Knowledge (XXG)

Carbones

Source 📝

192:
of two lone pairs present on the central carbon atom.  Further calculations revealed the two highest-occupied molecular orbitals to be primarily localised on the central carbon atom as two lone pairs, like with the hexaphenylcarbodiphosphorane, albeit with slightly more delocalisation of the π-symmetric orbital onto the N-heterocyclic carbene carbon atoms due to their improved π-accepting properties.  This is suggestive of a donor-acceptor interaction between the N-heterocyclic carbene ligands and a formally carbon (0) atom with two free lone pairs.
416:
are comparable to those of carbodiphosphoranes and exhibit variability depending on the identity of the N-heterocyclic carbene substituent with a range of values from 155.3 kcal mol (649.8 kJ mol) to 168.4 kcal mol (704.6 kJ mol).  This is due to the increased delocalisation of the π-symmetric lone pair over the carbon atoms of the N-heterocyclic carbene substituents which increases the dependence of the second proton affinity on the identity of the substituent.
1857: 517: 389: 349: 321: 247: 191:
at 1.358 Å (compared with 1.308 Å for allene), but with a significantly bent bond angle of 131.8° (compared to 180° for a standard linear allene).  X-ray crystallography confirmed the structure with an experimentally-measured C=C bond length of 1.348 Å and a C-C-C bond angle of 131.8° indicative
173:
revealed that the highest-occupied molecular orbitals were both primarily localised on carbon and possessed shapes that were indicative of σ- and π-symmetric lone pairs rather than bonding molecular orbitals.  Additional calculations showed σ-bonding orbitals between the central carbon atom and
216:
O) revealed a P-C-C bond angle of 145.5° consistent with the bent structure of other carbon (0) compounds. While both computational and experimental data indicated a linear structure for carbon suboxide, the same models predicted only an energy difference of 1.9 kcal mol (7.9 kJ mol) between linear
415:
is 1101.8 kJ mol, indicating that carbodiphosphoranes can function as strong bases. Carbodicarbenes can act as even stronger bases than carbodiphosphoranes with first proton affinities reaching as high as 294.3 kcal mol (1231 kJ mol).  However, the second proton affinities for carbodicarbenes
410:
and accept two protons from an acid.  The typical first proton affinity for a carbodiphosphorane ranges from 209.3 kcal mol (875.7 kJ mol) for the weakest base to 287.6 kcal mol (1203 kJ mol) for the strongest base and second proton affinities ranging from 70.6 kcal mol (295 kJ mol) to 188.9
472:
was observed at 2014 cm which is significantly lower than the same carbon-oxygen stretching frequency when rhodium is coordinated to a N-heterocyclic carbene (between 2058 cm and 2036 cm) which is indicative of a strong π-donating effect from the second carbon lone-pair of the carbone.
529:
Carbones can also form complexes with main group elements.  The strong σ- and π-donating properties of carbones have made them optimal tools for stabilising reactive main-group-based species.  Carbodicarbenes have been employed in the successful synthesis of novel
234:
on a carbon reagent in its +2 or +4 oxidation state.  The first successful synthesis of a compound now recognised as a carbodiphosphorane was achieved by Ramirez et al. in 1961 with this method.  By stirring methylidebis-(triphenylphosphonium) bromide with
424:
In addition to being strong Brønsted-Lowry bases, carbones are also nucleophilic and act as strong Lewis bases when coordinating with transition metals and main group elements.  Several computational studies found that carbodiphosphoranes bound tightly to
554: 282: 162: 376:
to form a tetraaminoallene which acts as a carbodicarbene.  Additionally, a method of facile synthesis of asymmetric carbodicarbenes was developed by Chen et al. in 2015 by using a simple nucleophilic substitution reaction.  Reacting an
186:
The structure of carbodicarbenes greatly resembles that of carbodiphosphoranes.  Computational data for a N-methyl-substituted carbodicarbene predicted a carbon-carbon bond with a length only marginally longer than a C=C bond in a typical
217:
carbon suboxide and bent carbon suboxide.  The ease of bending and relatively large contribution of carbon in the two highest-occupied molecular orbitals imply a certain degree of carbone-like character in spite of the linear geometry.
