Knowledge

Capacity credit

Source đź“ť

238:
same time and in the same way - and the chance of a system stress during low wind condition increases, the capacity credit of a VRE plant decreases. Greater geographical diversity of the VRE installations improves the capacity credit value, assuming a grid that can carry all necessary load. Increasing the penetration of one VRE resource also can result in increasing the CC for another one, e.g., in California, increase in solar capacity, with a low incremental CC, expected to be 8% in 2023 and dropping to 6% by 2026, helps shifting the peak demand from other sources later into the evening, when the wind is stronger, therefore the CC of the wind power is expected to increase from 14% to 22% within the same period. A 2020 study of ELCC by California utilities recommends even more pessimistic values for photovoltaics: by 2030 the ELCC of solar will become "nearly zero". The
193:) compares the additional power of a new plant to that of a conventional power plant and directly represents the amount of the conventional generating capacity which can be replaced by a VRE plant while keeping the value of the risk index. A similar metrics, comparing the plant contribution to that of a perfect always-available-at-full-capacity plant is called an 237:
For very low penetrations (few percent), when the chance of the system actually being forced to rely on the VRE at peak times is negligible, the CC of a VRE plant is close to its capacity factor. For high penetrations, due to the fact that the weather tends to affect all plants of similar type at the
229:
is zero regardless of its CF (under this scenario all existing conventional power plants would have to be retained after the solar installation is added). More generally, the CC is low when the times of the day (or seasons) for the peak load do not correlate well with times of high energy production.
61:) power plant can typically provide the electricity at full power as long as it has a sufficient amount of fuel and is operational, therefore the capacity credit of such a plant is close to 100%; it is exactly 100% for some definitions of the capacity credit (see below). The output of a 65:(VRE) plant depends on the state of an uncontrolled natural resource (usually the sun or wind), therefore a mechanically and electrically sound VRE plant might not be able to generate at the rated capacity (neither at the nameplate, nor at the 853: 884: 242:
orders of 2021 and 2023 intend to add by 2035 additional renewable generation capacity with NQC of 15.5 GW and nameplate capacity of 85 GW, implying planned NQC for renewables (a combination of solar and wind), combined with
712: 269:, the solar contribution to the system adequacy is small and is primarily due to scenarios when the use of solar allows to keep the battery storage fully charged until later in the evening. The 614: 181: 73:
a system with weather-dependent generation can reliably provide. For example, with a low, but realistic (cf. Ensslin et al.) wind power capacity credit of 5%, 20
124:). For a dispatchable plant, QC is self-assessed and might go as high as the maximum power of the unit. For wind and solar, QC is based on an ELCC modeling; for 799: 258:
strongest in the winter. This results in a relatively low CC for such potential wind power locations: for example in Texas a predicted average for
254:
In some areas peak demand is driven by air conditioning and occurs on summer afternoons and evenings, while the wind is strongest at night, with
895: 875: 622: 239: 832: 745: 24: 936: 997: 77:(GW) worth of wind power needs to be added to the system in order to permanently retire a 1 GW fossil fuel plant while keeping the 100:) defines the capacity value as the extra load that can be added to the system once the plant is added without degrading a chosen 864: 148:) is similar to QC, except it takes into account the connection of the generator to the grid, for large generating plants, 849: 270: 221:(CF): in a not very probable scenario, if the riskiest time for the power system is after sunset, the capacity credit for 53:
which can be relied upon at a given time (typically during system stress), frequently expressed as a percentage of the
78: 807:
2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century
763: 1016: 204:
percentile of peak-period availability defines the capacity value by calculating the capacity at chosen worst-case
854:"De-rating Factor Methodology for Renewables Participation in the Capacity Market: Consultation Response Summary" 69:
level) when needed, so its CC is much lower than 100%. The capacity credit is useful for a rough estimate of the
62: 105: 58: 230:
Ensslin et al. report wind CC values ranging from 40% down to 5%, with values dropping off with increased
906:
Long-Term Resource Adequacy in Wholesale Electricity Markets with Significant Intermittent Renewables
904: 798:
Ensslin, Cornel; Milligan, Michael; Holttinen, Hannele; O'Malley, Mark; Keane, Andrew (July 2008),
883:
Kevin Carden; Alex Krasny Dombrowsky; Arne Olson; Aaron Burdick; Louis Linden (August 31, 2021).
