Knowledge (XXG)

Carbonate compensation depth

Source đź“ť

399: 76: 66: 976: 1348: 1321: 79:
Calcareous sediment can only accumulate in depths shallower than the calcium carbonate compensation depth (CCD). Below the CCD, calcareous sediments dissolve and will not accumulate. The lysocline represents the depth range in which the rate of dissolution increases
1088:
it is intermediate between the Atlantic and the Pacific at approximately 4300 meters. The variation in the depth of the CCD largely results from the length of time since the bottom water has been exposed to the surface; this is called the "age" of the
100:
of the oceans (green circles). Upon death, those tests escaping dissolution near the surface settle, along with clay materials. In seawater, a dissolution boundary is formed as a result of temperature, pressure, and depth, and is known as the
317: 1203:, which is also caused by increasing carbon dioxide concentrations in the atmosphere, will increase such dissolution and shallow the carbonate compensation depth on timescales of tens to hundreds of years. 1101:, sink from the surface waters into deeper water, deep water masses tend to accumulate dissolved carbon dioxide as they age. The oldest water masses have the highest concentrations of CO 1160:
in the ocean mixed surface layer. This effect was somewhat moderated by the deep oceans' elevated temperatures during this period. In the late Eocene the transition from a
366:, may bring the carbonate layer below the CCD; the carbonate layer may be prevented from chemically interacting with the sea water by overlying sediments such as a layer of 57:
carbonates. Aragonite is more soluble than calcite, and the aragonite compensation depth is generally shallower than both the calcite compensation depth and the CCD.
1035:
in the water. Calcium carbonate is more soluble at lower temperatures and at higher pressures. It is also more soluble if the concentration of dissolved CO
486: 771: 444: 1121:
occurs. This downwelling brings young, surface water with relatively low concentrations of carbon dioxide into the deep ocean, depressing the CCD.
158: 944: 1185: 471: 1007: 825: 35:. That is, solvation 'compensates' supply. Below the CCD solvation is faster, so that carbonate particles dissolve and the carbonate shells ( 1470: 1304: 949: 1170:
investigated and experimented on the dissolution of calcium carbonate and was first to identify the carbonate compensation depth in oceans.
109:
tests are largely preserved. Below it, waters are undersaturated, because of both the increasing solubility with depth and the release of CO
1179: 414: 124:
from above. At steady state this depth, the CCD, is similar to the snowline (the first depth where carbonate-poor sediments occur). The
117:
will dissolve. The sinking velocity of debris is rapid (broad pale arrows), so dissolution occurs primarily at the sediment surface.
39:) of animals are not preserved. Carbonate particles cannot accumulate in the sediments where the sea floor is below this depth. 1039:
is higher. Adding a reactant to the above chemical equation pushes the equilibrium towards the right producing more products:
1161: 874: 1136:
the CCD was much shallower globally than it is today; due to intense volcanic activity during this period atmospheric CO
864: 544: 1383:
Boudreau, Bernard P.; Middelburg, Jack J.; Luo, Yiming (2018). "The role of calcification in carbonate compensation".
1167: 1059: 934: 832: 538: 532: 1634: 1342: 939: 559: 358:
will dissolve before reaching this level, preventing deposition of carbonate sediment. As the sea floor spreads,
1365: 1097:
determines the relative ages of the water in these basins. Because organic material, such as fecal pellets from
1000: 1094: 914: 842: 837: 820: 665: 526: 424: 924: 439: 744: 520: 481: 449: 45:
is the least soluble of these carbonates, so the CCD is normally the compensation depth for calcite. The
1664: 993: 980: 929: 660: 120:
At the carbonate compensation depth, the rate of dissolution exactly matches the rate of supply of CaCO
1599: 1499: 1392: 856: 758: 514: 419: 75: 1265: 1200: 805: 621: 476: 136:
Calcium carbonate is essentially insoluble in sea surface waters today. Shells of dead calcareous
65: 1568: 1408: 1310: 1255: 1020:
The exact value of the CCD depends on the solubility of calcium carbonate which is determined by
884: 652: 636: 631: 554: 359: 1615: 1527: 1466: 1300: 1055: 815: 594: 429: 339: 149: 85: 28: 1545:
Boudreau, Bernard P.; Middelburg, Jack J.; Hofmann, Andreas F.; Meysman, Filip J. R. (2010).