208:(O=C=C=C=O) have also exhibited carbone-like character where a carbon (0) species participates in a donor-acceptor interaction with carbon monoxide.  The crystal structure of triphenylphosphoranylideneketen (Ph 174:
complexed phosphorus atoms but no orbitals localised on phosphorus, indicating the phosphorus atoms were donating their lone pairs into unoccupied valence orbitals on carbon to form a donor-acceptor complex.  
437:
metal-ligand bonds for certain compounds.  Experimentally, a variety of metal-carbodiphosphorane complexes have been synthesised and characterised, including with metals such as tungsten, nickel,
453:
digold complex and provides experimental evidence supporting the structure of carbodiphosphoranes as a carbon (0) compound with two lone pairs on the central carbon atom donating to the gold atoms.
385:
containing a different NHC moiety generates a product which can be readily deprotonated to afford a carbodicarbene with two different carbene substituents with improved functionality.
538:, which can exhibit useful optical properties, as well as a dicationic tricoordinate hydridoboron compound.  Carbones have also been used in the first synthesis of stable carbon- 309:
carbodiphosphoranes have also been successfully synthesised through the reaction of bis(diisopropylamino)phosphino diazomethane with bis(dialkylamino)phosphenium triflate in excess
1547:"Reaction of Carbodiphosphorane Ph_3P=C=PPh_3 with Ni(CO)_4. Experimental and Theoretical Study of the Structures and Properties of (CO)_3NiC(PPh_3)_2 and (CO)_2NiC(PPh_3)_2" 1287:"Product Class 2: Carbon Dioxide, Carbonyl Sulfide, Carbon Disulfide, Isocyanates, Isothiocyanates, Carbodiimides, and Their Selenium, Tellurium, and Phosphorus Analogues" 1719:
Hollister, Kimberly; Molino, Andrew; Breiner, Grace; Walley, Jacob; Wentz, Kelsie; Conley, Ashley; Dickie, Diane; Wilson, David; Gilliard Jr., Robert (2022).
728:"C(NHC)_2: Divalent Carbon(0) Compounds with N-Heterocyclic Carbene Ligands-Theoretical Evidence for a Class of Molecules with Promising Chemical Properties" 333:
The first carbodicarbene synthesis was achieved much later than the first carbodiphosphorane synthesis, in 2008 by Dyker et al.  The first step was the
407: 1026:
Walley, Jacob; Obi, Akachukwu; Breiner, Grace; Wang, Guocang; Dickie, Diane; Molino, Andrew; Dutton, Jason; Wilson, David; Gilliard Jr., Robert (2019).
178:
data also revealed that the hexaphenylcarbodiphosphorane structure was noticeably bent rather than linear with a P-C-P bond angle of 131.7°.  
481:
Transition metal complexes containing a carbone ligand also exhibit a wide range of reactivity.  In 2015, Pranckevicius et al. synthesised a
1489:
Chen, Wen-Ching; Shen, Jiun-Shian; Jurca, Titel; Peng, Chun-Jung; Lin, Yen-Hsu; Wang, Yi-Ping; Shih, Wei-Chih; Yap, Glenn; Ong, Tiow-Gan (2015).
854:
Hsu, Yu-Chen; Chen, Jiun-Shian; Lin, Bo-Chao; Chen, Wen-Ching; Chan, Yi-Tsu; Ching, Wei-Min; Yap, Glenn; Hsu, Chao-Ping; Ong, Tiow-Gan (2014).
1382: 509:
coupling reactions while rhodium (I) catalysts coordinated to carbodicarbene pincer ligands have been shown to hydroaminate and hydroarylate
1491:"Expanding the Ligand Framework Diversity of Carbodicarbene and Direct Detection of Boron Activation in the Methylation of Amines with CO_2" 856:"Synthesis and Isolation of an Acyclic Tridentate Bis(pyridine)carbodicarbene and Studies on Its Structural Implications and Reactivities" 289:
Synthetic methods have also been developed for more diverse carbodiphosphoranes.  Methylenediphosphines will undergo a reaction with
457: 976:
Walley, Jacob; Breiner, Grace; Wang, Guocang; Dickie, Diane; Molino, Andrew; Dutton, Jason; Wilson, David; Gilliard Jr., Robert (2019).