838: 751: 592: 54: 46: 977: 993: 964: 828: 786: 764:"The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria" 741: 244: 113: 101: 697:"Comparing Capacity Credit Calculations for Wind: A Case Study in Texas (NREL/TP-5C00-80486)" 985: 956: 913: 818: 810: 778: 731: 723: 713:"Simplified methods for renewable generation capacity credit calculation: A critical review" 151: 137: 374: 248: 218: 66: 17: 926:"Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation" 226: 615:"CPUC Augments Historic Clean Energy Procurement Goals To Ensure Electric Reliability" 1010: 266: 255: 129: 951:
Garver, L. (August 1966). "Effective Load Carrying Capability of Generating Units".
755: 842: 429: 427: 425: 423: 259: 125: 989: 978:"Load Control and Management of Systems with Thermal Power, Hydro Power, and Wind" 782: 222: 208:(say, 5th lowest) of the power distribution during the times of the peak demand. 50: 925: 800:"Current methods to calculate capacity credit of wind power, IEA collaboration" 696: 231: 205: 133: 70: 968: 960: 814: 790: 727: 762:
Brand, Bernhard; Stambouli, Amine Boudghene; Zejli, Driss (August 2012).
291: 109: 74: 535: 533: 386: 384: 823: 736: 433: 917: 695:
Jorgenson, Jennie; Awara, Sarah; Stephen, Gord; Mai, Trieu (2021).
273:
in 2019 suggested planning for the following EFC-based de-rating:
108:). Unlike the dimensionless CC, ELCC is expressed in power units ( 984:. Vol. 4. John Wiley & Sons, Ltd. pp. 2201–2212. 591:
Carden, Kevin; Krasny Dombrowsky, Alex; Winkler, Chase (2020).
885:"Incremental ELCC Study for Mid-Term Reliability Procurement" 357: 355: 353: 351: 89:
There are a few similar definitions of the capacity credit:
654: 642: 539: 414: 390: 448: 446: 444: 442: 154: 562: 560: 402: 175: 23:"ELCC" redirects here. For a Canadian church, see 953:IEEE Transactions on Power Apparatus and Systems 183:; ELCC metrics was introduced by Garver in 1966. 361: 217:The capacity credit can be much lower than the 924:Milligan, Michael; Porter, Kevin (June 2008). 711:Dent, C J; Keane, A; Bialek, J W (July 2010), 277:Indicative de-rating factors in Great Britain 865:"2020 Qualifying Capacity Methodology Manual" 678: 666: 551: 524: 8: 822: 735: 153: 912:, National Bureau of Economic Research, 275: 347: 896:California Public Utilities Commission 876:California Public Utilities Commission 623:California Public Utilities Commission 512: 240:California Public Utilities Commission 593:"2020 Joint IOU ELCC Study, Report 1" 452: 247:, batteries, long-term storage, and 140:, the history of production is used. 25:Evangelical Lutheran Church of Canada 7: 937:National Renewable Energy Laboratory 704:National Renewable Energy Laboratory 578: 566: 500: 488: 476: 464: 262:is 13% and for offshore wind is 7%. 112:). California regulators, in their 116:calculations, use different term, 94:effective load carrying capability 14: 403:Brand, Stambouli & Zejli 2012 982:Handbook of Clean Energy Systems 375:"Resource adequacy in the 2030s" 187:equivalent conventional capacity 1: 990:10.1002/9781118991978.hces094 903:Wolak, Frank A. (July 2021), 362:Dent, Keane & Bialek 2010 783:10.1016/j.enpol.2012.04.073 79:electrical grid reliability 1033: 613:CPUC (February 23, 2023). 