293:c 2285:k 2281:n 2272:+ 2266:+ 2261:2 2257:c 2249:2 2245:n 2236:+ 2231:1 2227:c 2219:1 2215:n 2198:ω 2192:ω 2186:ω 2176:ω 2170:α 2165:α 2156:ω 2150:ω 2148:· 2146:ω 2144:· 2142:ω 2138:ω 2133:α 2129:β 2124:α 2119:β 2111:β 2097:) 2084:( 2067:0 2059:= 2039:. 2037:) 2035:β 2033:( 2031:S 2025:α 2021:α 2017:α 2012:. 2008:α 1999:β 1995:δ 1989:α 1985:α 1979:α 1972:β 1967:α 1961:α 1954:β 1949:β 1941:y 1937:x 1931:β 1927:y 1922:) 1920:y 1918:( 1916:g 1912:y 1910:( 1908:f 1903:) 1901:x 1899:( 1897:g 1893:x 1891:( 1889:f 1883:β 1879:x 1873:g 1869:f 1855:β 1851:x 1844:x 1842:( 1840:f 1834:α 1830:β 1826:f 1820:α 1798:ω 1794:β 1788:β 1784:α 1777:β 1768:β 1760:δ 1733:ω 1729:α 1725:ω 1721:ω 1717:α 1712:α 1707:β 1703:δ 1697:δ 1693:γ 1689:β 1685:α 1680:δ 1676:γ 1670:β 1665:β 1661:α 1648:ω 1644:ω 1640:ω 1633:γ 1629:β 1623:γ 1619:α 1615:β 1611:α 1604:α 1594:ω 1590:ω 1586:ω 1582:ω 1575:ω 1571:ω 1567:ω 1554:+ 1548:α 1546:) 1544:γ 1540:β 1538:( 1525:γ 1521:β 1519:( 1517:α 1506:β 1502:α 1498:n 1494:m 1489:β 1485:α 1480:β 1476:α 1468:γ 1466:· 1464:β 1460:γ 1458:· 1456:α 1450:β 1446:α 1440:ω 1436:ω 1432:ω 1421:β 1419:· 1417:γ 1413:α 1411:· 1409:γ 1402:γ 1396:β 1392:α 1387:) 1385:γ 1381:β 1377:α 1373:γ 1369:β 1365:α 1363:( 1358:α 1354:α 1350:α 1343:β 1336:α 1332:β 1328:α 1317:α 1313:α 1297:ω 1293:ω 1289:ω 1287:+ 1285:ω 1281:ω 1276:ω 1268:3 1264:3 1260:2 1256:2 1252:1 1248:1 1244:0 1240:0 1238:0 1231:ω 1224:ω 1220:ω 1211:1 1207:1 1203:1 1199:1 1195:0 1191:0 1187:0 1183:0 1181:0 1173:ω 1164:β 1150:) 1138:( 1119:= 1100:. 1098:) 1096:β 1094:( 1092:S 1086:α 1082:β 1078:α 1074:β 1072:( 1070:S 1066:α 1059:α 1051:β 1047:δ 1041:α 1037:δ 1033:α 1031:( 1026:β 1022:α 1015:β 1010:α 1004:α 997:β 992:β 985:T 981:S 977:S 973:T 965:T 961:S 956:T 952:S 941:. 939:ω 934:ω 926:N 922:n 918:) 916:n 910:) 908:n 894:. 892:ω 886:ω 878:N 874:n 870:n 862:N 858:n 854:n 834:ω 825:γ 821:α 817:α 809:ω 805:γ 800:γ 795:α 791:β 773:0 767:3 744:= 738:+ 735:0 732:= 726:+ 723:3 709:γ 705:β 701:α 696:γ 691:α 687:β 677:γ 673:β 667:γ 663:α 659:β 655:α 630:+ 618:+ 574:+ 562:+ 522:ω 518:ω 514:ω 510:ω 506:ω 502:ω 500:( 483:ω 478:ω 474:ω 462:ω 456:ω 451:ω 442:ω 435:ω 431:ω 409:0 404:ω 400:ω 395:0 391:ω 387:ω 372:ω 368:ω 358:ω 354:ω 347:ω 340:ω 335:ω 325:. 319:β 305:) 299:+ 293:( 274:= 268:+ 247:S 243:) 241:β 237:α 235:( 233:S 229:β 227:( 225:S 221:α 214:α 210:α 201:β 197:δ 192:δ 188:α 183:β 179:α 172:β 167:α 162:α 158:α 151:β 146:β 137:β 133:α 125:T 121:S 117:T 113:S 107:T 100:S 88:T 84:S 20:)

Index

Cantor normal form
mathematical
set theory
ordinal numbers
addition
multiplication
exponentiation
well-ordered set
transfinite recursion
"natural" arithmetic of ordinals
nimber operations
lexicographical order
Cartesian products
transfinite recursion
successor
limit ordinal
natural numbers
commutative
equipotent
associative
strictly increasing
continuous
left-cancellative
left subtraction
additively indecomposable ordinal


Cartesian product
lexicographical order
zero-product property

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.