20: 342: 1310: 243:
solution, the potassium reduced the starting material to form hexaphenylcarbodiphosphorane as a stable, yellow, crystalline solid.
468:
and gold.  In the former experiment, when a rhodium carbonyl complex was coordinated to a carbodicarbene, the carbon-oxygen
338: 278:-substituted phosphonium salt can undergo an elimination reaction in the presence of a strong base to form a carbodiphosphorane. 1766:
Chen, Wen-Ching; Lee, Ching-Yu; Lin, Bo-Chao; Hsu, Yu-Chen; Shen, Jiun-Shian; Hsu, Chao-Ping; Yap, Glenn; Ong, Tiow-Gan (2014).
1878: 547: 262:
of carbon (IV) or carbon (II) starting materials.  Reacting a carbon (IV) or carbon (II) diphosphine salt with a strong
1807:"Carbodicarbene Bismaalkene Cations: Unravelling the Complexities of Carbene versus Carbone in Heavy Pnictogen Chemistry" 170: 1805:
Walley, Jacob; Warring, Levi; Wang, Guocang; Dickie, Diane; Pan, Sudip; Frenking, Gernot; Gilliard Jr., Robert (2020).
158:
species that places a positive charge on both phosphorus atoms and an overall charge of -2 on the central carbon atom.
150:
between an overall neutral species in which double bonds exists between the central carbon atom and the two complexed
1867: 1286: 814:"Cyclic Bent Allene Hydrido-Carbonyl Complexes of Ruthenium: Highly Active Catalysts for Hydrogenation of Olefins" 770:"Divalent Carbon(0) Chemistry, Part 2: Protonation and Complexes with Main Group and Transition Metal Lewis Acids" 1907: 365: 314: 78: 1331:"An unusual reaction of hexafluoroacetone with methylenediphosphines. Facile synthesis of carbodiphosphoranes" 769: 627: 546:
chemistry with the synthesis of a five-membered beryllacycle through C-H activation as well as beryllacycle
1680:
Inés, Blanca; Patil, Mahendra; Carreras, Javier; Goddard, Richard; Thiel, Walter; Alcarazo, Manuel (2011).
1651:"Synthesis and Ligand Properties of Stable Five-Membered-Ring Allenes Containing Only Second-Row Elements" 494: 114: 892:"Intermolecular Hydroamination of 1,3-Dienes Catalyzed by Bis(phosphine)carbodicarbene-Rhodium Complexes" 469: 147: 90: 978:"s-Block carbodicarbene chemistry: C(sp^3)-H activation and cyclization mediated by a beryllium center" 501:(II) catalysts with bis(pyridine)carbodicarbene ligands have been shown to be successful catalysts for 1252: 1191: 542:
species with π-bonding character. Carbodicarbenes have also seen significant utility in the field of
274:
can deprotonate the centre carbon atom to form the desired carbodiphosphorane.  Alternatively, a
259: 977: 412: 1330: 406:
The presence of two lone pairs on the central carbon atom make it possible for carbones to act as
1748: 1055: 1005: 601: 485:(II) catalyst coordinated to two different carbodicarbene ligands that was able to catalytically 143: 106: 1362: 464:
Carbodicarbenes have also been shown to form complexes with different transition metals such as
1580: 1836: 1787: 1740: 1701: 1510: 1466: 1422: 1378: 1306: 1172: 1047: 997: 955: 911: 833: 789: 747: 693: 647: 382: 361: 290: 126: 122: 82: 1681: 1650: 1490: 1446: 1402: 1152: 936:"Lewis acid Activation of Carbodicarbene Catalysts for Rh-Catalyzed Hydroarylation of Dienes" 855: 727: 673: 1826: 1818: 1779: 1732: 1693: 1662: 1628: 1592: 1558: 1502: 1458: 1414: 1370: 1338: 1298: 1264: 1230: 1199: 1164: 1126: 1095: 1039: 989: 947: 903: 867: 825: 781: 739: 685: 672:
Tonner, Ralf; Öxler, Florian; Neumüller, Bernhard; Petz, Wolfgang; Frenking, Gernot (2006).