22: 15: 63:variable renewable energy 45:) is the fraction of the 961:10.1109/TPAS.1966.291652 815:10.1109/PES.2008.4596006 728:10.1109/PES.2010.5589606 720:IEEE PES General Meeting 195:equivalent firm capacity 106:loss of load probability 16:Not to be confused with 976:Söder, Lennart (2015). 955:. PAS-85 (8): 910–919. 142:Net qualifying capacity 809:, IEEE, pp. 1–3, 722:, IEEE, pp. 1–8, 232:wind power penetration 177: 176:{\displaystyle NQC=QC} 655:Jorgenson et al. 2021 643:Jorgenson et al. 2021 540:Jorgenson et al. 2021 415:Jorgenson et al. 2021 391:Jorgenson et al. 2021 251:to be 15.5/85 = 18%. 178: 852:(25 February 2019). 152: 434:Ensslin et al. 2008 278: 118:qualifying capacity 81:at the same level. 850:National Grid, ESO 679:National Grid 2019 667:National Grid 2019 552:National Grid 2019 525:National Grid 2019 276: 173: 57:. A conventional ( 55:nameplate capacity 47:installed capacity 1017:Power engineering 834:978-1-4244-1905-0 747:978-1-4244-6549-1 491:, pp. 15–16. 479:, pp. 13–14. 339: 338: 271:National Grid ESO 114:resource adequacy 102:reliability index 1024: 1003: 972: 947: 945: 943: 930: 920: 911: 899: 889: 879: 878:. November 2020. 869: 860: 858: 845: 826: 804: 794: 768: 758: 739: 717: 707: 701: 682: 676: 670: 664: 658: 652: 646: 640: 634: 633: 631: 629: 610: 604: 603: 601: 599: 588: 582: 576: 570: 564: 555: 549: 543: 537: 528: 522: 516: 510: 504: 498: 492: 486: 480: 474: 468: 462: 456: 450: 437: 431: 418: 412: 406: 400: 394: 388: 379: 378: 371: 365: 359: 279: 225:without coupled 182: 180: 179: 174: 138:geothermal power 43:de-rating factor 1032: 1031: 1027: 1026: 1025: 1023: 1022: 1021: 1007: 1006: 1000: 975: 950: 941: 939: 928: 923: 909: 902: 892:www.cpuc.ca.gov 887: 882: 867: 863: 856: 848: 835: 802: 797: 766: 761: 748: 715: 710: 699: 694: 691: 686: 685: 677: 673: 665: 661: 653: 649: 641: 637: 627: 625: 612: 611: 607: 597: 595: 590: 589: 585: 577: 573: 565: 558: 550: 546: 538: 531: 523: 519: 511: 507: 499: 495: 487: 483: 475: 471: 463: 459: 455:, p. 2209. 451: 440: 432: 421: 417:, pp. 1–2. 413: 409: 401: 397: 389: 382: 373: 372: 368: 360: 349: 344: 249:demand response 219:capacity factor 215: 150: 149: 87: 67:capacity factor 31:Capacity credit 28: 21: 18:Capacity factor 12: 11: 5: 1030: 1028: 1020: 1019: 1009: 1008: 1005: 1004: 998: 973: 948: 921: 918:10.3386/w29033 900: 880: 861: 846: 833: 795: 759: 746: 708: 690: 687: 684: 683: 671: 659: 647: 635: 605: 583: 571: 556: 544: 529: 517: 505: 493: 481: 469: 457: 438: 419: 407: 395: 380: 366: 346: 345: 343: 340: 337: 336: 333: 330: 327: 323: 322: 319: 316: 313: 309: 308: 305: 302: 299: 295: 294: 289: 286: 283: 227:energy storage 214: 211: 210: 209: 202: 184: 172: 169: 166: 163: 160: 157: 86: 83: 39:capacity value 13: 10: 9: 6: 4: 3: 2: 1029: 1018: 1015: 1014: 1012: 1001: 999:9781118991978 995: 991: 987: 983: 979: 974: 970: 966: 962: 958: 954: 949: 938: 934: 927: 922: 919: 915: 908: 907: 901: 897: 893: 886: 881: 877: 873: 866: 862: 855: 851: 847: 844: 840: 836: 830: 825: 820: 816: 812: 808: 801: 796: 792: 788: 784: 780: 776: 772: 771:Energy Policy 765: 760: 757: 753: 749: 743: 738: 733: 729: 725: 721: 714: 709: 706:. Golden, CO. 705: 698: 693: 692: 688: 680: 675: 672: 668: 663: 660: 657:, p. 21. 656: 651: 648: 644: 639: 636: 624: 620: 616: 609: 606: 594: 587: 584: 581:, p. 10. 580: 575: 572: 568: 563: 561: 557: 554:, p. 16. 