Knowledge

Capillary action

Source 📝

1052:
placed in a reservoir full of water, and the other end placed in a receiving vessel. The reservoir must be higher than the receiving vessel. A related but simplified capillary siphon only consists of two hook-shaped stainless-steel rods, whose surface is hydrophilic, allowing water to wet the narrow grooves between them. Due to capillary action and gravity, water will slowly transfer from the reservoir to the receiving vessel. This simple device can be used to water houseplants when nobody is home. This property is also made use of in the
775:, when he reported that "some inquisitive French Men" had observed that when a capillary tube was dipped into water, the water would ascend to "some height in the Pipe". Boyle then reported an experiment in which he dipped a capillary tube into red wine and then subjected the tube to a partial vacuum. He found that the vacuum had no observable influence on the height of the liquid in the capillary, so the behavior of liquids in capillary tubes was due to some phenomenon different from that which governed mercury barometers. 2462:(Thus by assuming that the adhesion of a liquid's molecules has a significant effect only at the surface itself, and in the direction of the surface, it would be easy to determine the curvature of the surfaces of liquids in the vicinity of the walls that contain them; these surfaces would be menisci whose tension, constant in every direction, would be everywhere equal to the adhesion of two molecules; and the phenomena of capillary tubes would have nothing that could not be determined by analysis .) 2460:"En supposant ainsi que l'adhĂ©rence des molĂ©cules d'un liquide n'ait d'effet sensible qu'Ă  la surface mĂȘme, & dans le sens de la surface, il seroit facile de dĂ©terminer la courbure des surfaces des liquides dans le voisinage des parois qui les conteinnent; ces surfaces seroient des lintĂ©aires dont la tension, constante dans tous les sens, seroit par-tout Ă©gale Ă  l'adhĂ©rence de deux molĂ©cules; & les phĂ©nomĂšnes des tubes capillaires n'auroient plus rein qui ne pĂ»t ĂȘtre dĂ©terminĂ© par l'analyse." 1113: 1455: 1446: 1437: 1428: 1419: 1410: 874: 1468: 31: 663: 866: 2252: 2042: 1367:
Thus for a 2 m (6.6 ft) radius glass tube in lab conditions given above, the water would rise an unnoticeable 0.007 mm (0.00028 in). However, for a 2 cm (0.79 in) radius tube, the water would rise 0.7 mm (0.028 in), and for a 0.2 mm (0.0079 in) radius
2417:
In 1740, Christlieb Ehregott Gellert (1713–1795) observed that like mercury, molten lead would not adhere to glass and therefore the level of molten lead was depressed in a capillary tube. See: C. E. Gellert (1740) "De phenomenis plumbi fusi in tubis capillaribus" (On phenomena of molten lead in
2249: 1475:
When a dry porous medium is brought into contact with a liquid, it will absorb the liquid at a rate which decreases over time. When considering evaporation, liquid penetration will reach a limit dependent on parameters of temperature, humidity and permeability. This process is known as evaporation
901:
to overcome these intermolecular forces. The contact length (around the edge) between the top of the liquid column and the tube is proportional to the radius of the tube, while the weight of the liquid column is proportional to the square of the tube's radius. So, a narrow tube will draw a liquid
2458:(History of the Royal Academy of Sciences, with the Memoirs of the Royal Academy of Sciences of Paris), pp. 506–529. Monge proposed that particles of a liquid exert, on each other, a short-range force of attraction, and that this force produces the surface tension of the liquid. From p. 529: 1051:
A practical application of capillary action is the capillary action siphon. Instead of utilizing a hollow tube (as in most siphons), this device consists of a length of cord made of a fibrous material (cotton cord or string works well). After saturating the cord with water, one (weighted) end is
2187:"Alithophilus, Dialogus quartus, in quo nonnulla discutiuntur Ă  D. Montanario opposita circa elevationem Humoris in canaliculis, etc." (Alithophilus, Fourth dialogue, in which Dr. Montanari's opposition regarding the elevation of liquids in capillaries is utterly refuted). 2039: 2063:
An attempt for the explication of the Phenomena observable in an experiment published by the Right Hon. Robert Boyle, in the 35th experiment of his Epistolical Discourse touching the Air, in confirmation of a former conjecture made by R.
1476:
limited capillary penetration and is widely observed in common situations including fluid absorption into paper and rising damp in concrete or masonry walls. For a bar shaped section of material with cross-sectional area
884:
Capillary penetration in porous media shares its dynamic mechanism with flow in hollow tubes, as both processes are resisted by viscous forces. Consequently, a common apparatus used to demonstrate the phenomenon is the
1362: 34:
Capillary water flow up a 225 mm-high porous brick after it was placed in a shallow tray of water. The time elapsed after first contact with water is indicated. From the weight increase, the estimated porosity is
1188: 1885:"Enfin, deux observations capitales, celle de l'action capillaire (7) et celle de la diffraction (8), dont jusqu'Ă  prĂ©sent on avait mĂ©connu le vĂ©ritable auteur, sont dues Ă©galement Ă  ce brillant gĂ©nie." 1657: 1887:(Finally, two major observations, that of capillary action (7) and that of diffraction (8), the true author of which until now had not been recognized, are also due to this brilliant genius.) 2011:(hidden/secret motion). He proposed that mosquitoes, butterflies, and bees feed via capillary action, and that sap ascends in plants via capillary action. See: Giovambatista Clemente Nelli, 958:
act as small capillaries, causing it to absorb a large amount of fluid. Some textile fabrics are said to use capillary action to "wick" sweat away from the skin. These are often referred to as
2007:(a book of various geometric problems and of speculation and physical experiments, etc.) by Aggiunti. On pages 91–92, he quotes from this book: Aggiunti attributed capillary action to 100: 3203: 2169:"Dialogus Quartus. In quo, de libratis suspensisque liquoribus & Mercurio disputatur. (Dialogue four. In which the balance and suspension of liquids and mercury is discussed). 1258:
is in the denominator, the thinner the space in which the liquid can travel, the further up it goes. Likewise, lighter liquid and lower gravity increase the height of the column.
1213: 1579: 1528: 1921:, vol. 3, p. 54) observations of this kind are already to be found in the manuscripts of the great artist Leonardo da Vinci (died 1519), which are preserved in Paris; ... ) 1584:
is called the cumulative liquid intake, with the dimension of length. The wetted length of the bar, that is the distance between the wetted end of the bar and the so-called
809:
Although experimental studies continued during the 18th century, a successful quantitative treatment of capillary action was not attained until 1805 by two investigators:
3127: 786:) thought that liquids rose in capillaries because air could not enter capillaries as easily as liquids, so the air pressure was lower inside capillaries. Others (e.g., 1046: 2325:"An account of an experiment touching the direction of a drop of oil of oranges, between two glass planes, towards any side of them that is nearest press'd together," 1915:, T. III, p. 54) in den zu Paris aufbewahrten Handschriften des grossen KĂŒnstlers Leonardo da Vinci (gestorben 1519) schon Beobachtungen dieser Art vorfinden; ... " 649: 2338: 2324: 3196: 1966: 825:
had determined the boundary conditions governing capillary action (i.e., the conditions at the liquid-solid interface). In 1871, the British physicist
1890:
C. Wolf (1857) "Vom Einfluss der Temperatur auf die Erscheinungen in Haarröhrchen" (On the influence of temperature on phenomena in capillary tubes)
751:
Capillary comes from the Latin word capillaris, meaning "of or resembling hair". The meaning stems from the tiny, hairlike diameter of a capillary.
3189: 2489: 1296: 3172: 2622: 1978: 2543: 2180: 2162: 2097: 1943: 2580: 2388: 2366: 2299: 2204: 2081: 1902: 1876: 3493: 2508: 2228: 2133: 2113: 2019: 2652: 977:, in which a solvent moves vertically up a plate via capillary action. In this case the pores are gaps between very small particles. 3036: 2272: 826: 642: 2812: 1290:
on clean glass, the effective equilibrium contact angle is approximately zero. For these values, the height of the water column is
1133: 2604: 1606: 897:
occurs between the fluid and the solid inner wall pulling the liquid column along until there is a sufficient mass of liquid for
3464: 2443:(1746–1818) investigated the force between panes of glass that were separated by a film of liquid. See: Gaspard Monge (1787) 2430: 2720: 2447: 731:
between the liquid and surrounding solid surfaces. If the diameter of the tube is sufficiently small, then the combination of
3877: 3565: 2921:
Ishii D, Horiguchi H, Hirai Y, Yabu H, Matsuo Y, Ijiro K, Tsujii K, Shimozawa T, Hariyama T, Shimomura M (October 23, 2013).