639: 591: 263: 110: 50: 1153:"Synthesis of an Extremely Bent Acyclic Allene (A "Carbodicarbene"): A Strong Donor Ligand" 535: 502: 434: 306: 205: 175: 98: 46: 1027: 520:
Sample transition-metal catalysed reactions where the catalyst contains a carbone ligand
1831: 1806: 1028:"Cyclic(alkyl)(amino) Carbene-Promoted Ring Expansion of a Carbodicarbene Beryllacycle" 373: 267: 94: 1901: 1752: 1059: 506: 486: 369: 341:
and the second step was the deprotonation of the carbon (II) species using potassium
255: 42: 1009: 605: 254:
Alternative methods to synthesise alkyl-substituted carbodiphosphoranes involve the
1251:
Gruber, Marco; Bauer, Walter; Maid, Harald; Schöll, Kilian; Tykwinski, Rik (2017).
1218: 1114: 1083: 490: 310: 271: 1043: 113:
complexes.  Carbone-coordinated elements also exhibit a variety of different
1720: 1445:
Fürstner, Alois; Alcarazo, Manuel; Goddard, Richard; Lehmann, Christian (2008).
1401:
Marrot, Sebastien; Kato, Tsuyoshi; Gornitzka, Heinz; Baceiredo, Antoine (2006).
1374: 935: 813: 553: 516: 456: 356:
Similar non-cyclic carbodicarbenes have also been successfully synthesised from
294: 102: 1115:"Structure and triboluminescence of polymorphs of hexaphenylcarbodiphosphorane" 388: 348: 320: 281: 246: 161: 19: 1532: 1268: 360:
salts through the condensation of two equivalents of the starting material in
334: 155: 151: 62: 1767: 1616: 1596: 1579:
Schmidbaur, Hubert; Zybill, Christian; Müller, Gerhard; Krüger, Carl (1983).
1546: 1447:"Coordination Chemistry of Ene-1,1-diamines and a Prototype "Carbodicarbene"" 1302: 891: 596: 579: 433:
with metal-ligand bond dissociation energies that were greater than those of
934:
Roberts, Courtney; Matías, Desirée; Goldfogel, Matthew; Meek, Simon (2015).
543: 498: 482: 236: 230:
One strategy for the synthesis of carbodiphosphoranes involves the use of a
118: 70: 54: 1856: 1840: 1822: 1791: 1744: 1705: 1697: 1666: 1514: 1506: 1470: 1462: 1426: 1418: 1253:"Synthetic and NMR studies on hexaphenylcarbodiphosphorane (Ph_3P=C=PPh_3)" 1176: 1168: 1051: 1001: 959: 915: 871: 837: 793: 785: 751: 743: 697: 689: 651: 643: 1649:
Lavallo, Vincent; Dyker, C. Adam; Donnadieu, Bruno; Bertrand, Guy (2008).
1151:
Dyker, C. Adam; Lavallo, Vincent; Donnadieu, Bruno; Bertrand, Guy (2008).
1736: 1203: 951: 829: 426: 31: 1234: 1130: 1099: 1403:"Cyclic Carbodiphosphoranes: Strongly Nucleophilic sigma-Donor Ligands" 993: 539: 465: 450: 357: 275: 240: 188: 86: 74: 1783: 1632: 1562: 1545:
Petz, Wolfgang; Weller, Frank; Uddin, Jamal; Frenking, Gernot (1999).
907: 411:
kcal mol (790.4 kJ mol).  For comparison, the proton affinity of
1682:"Synthesis, Structure, and Reactivity of a Dihydrido Borenium Cation" 1342: 442: 438: 430: 378: 302: 298: 66: 35: 1369:. Topics in Organometallic Chemistry. Vol. 30. pp. 49–92. 1196:
Journal of the Chemical Society A: Inorganic, Physical, Theoretical
77:(carbodicarbenes), that stabilises the central carbon atom through 552: 531: 515: 510: 455: 449:.  The gold complex is of particular note as it is the first 387: 347: 319: 280: 245: 231: 160: 18: 1721:"Air-Stable Thermoluminescent Carbodicarbene-Borafluorenium Ions" 1617:"New Ylide-, Alkynyl-, and Mixed Alkynyl/Ylide-Gold(I) Complexes" 1285:
Braverman, S.; Cherkinsky, M.; Birsa, M.L. (2005). Knight (ed.).