1607: 1558: 1517: 1507: 1458: 1400: 1292: 1225:; on the sea floors below the carbonate compensation depth, the most commonly found ooze is 1212: 1145: 781: 675: 670: 398: 1222: 909: 776: 709: 697: 626: 500: 1603: 1503: 1396: 1522: 1487: 1250: 1226: 1114: 1110: 1081: 1029: 919: 889: 869: 810: 724: 607: 602: 463: 367: 93: 36: 1587: 1287:
Middelburg, Jack J. (2019). "Biogeochemical Processes and Inorganic Carbon Dynamics".
1658: 1611: 1412: 1314: 1125: 1066: 16:
Depth in the oceans below which no calcium carbonate sediment particles are preserved
1572: 1192: 1085: 702: 616: 570: 508: 390: 371: 327: 148:
increases dramatically with depth and pressure. By the time the CCD is reached all
1028:
and the chemical composition of the water – in particular the amount of dissolved
1462: 1296: 1218: 1196: 1118: 1044: 1021: 766: 739: 734: 729: 719: 689: 575: 434: 128:
is the depth interval between the saturation and carbonate compensation depths.
97: 1492:
Proceedings of the National Academy of Sciences of the United States of America
1457:. Encyclopedia of Earth Sciences Series. Springer Netherlands. pp. 71–73. 1352: 1325: 1404: 1234: 1129: 1090: 714: 363: 312:{\displaystyle {\ce {CaCO3 + CO2 + H2O <=> Ca^2+ (aq) + 2HCO_3^- (aq)}}} 145: 1619: 1453:
Berger, Wolfgang H.; et al. (2016). "Calcite Compensation Depth (CCD)".
1512: 1440:"Warmer than a Hot Tub: Atlantic Ocean Temperatures Much Higher in the Past" 1260: 1074: 1070: 351: 343: 141: 125: 54: 32: 1531: 1586:
Johnson, Thomas C.; Hamilton, Edwin L.; Berger, Wolfgang H. (1977-08-01).
1324:
Modified material was copied from this source, which is available under a
1588:"Physical properties of calcareous ooze: Control by dissolution at depth" 1563: 1546: 1230: 1106: 1098: 1078: 1025: 335: 323: 137: 1439: 1221:
above the carbonate compensation depth, the most commonly found ooze is
1105:
and therefore the shallowest CCD. The CCD is relatively shallow in high
1547:"Ongoing transients in carbonate compensation: COMPENSATION TRANSIENTS" 1488:"Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2" 1347: 1320: 1040: 797: 580: 331: 42: 1351:
Modified text was copied from this source, which is available under a
140:
sinking to deeper waters are practically unaltered until reaching the
1238: 1133: 959: 1366:"Ocean acidification due to increasing atmospheric carbon dioxide" 954: 347: 74: 64: 27:) is the depth, in the oceans, at which the rate of supply of 1128:
the depth of the CCD has shown significant variation. In the
1291:. SpringerBriefs in Earth System Sciences. pp. 77–105. 1140:
concentrations were much higher. Higher concentrations of CO
205: 189: 173: 1069:
is about 4200–4500 metres except beneath the equatorial
105:. Above this horizon, waters are supersaturated and CaCO 1152:
over the ocean. This greater pressure of atmospheric CO
1353:
Creative Commons Attribution 4.0 International License
1326:
Creative Commons Attribution 4.0 International License