1013:, capillary action describes the attraction of water molecules to soil particles. Capillary action is responsible for moving 615: 3310: 795: 316: 153: 1393: 902:
column along further than a wider tube will, given that the inner water molecules cohere sufficiently to the outer ones.
3512: 3420: 635: 356: 242: 3633: 3278: 311: 3344: 1870:
Histoire des sciences mathématiques en Italie, depuis la Renaissance des lettres jusqu'a la fin du dix-septiÚme siecle
878: 220: 2473:
In the 18th century, some investigators did attempt a quantitative treatment of capillary action. See, for example,
1843: 818: 771:, was said to have investigated capillary action. In 1660, capillary action was still a novelty to the Irish chemist 103: 3058: 2923:"Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces" 2831: 2127:(NĂŒremberg (NorimbergĂŠ), (Germany): Wolfgang Moritz Endter & the heirs of Johann Andreas Endter, 1676). See: 1240: 1076:. Water is brought high up in trees by branching; evaporation at the leaves creating depressurization; probably by 3361: 974: 923: 712:
The effect can be seen in the drawing up of liquids between the hairs of a paint-brush, in a thin tube such as a
227: 56: 3931: 3792: 3787: 3553: 810: 791: 522: 517: 132: 3670: 3638: 3293: 3283: 2339:"An account of an experiment touching the ascent of water between two glass planes, in an hyperbolick figure," 1080:
added at the roots; and possibly at other locations inside the plant, especially when gathering humidity with
306: 299: 3921: 3852: 3533: 3449: 3339: 2248:(Lyon, France: 1670), page 385, Cap. 8 Prop. CLXXXV (Chapter 8, Proposition 185.). Available on-line at: 922:, while in industry and diagnostic medicine this phenomenon is increasingly being harnessed in the field of 585: 580: 249: 2225: 3432: 3305: 2564: 1837: 1542: 1196: 705:
flowing in a narrow space in opposition to or at least without the assistance of any external forces like
137: 910:
In the built environment, evaporation limited capillary penetration is responsible for the phenomenon of
716:, in porous materials such as paper and plaster, in some non-porous materials such as clay and liquefied 3936: 3837: 3415: 2456:
Histoire de l'Académie royale des sciences, avec les Mémoires de l'Académie Royale des Sciences de Paris
560: 178: 941:; their openings can be seen with the naked eye within the lacrymal sacs when the eyelids are everted. 806:) thought that the particles of liquid were attracted to each other and to the walls of the capillary. 2849: 2427: 1551: 1494: 1112: 3900: 3574: 3478: 3473: 3444: 3410: 3390: 3375: 3356: 3327: 3268: 2987: 2934: 2871: 2753: 2444: 1061: 1053: 999: 822: 814: 736: 728: 398: 215: 195: 183: 127: 3083: 3048:
Hsai-Yang Fang, john L. Daniels, Introductory Geotechnical Engineering: An Environmental Perspective
2486: 1454: 1445: 1436: 1427: 1418: 1409: 3872: 3724: 3663: 3643: 3459: 3405: 3288: 3247: 3213: 2445:"MĂ©moire sur quelques effets d'attraction ou de rĂ©pulsion apparente entre les molĂ©cules de matiĂšre" 898: 842: 768: 600: 448: 341: 47: 1975: 1873: 3926: 3543: 3538: 3322: 3011: 2903: 2861: 2769: 2702: 2679: 2619: 1805: 1763: 853: 620: 254: 210: 205: 2540: 1956: 1024: 3591: 3528: 3507: 3502: 3437: 3427: 3395: 3168: 3124: 3106: 3032: 3003: 2960: 2895: 2887: 2792: 2577: 2454:(Memoir on some effects of the apparent attraction or repulsion between molecules of matter), 2385: 2363: 2296: 2177: 2159: 1940: 1899: 1840: â€“ Equation describing the penetration length of a liquid into a capillary tube with time 1775: 1673: 995: 938: 911: 890: 830: 803: 760: 671: 237: 188: 2698: 2680:"Tuning capillary penetration in porous media: Combining geometrical and evaporation effects" 2505: 2199: 2128: 2078: 2016: 1760: â€“ Subsurface layer in which groundwater seeps up from a water table by capillary action 3827: 3736: 3729: 3719: 3560: 3160: 3098: 3028: 2995: 2950: 2942: 2879: 2761: 2694: 2108: 2091: 1757: 1077: 959: 799: 575: 550: 463: 438: 433: 2003:
In his book of 1759, Giovani Batista Clemente Nelli (1725–1793) stated (p. 87) that he had
933:
fluid from the eye. Two canaliculi of tiny diameter are present in the inner corner of the
873: 3842: 3777: 3754: 3690: 3658: 3608: 3596: 3483: 3454: 3371: 3349: 3332: 3232: 3227: 3131: 2835: 2816: 2648: 2626: 2584: 2547: 2512: 2493: 2474: 2451: 2434: 2395:(Explanation of difficult experiments concerning the ascent of water in capillary tubes), 2392: 2370: 2303: 2276: 2256: 2232: 2208: 2184: 2166: 2137: 2117: 2101: 2085: 2046: 2023: 1982: 1947: 1906: 1880: 1831: 1672:
Sorptivity is a relevant property of building materials, because it affects the amount of
1216: 1095: 1018: 848: 838: 783: 764: 732: 721: 565: 489: 403: 334: 268: 170: 3675: 3298: 2269: 779: 453: 323: 2991: 2938: 2875: 2809: 2757: 1669:
The above description is for the case where gravity and evaporation do not play a role.
3847: 3714: 3628: 3586: 3400: 2955: 2922: 2483:
Chapitre X. De l'Ă©levation ou de l'abaissement des Liqueurs dans les Tuyaux capillaires
1787: 1769: 1125: 1087:
Capillary action for uptake of water has been described in some small animals, such as
929:
In physiology, capillary action is essential for the drainage of continuously produced
834: 713: 570: 428: 393: 294: 200: 2005:"un libro di problem vari geometrici ec. e di speculazioni, ed esperienze fisiche ec." 1541:
of the medium, in units of m·s or mm·min. This time dependence relation is similar to
3915: 3895: 3862: 3759: 3623: 3488: 2907: 2773: 2440: 1961: 1799: 1781: 1224: 1089: 1073: 955: 951: 889:. When the lower end of a glass tube is placed in a liquid, such as water, a concave 787: 610: 443: 2706: 1467: 944:
Wicking is the absorption of a liquid by a material in the manner of a candle wick.
845:(1798–1895) subsequently determined the interaction between two immiscible liquids. 30: 3867: 3857: 3832: 3015: 1793: 985: 772: 717: 595: 590: 555: 287: 2386:"Explicatio difficilium experimentorum circa ascensum aquae in tubis capillaribus" 2373:(Theoretical essay in which the ascent of water in capillary tubes is explained), 1471:
Capillary flow in a brick, with a sorptivity of 5.0 mm·min and a porosity of 0.25.
877:
Capillary flow experiment to investigate capillary flows and phenomena aboard the
3102: 1766: â€“ Pressure between two fluids from forces between the fluids and tube walls 3782: 3181: 2978:
Bentley PJ, Blumer WF (1962). "Uptake of water by the lizard, Moloch horridus".
1819: 1814: 1751: 1742: 1014: 967: 947: 706: 674:(non-polar), in each case with respect to a polar surface such as glass (≡Si–OH) 605: 508: 2883: 2678:
Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A.H.; Chen, C.Q. (2018).