1113:
Hardy, Gordon; Zink, Jeffrey; Kaska, W.C.; Baldwin, J.C. (1978).
345:
to yield the desired N-heterocyclic-carbene-substituted carbone.
460:
Gem-Digold complex synthesised from hexaphenylcarbodiphosphorane
446: 38: 1768:"The Elusive Three-Coordinate Dicationic Hydrido Boron Complex" 1531:. National Institute of Standards and Technology. May 2022. 1082:
Ramirez, Fausto; Desai, N.B.; Hansen, B.; McKelvie, N. (1961).
1850: 557:
Examples of main group complexes stabilised by carbodicarbenes
890:
Goldfogel, Matthew; Roberts, Courtney; Meek, Simon (2014).
812:
Pranckevicius, Conor; Fan, Louie; Stephan, Douglas (2015).
674:"Carbodiphosphoranes: The Chemistry of Divalent Carbon(0)" 381:
substituted with a N-heterocyclic carbene scaffold with a
1581:"Money Metal Complexes with Hexaphenylcarbodiphosphorane" 1529:
Computational Chemistry Comparison and Benchmark Database
1367:
Transition Metal Complexes of Neutral eta1-Carbon Ligands
1219:"Bis(trimethylphosphoranylidene)methane, (CH3)3PCP(CH3)3" 146:
of carbodiphosphoranes, the structure was described as a
105:
which allows them to function as ligands in a variety of
628:"Divalent Carbon(0) Chemistry, Part 1: Parent Compounds" 165:
Initial proposed carbodiphosphorane resonance structures
1874: 1881:
to it so that it can be listed with similar articles.
1615:
Vincente, José; Singhal, Anshu; Jones, Peter (2002).
305:-substituted carbodiphosphoranes respectively.   57:. These carbon-based compounds are of the formula CL 477:Reactivity in transition metal complexes 285:Alternative syntheses of alkyl-carbodiphosphoranes 1084:"Hexaphenylcarbodiphosphorane, (C6H5)3Pcp(C6H5)3" 337:of bis(N-methylbenzimidazol-2-yl)methane using 1192:"Structure of triphenylphosphoranylideneketen" 324:Synthesis of more diverse carbodiphosphoranes 8: 1533:https://cccbdb.nist.gov/palistx.asp#webbook 1217:Gasser, Oswald; Schmidbaur, Hubert (1975). 97:substituents.  Carbones possess high 1830: 1363:"Carbodiphosphoranes and Related Ligands" 1361:Petz, Wolfgang; Frenking, Gernot (2009). 595: 1772:Journal of the American Chemical Society 1725:Journal of the American Chemical Society 1223:Journal of the American Chemical Society 1119:Journal of the American Chemical Society 1088:Journal of the American Chemical Society 940:Journal of the American Chemical Society 896:Journal of the American Chemical Society 818:Journal of the American Chemical Society 1811:Angewandte Chemie International Edition 1686:Angewandte Chemie International Edition 1495:Angewandte Chemie International Edition 1451:Angewandte Chemie International Edition 1407:Angewandte Chemie International Edition 1157:Angewandte Chemie International Edition 768:Tonner, Ralf; Frenking, Gernot (2008). 732:Angewandte Chemie International Edition 726:Tonner, Ralf; Frenking, Gernot (2007). 678:Angewandte Chemie International Edition 626:Tonner, Ralf; Frenking, Gernot (2008). 578:Frenking, Gernot; Tonner, Ralf (2009). 567: 200:Phosphaketene ylides (general formula R 1644: 1642: 1610: 1608: 1606: 1574: 1572: 1484: 1482: 1480: 1440: 1438: 1436: 1396: 1394: 1356: 1354: 1352: 1324: 1322: 1280: 1278: 1246: 1244: 1146: 1144: 1142: 1140: 1077: 1075: 1073: 1071: 1069: 1021: 1019: 971: 969: 81:.  