232: 161: 311: 1486:Sulpis, Olivier; et al. (October 29, 2018). 1073:zone, where the CCD is about 5000 m. In the 362:of the plate, which has the effect of increasing 240: 239: 222: 221: 1282: 1280: 1084:the CCD is at approximately 5000 m. In the 1345:, page 273–297, Rebus Community. Updated 2020. 350:. If the exposed sea bed is below the CCD tiny 374:clay deposited on top of the carbonate layer. 1001: 144:, the point about 3.5 km deep past which the 8: 1229:. While calcareous ooze mostly consists of 1195:are causing the CCD to rise, with zones of 338:can consist of calcareous sediments called 1008: 994: 381: 152:has dissolved according to this equation: 1562: 1521: 1511: 297: 291: 286: 281: 264: 255: 241: 234: 233: 231: 223: 216: 214: 213: 211: 204: 199: 188: 183: 172: 167: 162: 160: 1276: 945:Territorialisation of carbon governance 389: 215: 1648:– via Roger Williams University. 950:Total Carbon Column Observing Network 70:Carbonate compensation concept  7: 1233:, siliceous ooze mostly consists of 1180:Effects of climate change on oceans 1065:At the present time the CCD in the 113:from organic matter decay, and CaCO 1455:Encyclopedia of Marine Geosciences 84:As shown in the diagram, biogenic 14: 1442:. Physorg.com. February 17, 2006. 1425:Thurman, Harold., Alan Trujillo. 1050:, and consuming more reactants CO 342:, which is essentially a type of 1346: 1319: 975: 974: 397: 53:) is the compensation depth for 1186:atmospheric concentration of CO 1164:coincided with a deepened CCD. 1162:greenhouse to an icehouse Earth 1156:leads to increased dissolved CO 910:Climate reconstruction proxies 378:Variations in value of the CCD 326:particles can be found in the 304: 298: 271: 265: 242: 217: 1: 1289:Marine Carbon Biogeochemistry 1639:Introduction to Oceanography 1635:"12.6 Sediment Distribution" 1612:10.1016/0025-3227(77)90071-8 1551:Global Biogeochemical Cycles 1463:10.1007/978-94-007-6238-1_47 1339:Introduction to Oceanography 880:Carbonate compensation depth 545:Particulate inorganic carbon 47:aragonite compensation depth 21:carbonate compensation depth 1343:Chapter 12: Ocean Sediments 1297:10.1007/978-3-030-10822-9_5 1681: 1633:Webb, Paul (August 2023). 1210: 1177: 1109:with the exception of the 935:Carbon capture and storage 539:Particulate organic carbon 533:Dissolved inorganic carbon 1427:Introductory Oceanography 1405:10.1038/s41561-018-0259-5 940:Carbon cycle re-balancing 334:is above the CCD, bottom 1095:Thermohaline circulation 1060:Le Chatelier's principle 915:Carbon-to-nitrogen ratio 875:Carbonate–silicate cycle 843:Carbon dioxide clathrate 838:Clathrate gun hypothesis 666:Net ecosystem production 527:Dissolved organic carbon 322:Calcareous plankton and 1513:10.1073/pnas.1804250115 925:Deep Carbon Observatory 385:Part of a series on the 132:Solubility of carbonate 1199:first being affected. 1174:Climate change impacts 745:Continental shelf pump 521:Total inorganic carbon 487:Satellite measurements 330:above the CCD. If the 313: 81: 72: 1144:resulted in a higher 930:Global Carbon Project 661:Ecosystem respiration 314: 78: 68: 1564:10.1029/2009GB003654 759:Carbon sequestration 515:Total organic carbon 159: 96:are produced in the 31:matches the rate of 1604:1977MGeol..24..259J 1504:2018PNAS..11511700S 1498:(46): 11700–11705. 