Knowledge (XXG)

Rational surface

Source đź“ť

267:
complex surface is rational, because if a complex surface is unirational then its irregularity and plurigenera are bounded by those of a rational surface and are therefore all 0, so the surface is rational. Most unirational complex varieties of dimension 3 or larger are not rational. In
256:(the irregularity and second plurigenus) both vanish is rational. This is used in the Enriques–Kodaira classification to identify the rational surfaces. 482: 452: 334:
Nonsingular cubic surfaces are isomorphic to the projective plane blown up in 6 points, and are Fano surfaces. Named examples include the
55: 339: 565: 570: 110: 474: 430: 560: 343: 447:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 321: 43: 360: 220: 209: 198: 75: 31: 54:
of dimension two. Rational surfaces are the simplest of the 10 or so classes of surface in the
519: 478: 448: 349: 299: 242: 103: 413: 386: 295: 51: 47: 531: 492: 462: 527: 488: 458: 397: 355: 311: 277: 27:
Surface birationally equivalent to the projective plane; rational variety of dimension two
17: 394:
An intersection of two quadrics, isomorphic to the projective plane blown up in 5 points.
547:: A tool to visually study the geography of (minimal) complex algebraic smooth surfaces 554: 499: 407: 391: 331: 326: 260:
proved that Castelnuovo's theorem also holds over fields of positive characteristic.
335: 205: 264: 99: 35: 443:
Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004),
67: 523: 473:, London Mathematical Society Student Texts, vol. 34 (2nd ed.), 58:
of complex surfaces, and were the first surfaces to be investigated.
66:
Every non-singular rational surface can be obtained by repeatedly
74:. The minimal rational surfaces are the projective plane and the 283:
At one time it was unclear whether a complex surface such that
404:
with singularities which is birational to the projective plane.
378:
The product of two projective lines is the Hirzebruch surface ÎŁ
318:
defined by the quartics through 10 points in general position.
544: 314:: A degree 6 embedding of the projective plane into 502:(1958), "On Castelnuovo's criterion of rationality p 382:. It is the only surface with two different rulings. 294:
both vanish is rational, but a counterexample (an
201:and greater than 1 for other rational surfaces. 8: 263:Castelnuovo's theorem also implies that any 416:An embedding of the projective plane into 245:proved that any complex surface such that 230:when it is the even unimodular lattice II 197:is 0 for the projective plane, and 1 for 276:found examples of unirational surfaces ( 410:, a generalization of Bordiga surfaces. 273: 257: 7: 25: 512:Illinois Journal of Mathematics 56:Enriques–Kodaira classification 510:= 0 of an algebraic surface", 1: 306:Examples of rational surfaces 587: 475:Cambridge University Press 471:Complex algebraic surfaces 469:Beauville, Arnaud (1996), 431:List of algebraic surfaces 18:Castelnuovo's theorem 280:) that are not rational. 545:Le Superficie Algebriche 445:Compact Complex Surfaces 344:Clebsch diagonal surface 72:minimal rational surface 237: 44:birationally equivalent 50:, or in other words a 238:Castelnuovo's theorem 340:Cayley cubic surface 566:Birational geometry 361:Hirzebruch surfaces 221:Hirzebruch surfaces 199:Hirzebruch surfaces 76:Hirzebruch surfaces 571:Algebraic surfaces 350:del Pezzo surfaces 210:unimodular lattice 102:are all 0 and the 32:algebraic geometry 484:978-0-521-49510-3 454:978-3-540-00832-3 322:Châtelet surfaces 300:Federigo Enriques 243:Guido Castelnuovo 219:, except