1986:
Bulletin of the Lloyd Library and Museum of Botany, Pharmacy and Materia Medica
1676:. Some values for the sorptivity of building materials are in the table below. 3797: 3709: 3548: 3242: 3164: 1825: 1538: 527: 423: 17: 2891: 2796: 2485:(Chapter 10. On the elevation or depression of liquids in capillary tubes), 2038:, ... (Oxford, England: H. Hall, 1660), pp. 265–270. Available on-line at: 3819: 3809: 3804: 3746: 3653: 3237: 1970:. Vol. 5 (11th ed.). Cambridge University Press. pp. 256–275. 1397: 1010: 988: 499: 494: 328: 3110: 3007: 2964: 2899: 2140:(Essay 8. Recently noted phenomena of narrow capillaries, ... ), pp. 44–48. 1846: â€“ Describing pressure difference over an interface in fluid mechanics 3155:
de Gennes, Pierre-Gilles; Brochard-Wyart, Françoise; Quéré, David (2004).
3123:
C. Hall, W.D. Hoff, Water transport in brick, stone, and concrete. (2002)
2765: 1939:(Philadelphia, Pennsylvania: Joseph and Edward Parker, 1832), volume 10, 3769: 3680: 3648: 3273: 3031:, 'An Introduction To Fluid Dynamics', Cambridge University Press (1967) 2828: 2130:"Tentamen VIII. Canaliculorum angustiorum recens-notata PhĂŠnomena, ... " 1932:
More detailed histories of research on capillary action can be found in:
1828: â€“ Ice column formed when liquid groundwater rises into freezing air 1597: 1081: 915: 894: 740: 478: 383: 363: 349: 1865:
Manuscripts of LĂ©onardo de Vinci (Paris), vol. N, folios 11, 67, and 74.
1357:{\displaystyle h\approx {{1.48\times 10^{-5}\ {\mbox{m}}^{2}} \over r}.} 1261:
For a water-filled glass tube in air at standard laboratory conditions,
1060:
are used to draw oil from reservoirs into delivery pipes leading to the
1003: 865: 662: 3581: 3521: 2850:"Disjoining pressure driven transpiration of water in a simulated tree" 2479:
Theorie de la Figure de la Terre tirée des Principes de l'Hydrostatique
2364:"Tentamen theoriae qua ascensus aquae in tubis capillaribus explicatur" 2297:"Several Experiments Touching the Seeming Spontaneous Ascent of Water," 2250:
Echo (Max Planck Institute for the History of Science; Berlin, Germany)
2040:
Echo (Max Planck Institute for the History of Science; Berlin, Germany)
1955: 1790: â€“ Equation describing the flow of a fluid through a porous medium 1287: 1232: 1057: 919: 232: 2946: 1822: â€“ Measurement and characterization of the porosity of a material 1002:
within the liquid exceed those between the solid and the liquid, so a
3685: 2999: 1834: â€“ Tendency of a liquid surface to shrink to reduce surface area 1248: 963: 934: 702: 373: 1772: â€“ Wave on the surface of a fluid, dominated by surface tension 954:
to be transferred from a surface to the towel. The small pores of a
2866: 2563:(Göttingen, (Germany): Dieterichs, 1830). Available on-line at: 2561:
Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii
2093:
Pensieri fisico-matematici sopra alcune esperienze fatte in Bologna
3887: 3616: 3383: 3084:"Evaporation limited radial capillary penetration in porous media" 1466: 1111: 930: 872: 864: 667: 661: 277: 29: 2422:(Memoirs of the imperial academy of sciences in St. Petersburg), 2399:(Memoirs of the imperial academy of sciences in St. Petersburg), 2377:(Memoirs of the imperial academy of sciences in St. Petersburg), 2036:
New Experiments Physico-Mechanical touching the Spring of the Air
1778: â€“ Minimised surface of liquid commecting two wetted objects 743:
between the liquid and container wall act to propel the liquid.
3185: 1545:
for the wicking in capillaries and porous media. The quantity
3702: 1116:
Water height in a capillary plotted against capillary diameter
981: 413: 2578:"On the equilibrium of vapour at a curved surface of liquid," 2320:... (London, England: (Self-published), 1709), pages 139–169. 1183:{\displaystyle h={{2\gamma \cos {\theta }} \over {\rho gr}},} 1072:
Capillary action is seen in many plants, and plays a part in
1017:
from wet areas of the soil to dry areas. Differences in soil
2420:
Commentarii academiae scientiarum imperialis Petropolitanae
2397:
Commentarii academiae scientiarum imperialis Petropolitanae
2375:
Commentarii academiae scientiarum imperialis Petropolitanae
1652:{\displaystyle x={\frac {i}{f}}={\frac {S}{f}}{\sqrt {t}}.} 2537:
Supplément au dixiÚme livre du Traité de Mécanique Céleste
2224:(Hague (HagĂŠ Comitis), Netherlands: Adrian Vlacq, 1666), 759:
The first recorded observation of capillary action was by
2516:
Philosophical Transactions of the Royal Society of London
2342:
Philosophical Transactions of the Royal Society of London
2328:
Philosophical Transactions of the Royal Society of London
2307:
Philosophical Transactions of the Royal Society of London
2077:... (London, England: James Allestry, 1667), pp. 12–22, 2073:... was reprinted (with some changes) in: Robert Hooke, 1784: â€“ Type of moisture control in building construction 1754: â€“ Thin layer of water surrounding mineral surfaces. 2848:
Poudel, Sajag; Zou, An; Maroo, Shalabh C. (2022-06-15).
2744:
Wang, K.; et al. (2022). "Open Capillary Siphons".
1976:"References to capillarity to the end of the year 1900," 1872:(Paris, France: Jules Renouard et cie., 1840), vol. 3, 821:
of capillary action. By 1830, the German mathematician
2829:
Water in Redwood and other trees, mostly by evaporation
2819:
at "Neat, Plausible And" scientific discussion website.
1810:
Pages displaying short descriptions of redirect targets
1747:
Pages displaying short descriptions of redirect targets
3059:"Capillary Tubes - an overview | ScienceDirect Topics" 2176:... ((Lyon (Lugdunum), France: Antoine Molin, 1669), 2013:
Saggio di Storia Letteraria Fiorentina del Secolo XVII
1333: 1200: 1006:
meniscus forms and capillary action works in reverse.
2791:. London: Locomotive Publishing Company. p. 26. 2721:"Capillary Action and Water | U.S. Geological Survey" 1609: 1554: 1497: 1368:
tube, the water would rise 70 mm (2.8 in).