553: 548: 545: 541: 536: 534: 530: 526: 521: 518: 514: 509: 506: 502: 497: 494: 490: 485: 482: 478: 473: 470: 467:, p. 12. 466: 461: 458: 454: 449: 447: 445: 443: 439: 435: 430: 428: 426: 424: 420: 416: 411: 408: 404: 399: 396: 392: 387: 385: 381: 376: 370: 367: 363: 358: 356: 354: 352: 348: 341: 334: 331: 328: 325: 324: 320: 317: 314: 311: 310: 306: 303: 300: 297: 296: 293: 290: 288:Offshore wind 287: 284: 281: 280: 274: 272: 268: 267:Great Britain 263: 261: 257: 256:offshore wind 252: 250: 246: 241: 235: 233: 228: 224: 220: 212: 207: 203: 200: 196: 192: 188: 185: 170: 167: 164: 161: 158: 155: 147: 143: 139: 135: 131: 130:biomass power 127: 123: 119: 115: 111: 107: 104:(usually the 103: 99: 95: 92: 91: 90: 84: 82: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 26: 19: 981: 952: 940:. Retrieved 932: 905: 891: 871: 806: 774: 770: 719: 703: 681:, p. 3. 674: 669:, p. 6. 662: 650: 645:, p. 7. 638: 626:. Retrieved 618: 608: 598:10 September 596:. Retrieved 586: 574: 569:, p. 9. 547: 542:, p. 6. 527:, p. 4. 520: 508: 503:, p. 7. 496: 484: 472: 460: 436:, p. 3. 410: 398: 393:, p. 1. 369: 285:Onshore wind 264: 260:onshore wind 253: 236: 216: 198: 194: 190: 186: 145: 141: 126:cogeneration 121: 117: 97: 93: 88: 59:dispatchable 42: 38: 34: 30: 29: 872:cpuc.ca.gov 777:: 321–331. 619:cpuc.ca.gov 513:Garver 1966 223:solar power 85:Definitions 51:power plant 824:10197/3213 737:10197/3209 453:Söder 2015 342:References 245:geothermal 206:percentile 134:hydropower 71:firm power 969:0018-9510 791:0301-4215 579:CPUC 2021 567:CPUC 2021 501:CPUC 2020 489:CPUC 2020 477:CPUC 2020 465:CPUC 2020 326:2023/2024 312:2022/2023 298:2020/2021 110:megawatts 75:gigawatts 1011:Category 942:11 April 933:nrel.gov 756:28954479 628:12 April 292:Solar PV 843:4650836 689:Sources 37:, also 996:  967:  841:  831:  789:  754:  744:  213:Values 136:, and 929:(PDF) 910:(PDF) 888:(PDF) 868:(PDF) 857:(PDF) 839:S2CID 803:(PDF) 767:(PDF) 752:S2CID 716:(PDF) 700:(PDF) 335:1.2% 332:12.1% 321:1.2% 318:12.9% 307:1.2% 304:14.7% 49:of a 994:ISBN 965:ISSN 944:2023 829:ISBN 787:ISSN 742:ISBN 630:2023 600:2022 329:8.2% 315:8.4% 301:9.0% 282:Year 98:ELCC 986:doi 957:doi 914:doi 819:hdl 811:doi 779:doi 732:hdl 724:doi 265:In 199:EFC 197:or 191:ECC 146:NQC 41:or 1013:: 992:. 980:. 963:. 935:. 931:. 894:. 890:. 874:. 870:. 837:, 827:, 817:, 805:, 785:. 775:47 773:. 769:. 750:, 740:, 730:, 718:, 702:. 621:. 617:. 559:^ 532:^ 441:^ 422:^ 383:^ 350:^ 234:. 132:, 128:, 122:QC 35:CC 1002:. 988:: 971:. 959:: 946:. 916:: 898:. 859:. 821:: 813:: 793:. 781:: 734:: 726:: 632:. 602:. 515:. 405:. 377:. 364:. 201:; 189:( 171:C 168:Q 165:= 162:C 159:Q 156:N 144:( 120:( 96:( 33:( 27:. 20:.

Index

Capacity factor
Evangelical Lutheran Church of Canada
installed capacity
power plant
nameplate capacity
dispatchable
variable renewable energy
capacity factor
firm power
gigawatts
electrical grid reliability
reliability index
loss of load probability
megawatts
resource adequacy
cogeneration
biomass power
hydropower
geothermal power
percentile
capacity factor
solar power
energy storage
wind power penetration
California Public Utilities Commission
geothermal
demand response
offshore wind
onshore wind
Great Britain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