Carbones possess high-energy 7: 1190:Daley, J.J.; Wheatley, P.J. (1966). 929: 927: 925: 885: 883: 881: 849: 847: 807: 805: 803: 763: 761: 721: 719: 717: 715: 713: 711: 709: 707: 667: 665: 663: 661: 621: 619: 617: 615: 573: 571: 392:Alternative carbodicarbene syntheses 1866:needs additional or more specific 525:Reactivity in main group complexes 250:First carbodiphosphorane synthesis 169:However, computational studies on 14: 1527:Experimental Proton Affinities. 1855: 343:bis(trimethylsilyl)amide (KHMDS) 313:followed by deprotonation with 580:"Divalent carbon(0) compounds" 534:-containing compounds such as 352:First carbodicarbene synthesis 89:-symmetry, making them strong 1: 1044:10.1021/acs.inorgchem.9b01643 774:Chemistry: A European Journal 632:Chemistry: A European Journal 196:Other carbene structures 171:hexaphenylcarbodiphosphorane 1375:10.1007/978-3-642-04722-0_3 73:(carbodiphosphoranes) or a 1924: 584:Pure and Applied Chemistry 372:, then deprotonation with 75:N-heterocyclic carbene/NHC 1329:Shevchenko, Igor (1998). 1269:10.1016/j.ica.2017.04.018 366:nucleophilic substitution 1597:10.1002/ange.19830950930 1303:10.1055/sos-SD-018-00070 597:10.1351/PAC-CON-08-11-03 493:and similar activity to 1335:Chemical Communications 1257:Inorganica Chimica Acta 982:Chemical Communications 489:olefins with excellent 362:dimethylacetamide (DMA) 49:of zero where all four 1823:10.1002/anie.202014398 1698:10.1002/anie.201103197 1667:10.1002/ange.200801176 1507:10.1002/anie.201507921 1463:10.1002/anie.200705798 1419:10.1002/anie.200504396 1169:10.1002/anie.200705620 872:10.1002/ange.201406481 786:10.1002/chem.200701392 744:10.1002/anie.200701632 690:10.1002/anie.200602552 644:10.1002/chem.200701390 558: 521: 461: 393: 353: 325: 286: 251: 166: 61:where L is a strongly 24: 556: 519: 459: 391: 351: 323: 284: 249: 239:metal suspended in a 164: 133:Structure and bonding 22: 1737:10.1021/jacs.1c11861 1291:Science of Synthesis 1204:10.1039/J19660001703 952:10.1021/jacs.5b03510 830:10.1021/jacs.5b02203 491:diastereoselectivity 470:stretching frequency 408:Brønsted-Lowry bases 315:hexamethyldisilazide 79:donor-acceptor bonds 1501:(50): 15207–15212. 1235:10.1021/ja00854a077 1131:10.1021/ja00493a035 1100:10.1021/ja01477a052 1038:(16): 11118–11126. 1032:Inorganic Chemistry 495:Crabtree’s catalyst 413:potassium hydroxide 226:Carbodiphosphoranes 138:Carbodiphosphoranes 994:10.1039/C8CC10022E 559: 522: 462: 394: 354: 326: 287: 252: 167: 53:exist as unbonded 25: 16:Class of molecules 1896: 1895: 1879:adding categories 1817:(12): 6682–6690. 1784:10.1021/ja4120852 1692:(36): 8400–8403. 1661:(29): 5491–5494. 1655:Angewandte Chemie 1633:10.1021/om020753p 1627:(26): 5887–5900. 1585:Angewandte Chemie 1563:10.1021/om9804632 1457:(17): 3210–3214. 1413:(16): 2598–2601. 1384:978-3-642-04721-3 1337:(11): 1203–1204. 1229:(21): 6281–6282. 1163:(17): 3206–3209. 1125:(25): 8001–8002. 1094:(16): 3539–3540. 988:(13): 1967–1970. 946:(20): 6488–6491. 908:10.1021/ja502275w 902:(17): 6227–6230. 860:Angewandte Chemie 824:(16): 5582–5589. 780:(11): 3273–3289. 738:(45): 8695–8698. 