1299: 1199: 1136: 1027: 59: 2649:"List of Scientific Publications of Albert Einstein" 3886: 3818: 3768: 3745: 3607: 3370: 3256: 3220: 2120:(Rotterdam, Netherlands: Arnold Leers, Jr., 1669). 1954:Maxwell, James Clerk; Strutt, John William (1911). 950:absorb liquid through capillary action, allowing a 2318:Physico-mechanical Experiments on Various Subjects 1909:by editor Johann C. Poggendorff. From page 551: 1651: 1573: 1522: 1396:. The surface of the liquid between the planes is 1356: 1207: 1182: 1040: 94: 2246:De motionibus naturalibus a gravitate pendentibus 2211:(Amsterdam, Netherlands: Hendrik Wetsten, 1683). 2015:... (Lucca, (Italy): Vincenzo Giuntini, 1759), 1480:that is wetted on one end, the cumulative volume 1372:Capillary rise of liquid between two glass plates 829:(later Lord Kelvin) determined the effect of the 2620:"Folgerungen aus den CapillaritĂ€tserscheinungen" 1802: â€“ Upwards swelling of soil during freezing 2687:International Journal of Heat and Mass Transfer 1796: â€“ Thin layer of ice extruded from a plant 1392: = constant), the two quantities are 778:Others soon followed Boyle's lead. Some (e.g., 2535:, volume 4, (Paris, France: Courcier, 1805), 1745: â€“ Dimensionless number in fluid dynamics 991:from a reservoir or cartridge inside the pen. 3197: 2606:Vorlesungen ĂŒber die Theorie der CapillaritĂ€t 1919:History of the mathematical sciences in Italy 1592:of the volume occupied by voids. This number 643: 8: 27:Ability of a liquid to flow in narrow spaces 1680:Sorptivity of selected materials (source:) 95:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 3204: 3190: 3182: 2426: : 243–251. Available on-line at: 2281:MĂ©moires de l'AcadĂ©mie Royale des Sciences 650: 636: 483: 273: 116: 38: 2954: 2865: 2673: 2671: 2669: 2629:(Conclusions from capillary phenomena), 2609:(Leipzig, Germany: B. G. Teubner, 1894). 2110:Ars Nova et Magna Gravitatis et Levitatis 1639: 1629: 1616: 1608: 1600:of the medium; the wetted length is then 1561: 1553: 1510: 1496: 1339: 1332: 1319: 1308: 1306: 1298: 1198: 1164: 1158: 1145: 1143: 1135: 1032: 1026: 72: 58: 2854:Journal of Colloid and Interface Science 2699:10.1016/j.ijheatmasstransfer.2018.02.101 2270:"Experiences sur les tuyaux Capillaires" 1678: 869:Moderate rising damp on an internal wall 2158:... ((Lyon (Lugdunum), France: 1665), 1855: 1402: 1108:Capillary rise of liquid in a capillary 851:'s first paper, which was submitted to 507: 462: 412: 372: 276: 145: 119: 46: 1898:(177) : 550–576; see footnote on 1808: â€“ 1995 alleged miracle incidents 994:With some pairs of materials, such as 2603:Franz Neumann with A. Wangerin, ed., 2506:"An essay on the cohesion of fluids," 2125:Collegium Experimentale sive Curiosum 7: 2481:(Paris, France: David fils, 1743), 2079:"Observ. IV. Of small Glass Canes." 1208:{\displaystyle \scriptstyle \gamma } 962:, after the capillary properties of 2222:De Nili et Aliorum Fluminum Origine 2279:(Experiments on capillary tubes), 1913:Hist. des sciences math. en Italie 1048:) drive capillary action in soil. 1029: 25: 3157:Capillarity and Wetting Phenomena 2531:Pierre Simon marquis de Laplace, 2201:Dissertatio de Gravitate Ætheris 1574:{\displaystyle i={\frac {V}{A}}} 1523:{\displaystyle V=AS{\sqrt {t}},} 1484:of absorbed liquid after a time 1463:Liquid transport in porous media 1453: 1444: 1435: 1426: 1417: 1408: 1376:The product of layer thickness ( 1054:lubrication of steam locomotives 973:Capillary action is observed in 2838:article at wonderquest website. 2787:Ahrons, Ernest Leopold (1922). 2655:from the original on 2013-05-08 2504:Thomas Young (January 1, 1805) 1588:, is dependent on the fraction 1124:of a liquid column is given by 2752:. Cambridge University Press. 2071:An attempt for the explication 1662:Some authors use the quantity 1404:Water between two glass plates 1: 3082:Liu, M.; et al. (2016). 1892:Annalen der Physik und Chemie 1243:(length/square of time), and 857:in 1900, was on capillarity. 3103:10.1021/acs.langmuir.6b02404 817:of France. They derived the 2533:TraitĂ© de MĂ©canique CĂ©leste 1241:acceleration due to gravity 879:International Space Station 3953: 2884:10.1016/j.jcis.2022.02.108 2789:Lubrication of Locomotives 2746:Journal of Fluid Mechanics 2244:Borelli, Giovanni Alfonso 2123:Johannes Christoph Sturm, 2104:(Bologna, (Italy): 1667). 1917:( ... according to Libri ( 813:of the United Kingdom and 3165:10.1007/978-0-387-21656-0 2384:Josias Weitbrecht (1737) 1235:of liquid (mass/volume), 1041:{\displaystyle \Psi _{m}} 975:thin layer chromatography 924:paper-based microfluidics 837:—a relation known as the 3554:Compact tension specimen 3274:Conservation of momentum 3125:page 131 on Google books 2986:(4829): 699–670 (1962). 2362:Josia Weitbrecht (1736) 2337:Francis Hauksbee (1712) 2323:Francis Hauksbee (1711) 2295:Francis Hauksbee (1708) 1957:"Capillary Action"  1380:) and elevation height ( 792:Giovanni Alfonso Borelli 154:Clausius–Duhem (entropy) 104:Fick's laws of diffusion 3634:Navier–Stokes equations 3534:Material failure theory 3522:Material failure theory 2651:. Einstein-website.de. 2618:Albert Einstein (1901) 2576:William Thomson (1871) 1967:EncyclopĂŠdia Britannica 1937:Edinburgh Encyclopaedia 980:Capillary action draws 739:within the liquid) and 312:Navier–Stokes equations 250:Material failure theory 3306:Conservation of energy 2588:Philosophical Magazine 2559:Carl Friedrich Gauss, 2475:Alexis Claude Clairaut 1974:John Uri Lloyd (1902) 1844:Young–Laplace equation 1653: 1575: 1524: 1472: 1394:inversely proportional 1358: 1209: 1184: 1117: 1042: 881: 870: 819:Young–Laplace equation 763:. A former student of 701:) is the process of a 675: 96: 36: 3671:Archimedes' principle 3639:Bernoulli's principle 3159:. Springer New York. 3142:Hall and Hoff, p. 122 3063:www.sciencedirect.com 2766:10.1017/jfm.2021.1056 2594:(282) : 448–452. 