for the 191: 190: 104:fundamental group 16:(Redirected from 578: 561:Complex surfaces 534: 495: 465: 414:Veronese surface 387:projective plane 312:Bordiga surfaces 296:Enriques surface 278:Zariski surfaces 117: 116: 52:rational variety 48:projective plane 40:rational surface 21: 586: 585: 581: 580: 579: 577: 576: 575: 551: 550: 541: 509: 505: 498: 485: 468: 455: 442: 439: 427: 398:Steiner surface 381: 368: 356:Enneper surface 352:(Fano surfaces) 308: 298:) was found by 293: 268:characteristic 255: 240: 233: 229: 218: 83: 64: 28: 23: 22: 15: 12: 11: 5: 584: 582: 574: 573: 568: 563: 553: 552: 549: 548: 540: 539:External links 537: 536: 535: 507: 503: 500:Zariski, Oscar 496: 483: 466: 453: 438: 435: 434: 433: 426: 423: 422: 421: 411: 408:White surfaces 405: 395: 389: 383: 379: 369: 364: 358: 353: 347: 332:Cubic surfaces 329: 327:Coble surfaces 324: 319: 307: 304: 291: 274:Zariski (1958) 258:Zariski (1958) 253: 239: 236: 231: 224: 213: 189: 188: 186: 184: 181: 179: 176: 175: 173: 170: 168: 165: 162: 161: 158: 156: 150: 148: 144: 143: 141: 138: 136: 133: 130: 129: 127: 125: 122: 120: 79: 63: 60: 34:, a branch of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 583: 572: 569: 567: 564: 562: 559: 558: 556: 546: 543: 542: 538: 533: 529: 525: 521: 517: 513: 501: 497: 494: 490: 486: 480: 476: 472: 467: 464: 460: 456: 450: 446: 441: 440: 436: 432: 429: 428: 424: 419: 415: 412: 409: 406: 403: 400:A surface in 399: 396: 393: 392:Segre surface 390: 388: 384: 377: 373: 370: 367: 362: 359: 357: 354: 351: 348: 345: 341: 337: 333: 330: 328: 325: 323: 320: 317: 313: 310: 309: 305: 303: 301: 297: 290: 286: 281: 279: 275: 271: 266: 261: 259: 252: 248: 244: 235: 228: 222: 217: 211: 207: 202: 200: 196: 187: 185: 182: 180: 178: 177: 174: 171: 169: 166: 164: 163: 159: 157: 155: 151: 149: 146: 145: 142: 139: 137: 134: 132: 131: 128: 126: 123: 121: 119: 118: 115: 114: 112: 111:Hodge diamond 107: 105: 101: 97: 93: 91: 87: 82: 77: 73: 69: 61: 59: 57: 53: 49: 45: 42:is a surface 41: 37: 33: 19: 515: 511: 470: 444: 417: 401: 375: 371: 365: 336:Fermat cubic 315: 288: 284: 282: 269: 262: 250: 246: 241: 226: 215: 206:Picard group 203: 194: 192: 153: 109: 108: 106:is trivial. 95: 94: 89: 85: 80: 71: 65: 39: 29: 518:: 303–315, 265:unirational 208:is the odd 100:plurigenera 96:Invariants: 36:mathematics 555:Categories 437:References 342:, and the 68:blowing up 524:0019-2082 272:> 0 62:Structure 425:See also 532:0099990 493:1406314 463:2030225 88:= 0 or 46:to the 530:  522:  491:  481:  461:  451:  338:, the 193:where 92:≥ 2. 520:ISSN 479:ISBN 449:ISBN 385:The 287:and 249:and 204:The 98:The 84:for 38:, a 506:= P 232:1,1 30:In 557:: 528:MR 526:, 514:, 489:MR 487:, 477:, 459:MR 457:, 302:. 234:. 214:1, 152:1+ 70:a 516:2 508:2 504:a 420:. 418:P 402:P 380:0 376:P 374:Ă— 372:P 366:n 363:ÎŁ 346:. 316:P 292:1 289:P 285:q 270:p 254:2 251:P 247:q 227:m 225:2 223:ÎŁ 216:n 212:I 195:n 183:1 172:0 167:0 160:0 154:n 147:0 140:0 135:0 124:1 113:: 90:r 86:r 81:r 78:ÎŁ 20:)

Index

Castelnuovo's theorem
algebraic geometry
mathematics
birationally equivalent
projective plane
rational variety
Enriques–Kodaira classification
blowing up
Hirzebruch surfaces
plurigenera
fundamental group
Hodge diamond
Hirzebruch surfaces
Picard group
unimodular lattice
Hirzebruch surfaces
Guido Castelnuovo
Zariski (1958)
unirational
Zariski (1958)
Zariski surfaces
Enriques surface
Federigo Enriques
Bordiga surfaces
Châtelet surfaces
Coble surfaces
Cubic surfaces
Fermat cubic
Cayley cubic surface
Clebsch diagonal surface

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