684:(47): 8038–8042. 638:(11): 3260–3272. 301:-substituted and 291:hexafluoroacetone 99:proton affinities 85:with both σ- and 51:valence electrons 1915: 1908:Carbon compounds 1891: 1888: 1882: 1859: 1851: 1845: 1844: 1834: 1802: 1796: 1795: 1763: 1757: 1756: 1716: 1710: 1709: 1677: 1671: 1670: 1646: 1637: 1636: 1612: 1601: 1600: 1576: 1567: 1566: 1542: 1536: 1525: 1519: 1518: 1486: 1475: 1474: 1442: 1431: 1430: 1398: 1389: 1388: 1358: 1347: 1346: 1343:10.1039/A801805G 1326: 1317: 1316: 1282: 1273: 1272: 1248: 1239: 1238: 1214: 1208: 1207: 1187: 1181: 1180: 1148: 1135: 1134: 1110: 1104: 1103: 1079: 1064: 1063: 1023: 1014: 1013: 973: 964: 963: 931: 920: 919: 887: 876: 875: 866:(8): 2450–2454. 851: 842: 841: 809: 798: 797: 765: 756: 755: 723: 702: 701: 669: 656: 655: 623: 610: 609: 599: 575: 176:Crystallographic 148:resonance hybrid 129:.     111:transition metal 1923: 1922: 1918: 1917: 1916: 1914: 1913: 1912: 1898: 1897: 1892: 1886: 1883: 1872: 1860: 1849: 1848: 1804: 1803: 1799: 1765: 1764: 1760: 1718: 1717: 1713: 1679: 1678: 1674: 1648: 1647: 1640: 1621:Organometallics 1614: 1613: 1604: 1578: 1577: 1570: 1551:Organometallics 1544: 1543: 1539: 1526: 1522: 1488: 1487: 1478: 1444: 1443: 1434: 1400: 1399: 1392: 1385: 1360: 1359: 1350: 1328: 1327: 1320: 1313: 1284: 1283: 1276: 1250: 1249: 1242: 1216: 1215: 1211: 1189: 1188: 1184: 1150: 1149: 1138: 1112: 1111: 1107: 1081: 1080: 1067: 1025: 1024: 1017: 975: 974: 967: 933: 932: 923: 889: 888: 879: 853: 852: 845: 811: 810: 801: 767: 766: 759: 725: 724: 705: 671: 670: 659: 625: 624: 613: 577: 576: 569: 564: 527: 479: 435:carbon monoxide 422: 404: 399: 339:methyl triflate 331: 329:Carbodicarbenes 228: 223: 215: 211: 206:carbon suboxide 203: 198: 184: 182:Carbodicarbenes 142:In the initial 140: 135: 125:and main group 101:and are strong 60: 47:oxidation state 30:are a class of 23:Generic carbone 17: 12: 11: 5: 1921: 1919: 1911: 1910: 1900: 1899: 1894: 1893: 1863: 1861: 1854: 1847: 1846: 1797: 1778:(3): 914–917. 1758: 1731:(1): 590–598. 1711: 1672: 1638: 1602: 1591:(9): 753–755. 1568: 1557:(4): 619–626. 1537: 1520: 1476: 1432: 1390: 1383: 1348: 1318: 1311: 1274: 1240: 1209: 1182: 1136: 1105: 1065: 1015: 965: 921: 877: 843: 799: 757: 703: 657: 611: 590:(4): 597–614. 566: 565: 563: 560: 548:ring expansion 526: 523: 503:Suzuki-Miyaura 478: 475: 421: 418: 403: 400: 398: 395: 374:n-butyllithium 364:, followed by 330: 327: 268:sodium hydride 232:reducing agent 227: 224: 222: 219: 213: 209: 201: 197: 194: 183: 180: 139: 136: 134: 131: 69:, typically a 58: 45:with a formal 15: 13: 10: 9: 6: 4: 3: 2: 1920: 1909: 1906: 1905: 1903: 1890: 1887:November 2022 1880: 1876: 1870: 1869: 1864:This article 1862: 1858: 1853: 1852: 1842: 1838: 1833: 1828: 1824: 1820: 1816: 1812: 1808: 1801: 1798: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1762: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1722: 1715: 1712: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1676: 1673: 1668: 1664: 1660: 1656: 1652: 1645: 1643: 1639: 1634: 1630: 1626: 1622: 1618: 1611: 1609: 1607: 1603: 1598: 1594: 1590: 1586: 1582: 1575: 1573: 1569: 1564: 1560: 1556: 1552: 1548: 1541: 1538: 