2090:Geminiano Montanari, 1935:David Brewster, ed., 1654: 1576: 1525: 1470: 1359: 1219:(force/unit length), 1210: 1185: 1115: 1068:In plants and animals 1043: 1000:intermolecular forces 876: 868: 861:Phenomena and physics 729:intermolecular forces 727:It occurs because of 665: 307:Bernoulli's principle 300:Archimedes' principle 97: 33: 3901:William Prager Medal 3479:Rock mass plasticity 3376:Structural mechanics 3269:Conservation of mass 3257:Laws and Definitions 2647:Hans-Josef Kuepper. 2061:Robert Hooke (1661) 1607: 1552: 1495: 1297: 1197: 1134: 1103:Height of a meniscus 1025: 899:gravitational forces 823:Carl Friedrich Gauss 815:Pierre-Simon Laplace 735:(which is caused by 670:(polar) compared to 666:Capillary action of 399:Cohesion (chemistry) 221:Infinitesimal strain 57: 3644:Poiseuille equation 3421:Membrane elasticity 3406:Transverse isotropy 3248:Rigid body dynamics 3214:continuum mechanics 2992:1962Natur.194..699B 2939:2013NatSR...3E3024I 2876:2022JCIS..616..895P 2758:2022JFM...932R...1W 2637:(3) : 513–523. 1838:Washburn's equation 1681: 1666:as the sorptivity. 1543:Washburn's equation 843:Franz Ernst Neumann 841:. German physicist 827:Sir William Thomson 317:Poiseuille equation 48:Continuum mechanics 42:Part of a series on 3793:Electrorheological 3788:Magnetorheological 3544:Fracture mechanics 3311:Entropy inequality 3130:2014-02-20 at the 2927:Scientific Reports 2834:2012-01-29 at the 2815:2013-11-28 at the 2631:Annalen der Physik 2625:2017-10-25 at the 2583:2014-10-26 at the 2546:2016-12-24 at the 2511:2014-06-30 at the 2492:2016-04-09 at the 2450:2016-03-16 at the 2433:2016-03-17 at the 2391:2014-11-05 at the 2369:2014-06-29 at the 2316:Francis Hauksbee, 2302:2014-06-29 at the 2275:2017-04-07 at the 2255:2016-12-23 at the 2231:2017-04-07 at the 2207:2017-04-07 at the 2183:2017-04-07 at the 2165:2016-12-24 at the 2136:2014-06-29 at the 2116:2017-11-03 at the 2100:2016-12-29 at the 2084:2016-12-24 at the 2058:See, for example: 2045:2014-03-05 at the 2022:2014-07-27 at the 1992:(4) : 99–204. 1981:2014-12-14 at the 1946:2016-12-24 at the 1911:" ... nach Libri ( 1905:2014-06-29 at the 1883:. From page 54: 1879:2016-12-24 at the 1806:Hindu milk miracle 1764:Capillary pressure 1679: 1649: 1571: 1520: 1473: 1354: 1337: 1215:is the liquid-air 1205: 1204: 1180: 1118: 1038: 937:, also called the 882: 871: 854:Annalen der Physik 681:(sometimes called 676: 523:Magnetorheological 518:Electrorheological 255:Fracture mechanics 92: 37: 3909: 3908: 3592:Bending of plates 3566:Johnson-Holmquist 3529:Drucker stability 3503:Contact mechanics 3450:Cauchy elasticity 3428:Equation of state 3174:978-1-4419-1833-8 3097:(38): 9899–9904. 2947:10.1038/srep03024 2418:capillary tubes) 2403: : 275–309. 2381: : 261–309. 2313: : 258–266. 2198:Jacob Bernoulli, 2107:George Sinclair, 1868:Guillaume Libri, 1776:Capillary bridges 1734: 1733: 1644: 1637: 1624: 1569: 1515: 1349: 1336: 1330: 1175: 761:Leonardo da Vinci 660: 659: 535: 534: 469: 468: 238:Contact mechanics 161: 160: 90: 16:(Redirected from 3944: 3730:Combined gas law 3725:Gay-Lussac's law 3696:Capillary action 3561:Damage mechanics 3206: 3199: 3192: 3183: 3178: 3143: 3140: 3134: 3121: 3115: 3114: 3088: 3079: 3073: 3072: 3070: 3069: 3055: 3049: 3046: 3040: 3026: 3020: 3019: 3000:10.1038/194699a0 2975: 2969: 2968: 2958: 2918: 2912: 2911: 2869: 2845: 2839: 2826: 2820: 2807: 2801: 2800: 2784: 2778: 2777: 2741: 2735: 2734: 2732: 2731: 2717: 2711: 2710: 2684: 2675: 2664: 2663: 2661: 2660: 2644: 2638: 2616: 2610: 2601: 2595: 2574: 2568: 2557: 2551: 2529: 2523: 2502: 2496: 2471: 2465: 2412: 2406: 2357: 2351: 2348: : 539–540. 2334: : 374–375. 2290: 2284: 2266: 2260: 2242: 2236: 2218: 2212: 2196: 2190: 2172:Honorato Fabri, 2154:Honorato Fabri, 2149: 2143: 2056: 2050: 2032: 2026: 2001: 1995: 1971: 1959: 1930: 1924: 1860: 1811: 1758:Capillary fringe 1748: 1695:Aerated concrete 1682: 1658: 1656: 1655: 1650: 1645: 1640: 1638: 1630: 1625: 1617: 1580: 1578: 1577: 1572: 1570: 1562: 1529: 1527: 1526: 1521: 1516: 1511: 1457: 1448: 1439: 1430: 1421: 1412: 1363: 1361: 1360: 1355: 1350: 1345: 1344: 1343: 1338: 1334: 1328: 1327: 1326: 1307: 1286:. Because water 1285: 1278: 1271: 1267: 1214: 1212: 1211: 1206: 1189: 1187: 1186: 1181: 1176: 1174: 1163: 1162: 1144: 1078:osmotic pressure 1047: 1045: 1044: 1039: 1037: 1036: 804:Josia Weitbrecht 800:Francis Hauksbee 769:NiccolĂČ Aggiunti 695:capillary effect 687:capillary motion 679:Capillary action 652: 645: 638: 484: 449:Gay-Lussac's law 439:Combined gas law 389:Capillary action 274: 117: 101: 99: 98: 93: 91: 89: 81: 73: 39: 21: 3952: 3951: 3947: 3946: 3945: 3943: 3942: 3941: 3932:Surface science 3912: 3911: 3910: 3905: 3882: 3814: 3778:Viscoelasticity 3764: 3755:Acoustic theory 3741: 3691:Surface tension 3609:Fluid mechanics 3603: 3597:Sandwich theory 3489:Yield criterion 3484:Viscoplasticity 3455:Viscoelasticity 3416:hyperelasticity 3366: 3350:Antiplane shear 3333:Stress measures 3252: 3233:Fluid mechanics 3228:Solid mechanics 3216: 3210: 3175: 3154: 3151: 3149:Further reading 3146: 3141: 3137: 3132:Wayback Machine 3122: 3118: 3086: 3081: 3080: 3076: 3067: 3065: 3057: 3056: 3052: 3047: 3043: 3027: 3023: 2977: 2976: 2972: 2920: 2919: 2915: 2847: 2846: 2842: 2836:Wayback Machine 2827: 2823: 2817:Wayback Machine 2808: 2804: 2786: 2785: 2781: 2743: 2742: 2738: 2729: 2727: 2719: 2718: 2714: 2682: 2677: 2676: 2667: 2658: 2656: 2646: 2645: 2641: 2627:Wayback Machine 2617: 2613: 2602: 2598: 2585:Wayback Machine 2575: 2571: 2558: 2554: 2548:Wayback Machine 2530: 2526: 2522: : 65–87. 