1397:2018NatGe..11..894B 1266:Ocean acidification 1201:Ocean acidification 1191:from combustion of 806:Atmospheric methane 772:Soil carbon storage 622:Reverse Krebs cycle 477:Ocean acidification 296: 228: 207: 191: 175: 1337:Webb, Paul (2019) 1256:Great Calcite Belt 885:Great Calcite Belt 833:Aerobic production 653:Carbon respiration 595:Metabolic pathways 555:Primary production 360:thermal subsidence 309: 282: 247: 195: 179: 163: 103:saturation horizon 82: 73: 29:calcium carbonates 1472:978-94-007-6238-1 1385:Nature Geoscience 1370:The Royal Society 1306:978-3-030-10821-2 1056:calcium carbonate 1018: 1017: 816:Methane emissions 472:In the atmosphere 303: 285: 270: 254: 249: 210: 198: 182: 166: 150:calcium carbonate 86:calcium carbonate 1672: 1650: 1649: 1647: 1645: 1630: 1624: 1623: 1583: 1577: 1576: 1566: 1542: 1536: 1535: 1525: 1515: 1483: 1477: 1476: 1450: 1444: 1443: 1436: 1430: 1423: 1417: 1416: 1380: 1374: 1373: 1362: 1356: 1350: 1335: 1329: 1323: 1318: 1284: 1213:Pelagic sediment 1207:Sedimentary ooze 1146:partial pressure 1010: 1003: 996: 983: 978: 977: 782:pelagic sediment 676:Soil respiration 671:Photorespiration 401: 382: 318: 316: 315: 310: 308: 307: 301: 295: 290: 283: 274: 268: 263: 262: 252: 250: 248: 246: 245: 238: 230: 229: 227: 220: 212: 208: 206: 203: 196: 190: 187: 180: 174: 171: 164: 1680: 1679: 1675: 1674: 1673: 1671: 1670: 1669: 1655: 1654: 1653: 1643: 1641: 1632: 1631: 1627: 1585: 1584: 1580: 1544: 1543: 1539: 1485: 1484: 1480: 1473: 1452: 1451: 1447: 1438: 1437: 1433: 1424: 1420: 1391:(12): 894–900. 1382: 1381: 1377: 1364: 1363: 1359: 1336: 1332: 1307: 1286: 1285: 1278: 1274: 1247: 1223:calcareous ooze 1215: 1209: 1189: 1182: 1176: 1159: 1155: 1151: 1143: 1139: 1132:through to the 1126:geological past 1113:and regions of 1104: 1053: 1048: 1038: 1033: 1014: 973: 966: 965: 964: 904: 896: 895: 894: 859: 849: 848: 847: 800: 790: 789: 788: 777:Marine sediment 761: 751: 750: 749: 710:Solubility pump 698:Biological pump 692: 682: 681: 680: 655: 645: 644: 643: 627:Carbon fixation 612: 597: 587: 586: 585: 566: 550: 503: 501:Forms of carbon 493: 492: 491: 466: 456: 455: 454: 409: 380: 357: 340:calcareous ooze 251: 157: 156: 134: 123: 116: 112: 108: 91: 71: 63: 17: 12: 11: 5: 1678: 1676: 1668: 1667: 1657: 1656: 1652: 1651: 1625: 1598:(4): 259–277. 1592:Marine Geology 1578: 1537: 1478: 1471: 1445: 1431: 1429:.2004.p151-152 1418: 1375: 1357: 1330: 1305: 1275: 1273: 1270: 1269: 1268: 1263: 1258: 1253: 1251:Carbonate pump 1246: 1243: 1227:siliceous ooze 1208: 1205: 1187: 1175: 1172: 1157: 1153: 1149: 1141: 1137: 1115:Southern Ocean 1111:North Atlantic 1102: 1082:Atlantic Ocean 1051: 1046: 1036: 1031: 1016: 1015: 1013: 1012: 1005: 998: 990: 987: 986: 985: 984: 968: 967: 963: 962: 957: 952: 947: 942: 937: 932: 927: 922: 920:Deep biosphere 917: 912: 906: 905: 902: 901: 898: 897: 893: 892: 890:Redfield ratio 887: 882: 877: 872: 870:Nutrient cycle 867: 861: 860: 857:Biogeochemical 855: 854: 851: 850: 846: 