2513:Wayback Machine 2503: 2499: 2494:Wayback Machine 2472: 2468: 2452:Wayback Machine 2435:Wayback Machine 2413: 2409: 2393:Wayback Machine 2371:Wayback Machine 2358: 2354: 2304:Wayback Machine 2291: 2287: 2277:Wayback Machine 2267: 2263: 2257:Wayback Machine 2243: 2239: 2233:Wayback Machine 2220:Isaac Vossius, 2219: 2215: 2209:Wayback Machine 2197: 2193: 2185:Wayback Machine 2174:Dialogi physici 2167:Wayback Machine 2156:Dialogi physici 2150: 2146: 2138:Wayback Machine 2118:Wayback Machine 2102:Wayback Machine 2086:Wayback Machine 2057: 2053: 2047:Wayback Machine 2033: 2029: 2024:Wayback Machine 2002: 1998: 1983:Wayback Machine 1953: 1948:Wayback Machine 1931: 1927: 1907:Wayback Machine 1881:Wayback Machine 1861: 1857: 1853: 1832:Surface tension 1809: 1746: 1739: 1689: 1674:rising dampness 1605: 1604: 1550: 1549: 1493: 1492: 1465: 1458: 1449: 1440: 1431: 1422: 1413: 1384:) is constant ( 1374: 1331: 1315: 1295: 1294: 1284:= 9.81 m/s 1280: 1273: 1269: 1262: 1217:surface tension 1195: 1194: 1132: 1131: 1110: 1105: 1096:Moloch horridus 1070: 1028: 1023: 1022: 998:and glass, the 984:to the tips of 960:wicking fabrics 908: 863: 849:Albert Einstein 839:Kelvin equation 784:Jacob Bernoulli 757: 749: 741:adhesive forces 733:surface tension 722:biological cell 656: 627: 626: 625: 545: 537: 536: 490:Viscoelasticity 481: 471: 470: 458: 408: 404:Surface tension 368: 271: 269:Fluid mechanics 261: 260: 259: 173: 171:Solid mechanics 163: 162: 114: 106: 82: 74: 55: 54: 28: 23: 22: 15: 12: 11: 5: 3950: 3948: 3940: 3939: 3934: 3929: 3924: 3922:Fluid dynamics 3914: 3913: 3907: 3906: 3904: 3903: 3898: 3892: 3890: 3884: 3883: 3881: 3880: 3875: 3870: 3865: 3860: 3855: 3850: 3845: 3840: 3835: 3830: 3824: 3822: 3816: 3815: 3813: 3812: 3807: 3802: 3801: 3800: 3795: 3790: 3780: 3774: 3772: 3766: 3765: 3763: 3762: 3757: 3751: 3749: 3743: 3742: 3740: 3739: 3733: 3732: 3727: 3722: 3717: 3712: 3706: 3705: 3699: 3698: 3693: 3688: 3683: 3678: 3673: 3668: 3667: 3666: 3661: 3651: 3646: 3641: 3636: 3631: 3629:Fluid dynamics 3626: 3620: 3619: 3613: 3611: 3605: 3604: 3602: 3601: 3600: 3599: 3594: 3589: 3587:Bending moment 3578: 3577: 3571: 3570: 3569: 3568: 3558: 3557: 3556: 3551: 3541: 3536: 3531: 3525: 3524: 3518: 3517: 3516: 3515: 3510: 3500: 3499: 3498: 3497: 3496: 3494:Bresler-Pister 3486: 3481: 3471: 3470: 3469: 3468: 3467: 3465:Concrete creep 3462: 3452: 3447: 3445:hypoelasticity 3442: 3441: 3440: 3435: 3425: 3424: 3423: 3413: 3408: 3403: 3398: 3387: 3386: 3380: 3378: 3368: 3367: 3365: 3364: 3359: 3354: 3353: 3352: 3342: 3337: 3336: 3335: 3330: 3319: 3318: 3314: 3313: 3308: 3303: 3302: 3301: 3296: 3291: 3286: 3281: 3271: 3265: 3264: 3260: 3258: 3254: 3253: 3251: 3250: 3245: 3240: 3235: 3230: 3224: 3222: 3218: 3217: 3211: 3209: 3208: 3201: 3194: 3186: 3180: 3179: 3173: 3150: 3147: 3145: 3144: 3135: 3116: 3074: 3050: 3041: 3029:G.K. Batchelor 3021: 2970: 2913: 2840: 2821: 2802: 2779: 2736: 2712: 2665: 2639: 2611: 2596: 2569: 2552: 2524: 2497: 2487:pages 105–128. 2466: 2464: 2463: 2438: 2407: 2405: 2404: 2382: 2352: 2350: 2349: 2335: 2321: 2314: 2285: 2283:, pp. 241–254. 2261: 2237: 2213: 2191: 2189: 2188: 2170: 2144: 2142: 2141: 2121: 2105: 2088: 2067: 2051: 2034:Robert Boyle, 2027: 2009:"moto occulto" 1996: 1994: 1993: 1972: 1962:Chisholm, Hugh 1951: 1925: 1923: 1922: 1888: 1866: 1854: 1852: 1849: 1848: 1847: 1841: 1835: 1829: 1823: 1817: 1812: 1803: 1797: 1791: 1785: 1779: 1773: 1770:Capillary wave 1767: 1761: 1755: 1749: 1738: 1735: 1732: 1731: 1728: 1727:Concrete brick 1724: 1723: 1720: 1716: 1715: 1712: 1708: 1707: 1704: 1703:Gypsum plaster 1700: 1699: 1696: 1692: 1691: 1686: 1660: 1659: 1648: 1643: 1636: 1633: 1628: 1623: 1620: 1615: 1612: 1582: 1581: 1568: 1565: 1560: 1557: 1531: 1530: 1519: 1514: 1509: 1506: 1503: 1500: 1464: 1461: 1460: 1459: 1452: 1450: 1443: 1441: 1434: 1432: 1425: 1423: 1416: 1414: 1407: 1405: 1373: 1370: 1365: 1364: 1353: 1348: 1342: 1325: 1322: 1318: 1314: 1311: 1305: 1302: 1203: 1191: 1190: 1179: 1173: 1170: 1167: 1161: 1157: 1154: 1151: 1148: 1142: 1139: 1109: 1106: 1104: 1101: 1069: 1066: 1035: 1031: 939:lacrimal ducts 907: 904: 887:capillary tube 862: 859: 835:vapor pressure 833:on a liquid's 756: 753: 748: 745: 691:capillary rise 658: 657: 655: 654: 647: 640: 632: 629: 628: 624: 623: 618: 613: 608: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 547: 546: 543: 542: 539: 538: 533: 532: 531: 530: 525: 520: 512: 511: 505: 504: 503: 502: 497: 492: 482: 477: 476: 473: 472: 467: 466: 460: 459: 457: 456: 451: 446: 441: 436: 431: 426: 420: 417: 416: 410: 409: 407: 406: 401: 396: 394:Chromatography 391: 386: 380: 377: 376: 370: 369: 367: 366: 347: 346: 345: 326: 314: 309: 297: 284: 281: 280: 272: 267: 266: 263: 262: 258: 257: 252: 247: 246: 245: 235: 230: 225: 224: 223: 218: 208: 203: 198: 193: 192: 191: 181: 175: 174: 169: 168: 165: 164: 159: 158: 157: 156: 148: 147: 143: 142: 141: 140: 135: 130: 122: 121: 115: 112: 111: 108: 107: 102: 88: 85: 80: 77: 71: 68: 65: 62: 51: 50: 44: 43: 26: 24: 18:Capillary tube 14: 13: 10: 9: 6: 4: 3: 2: 3949: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3919: 3917: 3902: 3899: 3897: 3896:Eringen Medal 3894: 3893: 3891: 3889: 3885: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3825: 3823: 3821: 3817: 3811: 3808: 3806: 3803: 3799: 3796: 3794: 3791: 3789: 3786: 3785: 3784: 3781: 3779: 3776: 3775: 3773: 3771: 3767: 3761: 3760:Aeroacoustics 3758: 3756: 3753: 3752: 3750: 3748: 3744: 3738: 3735: 3734: 3731: 3728: 3726: 3723: 3721: 3720:Charles's law 3718: 3716: 3713: 3711: 3708: 3707: 3704: 3701: 3700: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3672: 3669: 3665: 3664:Non-Newtonian 3662: 3660: 3657: 3656: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3625: 3624:Fluid statics 3622: 3621: 3618: 3615: 3614: 3612: 3610: 3606: 3598: 3595: 3593: 3590: 3588: 3585: 3584: 3583: 3580: 3579: 3576: 3573: 3572: 3567: 3564: 3563: 3562: 3559: 3555: 3552: 3550: 3547: 3546: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3526: 3523: 3520: 3519: 3514: 3511: 3509: 3506: 3505: 3504: 3501: 3495: 3492: 3491: 3490: 3487: 3485: 3482: 3480: 3477: 3476: 3475: 3472: 3466: 3463: 3461: 3458: 3457: 3456: 3453: 3451: 3448: 3446: 3443: 3439: 3436: 3434: 3431: 3430: 3429: 3426: 3422: 3419: 3418: 3417: 3414: 3412: 3409: 3407: 3404: 3402: 3399: 3397: 3394: 3393: 3392: 3389: 3388: 3385: 3382: 3381: 3379: 3377: 3373: 3369: 3363: 3362:Compatibility 3360: 3358: 3355: 3351: 3348: 3347: 3346: 3343: 3341: 3338: 3334: 3331: 3329: 3328:Cauchy stress 3326: 3325: 3324: 3321: 3320: 3316: 3315: 3312: 3309: 3307: 