845: 840: 835: 830: 829: 828: 823: 813: 811:Methanogenesis 808: 802: 801: 796: 795: 792: 791: 787: 786: 785: 784: 774: 769: 763: 762: 757: 756: 753: 752: 748: 747: 742: 737: 732: 727: 725:Microbial loop 722: 717: 712: 707: 706: 705: 694: 693: 688: 687: 684: 683: 679: 678: 673: 668: 663: 657: 656: 651: 650: 647: 646: 642: 641: 640: 639: 634: 624: 619: 613: 611: 610: 608:Chemosynthesis 605: 603:Photosynthesis 599: 598: 593: 592: 589: 588: 584: 583: 578: 573: 567: 565: 564: 563: 562: 551: 549: 548: 542: 536: 530: 524: 518: 512: 505: 504: 499: 498: 495: 494: 490: 489: 484: 479: 474: 468: 467: 464:Carbon dioxide 462: 461: 458: 457: 453: 452: 447: 442: 437: 432: 427: 422: 417: 411: 410: 407: 406: 403: 402: 394: 393: 387: 386: 379: 376: 368:siliceous ooze 355: 320: 319: 306: 300: 294: 289: 280: 277: 273: 267: 261: 258: 244: 237: 226: 219: 202: 194: 186: 178: 170: 133: 130: 121: 114: 110: 106: 89: 69: 62: 59: 15: 13: 10: 9: 6: 4: 3: 2: 1677: 1666: 1663: 1662: 1660: 1640: 1636: 1629: 1626: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1579: 1574: 1570: 1565: 1560: 1556: 1552: 1548: 1541: 1538: 1533: 1529: 1524: 1519: 1514: 1509: 1505: 1501: 1497: 1493: 1489: 1482: 1479: 1474: 1468: 1464: 1460: 1456: 1449: 1446: 1441: 1435: 1432: 1428: 1422: 1419: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1379: 1376: 1371: 1367: 1361: 1358: 1354: 1349: 1344: 1340: 1334: 1331: 1327: 1322: 1316: 1312: 1308: 1302: 1298: 1294: 1290: 1283: 1281: 1277: 1271: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1248: 1244: 1242: 1240: 1236: 1232: 1228: 1224: 1220: 1214: 1206: 1204: 1202: 1198: 1194: 1190: 1181: 1173: 1171: 1169: 1165: 1163: 1147: 1135: 1131: 1127: 1122: 1120: 1116: 1112: 1108: 1100: 1096: 1092: 1087: 1083: 1080: 1076: 1072: 1068: 1067:Pacific Ocean 1063: 1061: 1058:according to 1057: 1049: 1042: 1034: 1027: 1023: 1011: 1006: 1004: 999: 997: 992: 991: 989: 988: 982: 972: 971: 970: 969: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 907: 900: 899: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 865:Marine cycles 863: 862: 858: 853: 852: 844: 841: 839: 836: 834: 831: 827: 824: 822: 819: 818: 817: 814: 812: 809: 807: 804: 803: 799: 794: 793: 783: 780: 779: 778: 775: 773: 770: 768: 765: 764: 760: 755: 754: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 704: 701: 700: 699: 696: 695: 691: 686: 685: 677: 674: 672: 669: 667: 664: 662: 659: 658: 654: 649: 648: 638: 635: 633: 630: 629: 628: 625: 623: 620: 618: 615: 614: 609: 606: 604: 601: 600: 596: 591: 590: 582: 579: 577: 574: 572: 569: 568: 561: 558: 557: 556: 553: 552: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 510: 507: 506: 502: 497: 496: 488: 485: 483: 480: 478: 475: 473: 470: 469: 465: 460: 459: 451: 448: 446: 445:Boreal forest 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 412: 405: 404: 400: 396: 395: 392: 388: 384: 383: 377: 375: 373: 369: 365: 361: 353: 349: 345: 341: 337: 333: 329: 325: 292: 287: 278: 275: 259: 256: 235: 224: 200: 192: 184: 176: 168: 155: 154: 153: 151: 147: 143: 139: 131: 129: 127: 118: 104: 99: 95: 87: 80:dramatically. 77: 67: 60: 58: 56: 52: 48: 44: 40: 38: 34: 30: 26: 22: 1665:Oceanography 1642:. Retrieved 1638: 1628: 1595: 1591: 1581: 1554: 1550: 1540: 1495: 1491: 1481: 1454: 1448: 1434: 1426: 1421: 1388: 1384: 1378: 1369: 1360: 1338: 1333: 1288: 1216: 1193:fossil fuels 1183: 1166: 1123: 1086:Indian Ocean 1064: 1019: 879: 703:Martin curve 690:Carbon pumps 617:Calvin cycle 571:Black carbon 509:Total carbon 450:Geochemistry 391:Carbon cycle 328:water column 321: 135: 119: 102: 83: 50: 46: 41: 24: 20: 18: 1197:downwelling 1184:Increasing 1168:John Murray 1119:downwelling 1022:temperature 767:Carbon sink 730:Viral shunt 720:Marine snow 576:Blue carbon 430:Deep carbon 425:Atmospheric 415:Terrestrial 98:photic zone 1557:(4): n/a. 1272:References 1235:Radiolaria 1219:sea floors 1211:See also: 1178:See also: 1130:Cretaceous 1091:water mass 740:Whale pump 735:Jelly pump 715:Lipid pump 440:Permafrost 408:By regions 146:solubility 55:aragonitic 1620:0025-3227 1413:135284130 1315:104368944 1261:Lysocline 1107:latitudes 1075:temperate 1071:upwelling 344:limestone 336:sediments 293:− 243:⇀ 236:− 225:− 218:↽ 142:lysocline 126:lysocline 33:solvation 1659:Category 1573:53062358 1532:30373837 1245:See also 1231:Rhizaria 1099:copepods 1079:tropical 1026:pressure 981:Category 324:sediment 138:plankton 61:Overview 1600:Bibcode 1523:6243283 1500:Bibcode 1393:Bibcode 1239:diatoms 1217:On the 1124:In the 826:Wetland 798:Methane 581:Kerogen 482:Removal 372:abyssal 354:of CaCO 332:sea bed 43:Calcite 1644:3 July 1618:  1571:  1530:  1520:  1469:  1411:  1313:  1303:  1134:Eocene 1117:where 979:  960:CO2SYS 821:Arctic 560:marine 420:Marine 352:shells 1569:S2CID 1409:S2CID 1311:S2CID 1148:of CO 955:C4MIP 903:Other 547:(PIC) 541:(POC) 535:(DIC) 529:(DOC) 523:(TIC) 517:(TOC) 364:depth 348:chalk 94:tests 88:(CaCO 37:tests 1646:2024 1616:ISSN 1528:PMID 1467:ISBN 1301:ISBN 1237:and 1077:and 1054:and 1043:and 511:(TC) 435:Soil 165:CaCO 19:The 1608:doi 1559:doi 1518:PMC 1508:doi 1496:115 1459:doi 1401:doi 1293:doi 1045:HCO 370:or 346:or 284:HCO 51:ACD 25:CCD 1661:: 1637:. 1614:. 1606:. 1596:24 1594:. 1590:. 1567:. 1555:24 1553:. 1549:. 1526:. 1516:. 1506:. 1494:. 1490:. 1465:. 1407:. 1399:. 1389:11 1387:. 1368:. 1341:, 1309:. 1299:. 1279:^ 1241:. 1093:. 1062:. 1041:Ca 1030:CO 1024:, 637:C4 632:C3 302:aq 269:aq 253:Ca 181:CO 92:) 1622:. 1610:: 1602:: 1575:. 1561:: 1534:. 1510:: 1502:: 1475:. 1461:: 1415:. 1403:: 1395:: 1372:. 1355:. 1328:. 1317:. 1295:: 1188:2 1158:2 1154:2 1150:2 1142:2 1138:2 1103:2 1052:2 1047:3 1037:2 1032:2 1009:e 1002:t 995:v 356:3 305:) 299:( 288:3 279:2 276:+ 272:) 266:( 260:+ 257:2 209:O 201:2 197:H 193:+ 185:2 177:+ 169:3 122:3 115:3 111:2 107:3 90:3 49:( 23:(

Index

calcium carbonates
solvation
tests
Calcite
aragonitic


calcium carbonate
tests
photic zone
lysocline
plankton
lysocline
solubility
calcium carbonate
sediment
water column
sea bed
sediments
calcareous ooze
limestone
chalk
shells
thermal subsidence
depth
siliceous ooze
abyssal
Carbon cycle

Terrestrial

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