3304: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3279:Navier-Stokes 3277: 3276: 3275: 3272: 3270: 3267: 3266: 3262: 3261: 3259: 3255: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3225: 3223: 3219: 3215: 3207: 3202: 3200: 3195: 3193: 3188: 3187: 3184: 3176: 3170: 3166: 3162: 3158: 3153: 3152: 3148: 3139: 3136: 3133: 3129: 3126: 3120: 3117: 3112: 3108: 3104: 3100: 3096: 3092: 3085: 3078: 3075: 3064: 3060: 3054: 3051: 3045: 3042: 3038: 3037:0-521-66396-2 3034: 3030: 3025: 3022: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2974: 2971: 2966: 2962: 2957: 2952: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2917: 2914: 2909: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2873: 2868: 2863: 2859: 2855: 2851: 2844: 2841: 2837: 2833: 2830: 2825: 2822: 2818: 2814: 2811: 2806: 2803: 2798: 2794: 2790: 2783: 2780: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2740: 2737: 2726: 2722: 2716: 2713: 2708: 2704: 2700: 2696: 2692: 2688: 2681: 2674: 2672: 2670: 2666: 2654: 2650: 2643: 2640: 2636: 2632: 2628: 2624: 2621: 2615: 2612: 2608: 2607: 2600: 2597: 2593: 2589: 2586: 2582: 2579: 2573: 2570: 2566: 2562: 2556: 2553: 2549: 2545: 2542: 2538: 2534: 2528: 2525: 2521: 2517: 2514: 2510: 2507: 2501: 2498: 2495: 2491: 2488: 2484: 2480: 2476: 2470: 2467: 2461: 2457: 2453: 2449: 2446: 2442: 2441:Gaspard Monge 2439: 2436: 2432: 2429: 2425: 2421: 2416: 2415: 2414:For example: 2411: 2408: 2402: 2398: 2394: 2390: 2387: 2383: 2380: 2376: 2372: 2368: 2365: 2361: 2360: 2356: 2353: 2347: 2343: 2340: 2336: 2333: 2329: 2326: 2322: 2319: 2315: 2312: 2308: 2305: 2301: 2298: 2294: 2293: 2289: 2286: 2282: 2278: 2274: 2271: 2268:CarrĂ© (1705) 2265: 2262: 2258: 2254: 2251: 2247: 2241: 2238: 2234: 2230: 2227: 2223: 2217: 2214: 2210: 2206: 2203: 2202: 2195: 2192: 2186: 2182: 2179: 2175: 2171: 2168: 2164: 2161: 2157: 2153: 2152: 2148: 2145: 2139: 2135: 2132: 2131: 2126: 2122: 2119: 2115: 2112: 2111: 2106: 2103: 2099: 2096: 2094: 2089: 2087: 2083: 2080: 2076: 2072: 2068: 2065: 2060: 2059: 2055: 2052: 2048: 2044: 2041: 2037: 2031: 2028: 2025: 2021: 2018: 2014: 2010: 2006: 2000: 1997: 1991: 1987: 1984: 1980: 1977: 1973: 1969: 1968: 1963: 1958: 1952: 1949: 1945: 1942: 1938: 1934: 1933: 1929: 1926: 1920: 1916: 1912: 1908: 1904: 1901: 1897: 1893: 1889: 1886: 1882: 1878: 1875: 1871: 1867: 1864: 1863: 1859: 1856: 1850: 1845: 1842: 1839: 1836: 1833: 1830: 1827: 1824: 1821: 1818: 1816: 1813: 1807: 1804: 1801: 1800:Frost heaving 1798: 1795: 1792: 1789: 1786: 1783: 1782:Damp proofing 1780: 1777: 1774: 1771: 1768: 1765: 1762: 1759: 1756: 1753: 1750: 1744: 1741: 1740: 1736: 1729: 1726: 1725: 1721: 1718: 1717: 1713: 1710: 1709: 1705: 1702: 1701: 1697: 1694: 1693: 1687: 1684: 1683: 1677: 1675: 1670: 1667: 1665: 1646: 1641: 1634: 1631: 1626: 1621: 1618: 1613: 1610: 1603: 1602: 1601: 1599: 1595: 1591: 1587: 1566: 1563: 1558: 1555: 1548: 1547: 1546: 1544: 1540: 1536: 1517: 1512: 1507: 1504: 1501: 1498: 1491: 1490: 1489: 1487: 1483: 1479: 1469: 1462: 1456: 1451: 1447: 1442: 1438: 1433: 1429: 1424: 1420: 1415: 1411: 1406: 1403: 1401: 1399: 1395: 1391: 1387: 1383: 1379: 1371: 1369: 1351: 1346: 1340: 1323: 1320: 1316: 1312: 1309: 1303: 1300: 1293: 1292: 1291: 1289: 1283: 1276: 1265: 1259: 1257: 1252: 1250: 1246: 1242: 1239:is the local 1238: 1234: 1230: 1226: 1225:contact angle 1222: 1218: 1201: 1177: 1171: 1168: 1165: 1159: 1155: 1152: 1149: 1146: 1140: 1137: 1130: 1129: 1128: 1127: 1123: 1114: 1107: 1102: 1100: 1098: 1097: 1092: 1091: 1090:Ligia exotica 1085: 1083: 1079: 1075: 1074:transpiration 1067: 1065: 1063: 1059: 1055: 1049: 1033: 1020: 1016: 1012: 1007: 1005: 1001: 997: 992: 990: 987: 983: 978: 976: 971: 969: 965: 961: 957: 953: 949: 945: 942: 940: 936: 932: 927: 925: 921: 917: 913: 905: 903: 900: 896: 892: 888: 880: 875: 867: 860: 858: 856: 855: 850: 846: 844: 840: 836: 832: 828: 824: 820: 816: 812: 807: 805: 801: 797: 793: 789: 788:Isaac Vossius 785: 781: 776: 774: 770: 766: 762: 754: 752: 746: 744: 742: 738: 734: 730: 725: 723: 719: 715: 710: 708: 704: 700: 696: 692: 688: 684: 680: 673: 669: 664: 653: 648: 646: 641: 639: 634: 633: 631: 630: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 548: 541: 540: 529: 526: 524: 521: 519: 516: 515: 514: 513: 510: 506: 501: 498: 496: 493: 491: 488: 487: 486: 485: 480: 475: 474: 465: 461: 455: 452: 450: 447: 445: 442: 440: 437: 435: 434:Charles's law 432: 430: 427: 425: 422: 421: 419: 418: 415: 411: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 381: 379: 378: 375: 371: 365: 362: 358: 355: 351: 348: 343: 342:non-Newtonian 340: 336: 332: 331: 330: 327: 325: 322: 318: 315: 313: 310: 308: 305: 301: 298: 296: 293: 289: 286: 285: 283: 282: 279: 275: 270: 265: 264: 256: 253: 251: 248: 244: 241: 240: 239: 236: 234: 231: 229: 228:Compatibility 226: 222: 219: 217: 216:Finite strain 214: 213: 212: 209: 207: 204: 202: 199: 197: 194: 190: 187: 186: 185: 182: 180: 177: 176: 172: 167: 166: 155: 152: 151: 150: 149: 144: 139: 136: 134: 131: 129: 126: 125: 124: 123: 120:Conservations 118: 110: 109: 105: 86: 83: 78: 75: 69: 66: 63: 60: 53: 52: 49: 45: 41: 40: 32: 19: 3937:Porous media 3783:Smart fluids 3695: 3676:Pascal's law 3508:Frictionless 3357:Large strain 3345:Small strain 3156: 3138: 3119: 3094: 3090: 3077: 3066:. Retrieved 3062: 3053: 3044: 3024: 2983: 2979: 2973: 2930: 2926: 2916: 2857: 2853: 2843: 2824: 2810:Tree physics 2805: 2788: 2782: 2749: 2745: 2739: 2728:. Retrieved 2725:www.usgs.gov 2724: 2715: 2690: 2686: 2657:. Retrieved 2642: 2634: 2630: 2614: 2605: 2599: 2591: 2590:, series 4, 2587: 2572: 2560: 2555: 2536: 2532: 2527: 2519: 2515: 2500: 2482: 2478: 2477:(1713–1765) 2469: 2459: 2455: 2423: 2419: 2410: 2400: 2396: 2378: 2374: 2355: 2345: 2341: 2331: 2327: 2317: 2310: 2306: 2288: 2280: 2264: 2245: 2240: 2235:(chapter 2). 2221: 2216: 2200: 2194: 2178:pages 267 ff 2173: 2160:pages 157 ff 2155: 2147: 2129: 2124: 2109: 2092: 2075:Micrographia 2074: 2070: 2062: 2054: 2035: 2030: 2012: 2008: 2004: 1999: 1989: 1985: 1965: 1936: 1928: 1918: 1914: 1910: 1895: 1891: 1884: 1869: 1858: 1794:Frost flower 1671: 1668: 1663: 1661: 1593: 1589: 1585: 1583: 1534: 1532: 1485: 1481: 1477: 1474: 1389: 1385: 1381: 1377: 1375: 1366: 1281: 1274: 1266:= 0.0728 N/m 1263: 1260: 1255: 1253: 1244: 1236: 1228: 1220: 1192: 1121: 1119: 1094: 1088: 1086: 1071: 1058:worsted wool 1050: 1008: 993: 986:fountain pen 979: 972: 948:Paper towels 946: 943: 928: 909: 886: 883: 852: 847: 811:Thomas Young 808: 780:HonorĂ© Fabri 777: 773:Robert Boyle 758: 750: 726: 718:carbon fiber 711: 698: 694: 690: 686: 682: 678: 677: 509:Smart fluids 454:Graham's law 388: 360: 353: 338: 324:Pascal's law 320: 303: 291: 146:Inequalities 3798:Ferrofluids 3715:Boyle's law 3401:Hooke's law 3340:Deformation 3317:Definitions 2860:: 895–902. 2693:: 239–250. 2565:Hathi Trust 2428:Archive.org 1941:pp. 805–823 1820:Porosimetry 1815:Krogh model 1788:Darcy's law 1752:Bound water 1743:Bond number 1688:Sorptivity 1277:= 1000 kg/m 1126:Jurin's law 1120:The height 1056:: wicks of 1015:groundwater 912:rising damp 796:Louis CarrĂ© 683:capillarity 528:Ferrofluids 429:Boyle's law 201:Hooke's law 179:Deformation 3916:Categories 3853:Gay-Lussac 3820:Scientists 3710:Atmosphere 3575:Structures 3549:J-integral 3513:Frictional 3474:Plasticity 3411:Orthotropy 3391:Elasticity 3294:Archimedes 3289:Poiseuille 3243:Vibrations 3212:Topics in 3068:2021-10-29 2867:2111.10927 2730:2024-04-29 2659:2013-06-18 2541:pages 1–79 2017:pp. 91–92. 1851:References 1826:Needle ice 1711:Clay brick 1539:sorptivity 720:, or in a 581:Gay-Lussac 544:Scientists 444:Fick's law 424:Atmosphere 243:frictional 196:Plasticity 184:Elasticity 3927:Hydrology 3828:Bernoulli 3810:Rheometer 3805:Rheometry 3747:Acoustics 3659:Newtonian 3654:Viscosity 3284:Bernoulli 3238:Acoustics 3221:Divisions 2908:244478643 2892:0021-9797 2797:795781750 2774:244957617 2226:pages 3–7 1690:(mm·min) 1586:wet front 1398:hyperbola 1321:− 1313:× 1304:≈ 1251:of tube. 1202:γ 1166:ρ 1160:θ 1156:⁡ 1150:γ 1082:air roots 1030:Ψ 1019:potential 1011:hydrology 966:and lamp 747:Etymology 621:Truesdell 551:Bernoulli 500:Rheometer 495:Rheometry 335:Newtonian 329:Viscosity 79:φ 67:− 3770:Rheology 3681:Pressure 3649:Buoyancy 3433:Hugoniot 3128:Archived 3111:27583455 3091:Langmuir 3008:13867381 2965:24149467 2933:: 3024. 2900:35259719 2832:Archived 2813:Archived 2707:51914846 2653:Archived 2623:Archived 2581:Archived 2544:Archived 2509:Archived 2490:Archived 2448:Archived 2431:Archived 2389:Archived 2367:Archived 2300:Archived 2273:Archived 2253:Archived 2229:Archived 2205:Archived 2181:Archived 2163:Archived 2134:Archived 2114:Archived 2098:Archived 2082:Archived 2069:Hooke's 2043:Archived 2020:Archived 1979:Archived 1944:Archived 1903:Archived 1900:page 551 1877:Archived 1737:See also 1685:Material 1598:porosity 1062:bearings 916:concrete 906:Examples 895:Adhesion 891:meniscus 831:meniscus 737:cohesion 479:Rheology 384:Adhesion 364:Pressure 350:Buoyancy 295:Dynamics 133:Momentum 3843:Charles 3686:Liquids 3582:Bending 3539:Fatigue 3016:4289732 2988:Bibcode 2956:3805968 2935:Bibcode 2872:Bibcode 2754:Bibcode 1964:(ed.). 1874:page 54 1596:is the 1537:is the 1288:spreads 1247:is the 1233:density 1231:is the 1223:is the 996:mercury 920:masonry 893:forms. 765:Galileo 755:History 707:gravity 699:wicking 672:mercury 566:Charles 374:Liquids 288:Statics 233:Bending 3888:Awards 3878:Stokes 3873:Navier 3868:Newton 3863:Pascal 3838:Cauchy 3737:Plasma 3617:Fluids 3396:linear 3384:Solids 3323:Stress 3299:Pascal 3171:  3109:  3035:  3014:  3006:  2980:Nature 2963:  2953:  2906:  2898:  2890:  2795:  2772:  2705:  2064:Hooke. 1719:Mortar 1533:where 1329:  1279:, and 1270:  1249:radius 1193:where 1004:convex 964:candle 956:sponge 935:eyelid 703:liquid 616:Stokes 611:Pascal 601:Navier 596:Newton 586:Graham 561:Cauchy 464:Plasma 359:  357:Mixing 352:  337:  319:  302:  290:  278:Fluids 211:Strain 206:Stress 189:linear 138:Energy 3858:Hooke 3848:Euler 3833:Boyle 3703:Gases 3460:Creep 3372:Solid 3087:(PDF) 3012:S2CID 2904:S2CID 2862:arXiv 2770:S2CID 2703:S2CID 2683:(PDF) 2359:See: 2292:See: 2151:See: 1960:. In 1862:See: 1730:0.20 1722:0.70 1714:1.16 1706:3.50 1698:0.50 1272:°C, 1268:at 20 968:wicks 952:fluid 714:straw 697:, or 668:water 591:Hooke 571:Euler 556:Boyle 414:Gases 3374:and 3263:Laws 3169:ISBN 3107:PMID 3033:ISBN 3004:PMID 2961:PMID 2896:PMID 2888:ISSN 2793:OCLC 2095:... 1310:1.48 1093:and 989:nibs 931:tear 918:and 606:Noll 576:Fick 128:Mass 113:Laws 35:25%. 3438:JWL 3161:doi 3099:doi 2996:doi 2984:194 2951:PMC 2943:doi 2880:doi 2858:616 2762:doi 2750:932 2695:doi 2691:123 2635:309 1896:101 1664:S/f 1488:is 1254:As 1153:cos 1009:In 982:ink 914:in 3918:: 3167:. 3105:. 3095:32 3093:. 3089:. 3061:. 3010:. 3002:. 2994:. 2982:. 2959:. 2949:. 2941:. 2929:. 2925:. 2902:. 2894:. 2886:. 2878:. 2870:. 2856:. 2852:. 2768:. 2760:. 2748:. 2723:. 2701:. 2689:. 2685:. 2668:^ 2633:, 2592:42 2539:, 2520:95 2518:, 2424:12 2346:27 2344:, 2332:27 2330:, 2311:26 2309:, 1988:, 1894:, 1400:. 1317:10 1227:, 1099:. 1084:. 1064:. 970:. 926:. 802:, 798:, 794:, 790:, 782:, 767:, 724:. 709:. 693:, 689:, 685:, 3205:e 3198:t 3191:v 3177:. 3163:: 3113:. 3101:: 3071:. 3039:, 3018:. 2998:: 2990:: 2967:. 2945:: 2937:: 2931:3 2910:. 2882:: 2874:: 2864:: 2799:. 2776:. 2764:: 2756:: 2733:. 2709:. 2697:: 2662:. 2567:. 2550:. 2437:. 2401:9 2379:8 2259:. 2066:. 2049:. 1990:1 1950:. 1647:. 1642:t 1635:f 1632:S 1627:= 1622:f 1619:i 1614:= 1611:x 1594:f 1590:f 1567:A 1564:V 1559:= 1556:i 1535:S 1518:, 1513:t 1508:S 1505:A 1502:= 1499:V 1486:t 1482:V 1478:A 1390:h 1388:· 1386:d 1382:h 1378:d 1352:. 1347:r 1341:2 1335:m 1324:5 1301:h 1282:g 1275:ρ 1264:Îł 1256:r 1245:r 1237:g 1229:ρ 1221:Ξ 1178:, 1172:r 1169:g 1147:2 1141:= 1138:h 1122:h 1034:m 1021:( 651:e 644:t 637:v 361:· 354:· 344:) 339:· 333:( 321:· 304:· 292:· 87:x 84:d 76:d 70:D 64:= 61:J 20:)

Index

Capillary tube

Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics
Archimedes' principle
Bernoulli's principle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