1534: 1530: 1524: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1485: 1483: 1481: 1477: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1439: 1437: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1397: 1395: 1391: 1386: 1380: 1376: 1372: 1368: 1364: 1357: 1355: 1353: 1349: 1344: 1340: 1336: 1332: 1325: 1323: 1319: 1314: 1312:9783131186812 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1279: 1275: 1270: 1266: 1262: 1258: 1254: 1247: 1245: 1241: 1236: 1232: 1228: 1224: 1220: 1213: 1210: 1205: 1201: 1198:: 1703–1706. 1197: 1193: 1186: 1183: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1147: 1145: 1143: 1141: 1137: 1132: 1128: 1124: 1120: 1116: 1109: 1106: 1101: 1097: 1093: 1089: 1085: 1078: 1076: 1074: 1072: 1070: 1066: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1020: 1016: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 972: 970: 966: 961: 957: 953: 949: 945: 941: 937: 930: 928: 926: 922: 917: 913: 909: 905: 901: 897: 893: 886: 884: 882: 878: 873: 869: 865: 861: 857: 850: 848: 844: 839: 835: 831: 827: 823: 819: 815: 808: 806: 804: 800: 795: 791: 787: 783: 779: 775: 771: 764: 762: 758: 753: 749: 745: 741: 737: 733: 729: 722: 720: 718: 716: 714: 712: 710: 708: 704: 699: 695: 691: 687: 683: 679: 675: 668: 666: 664: 662: 658: 653: 649: 645: 641: 637: 633: 629: 622: 620: 618: 616: 612: 607: 603: 598: 593: 589: 585: 581: 574: 572: 568: 561: 555: 551: 549: 545: 541: 537: 536:borenium ions 533: 524: 518: 514: 512: 508: 507:Heck-Mizoroki 504: 500: 496: 492: 488: 484: 476: 474: 471: 467: 458: 454: 452: 448: 444: 440: 436: 432: 428: 419: 417: 414: 409: 401: 396: 390: 386: 384: 380: 375: 371: 370:dimethylamine 367: 363: 359: 350: 346: 344: 340: 336: 328: 322: 318: 316: 312: 308: 304: 300: 296: 292: 283: 279: 277: 273: 269: 265: 261: 257: 256:deprotonation 248: 244: 242: 238: 233: 225: 220: 218: 207: 204:P=C=C=O) and 195: 193: 190: 181: 179: 177: 172: 163: 159: 157: 153: 149: 145: 137: 132: 130: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 56: 52: 48: 44: 43:excited state 40: 37: 34:containing a 33: 29: 21: 1884: 1865: 1814: 1810: 1800: 1775: 1771: 1761: 1728: 1724: 1714: 1689: 1685: 1675: 1658: 1654: 1624: 1620: 1588: 1584: 1554: 1550: 1540: 1528: 1523: 1498: 1494: 1454: 1450: 1410: 1406: 1366: 1334: 1294: 1290: 1260: 1256: 1226: 1222: 1212: 1195: 1185: 1160: 1156: 1122: 1118: 1108: 1091: 1087: 1035: 1031: 985: 981: 943: 939: 899: 895: 863: 859: 821: 817: 777: 773: 735: 731: 681: 677: 635: 631: 587: 583: 528: 480: 463: 423: 405: 355: 332: 311:benzonitrile 288: 272:sodium amide 253: 229: 199: 185: 168: 156:zwitterionic 154:atoms and a 141: 115:reactivities 103:nucleophiles 27: 26: 1263:: 152–158. 335:methylation 295:thioacetone 260:elimination 95:π-backdonor 93:and strong 91:Lewis bases 1868:categories 1297:: 65–320. 562:References 397:Reactivity 152:phosphorus 107:main group 65:-donating 55:lone pairs 1753:245713340 1060:199437238 544:beryllium 499:Palladium 483:ruthenium 383:thioether 237:potassium 221:Synthesis 144:syntheses 127:reactions 71:phosphine 41:in the D 32:molecules 1902:Category 1875:help out 1841:33290596 1792:24383448 1745:35016509 1706:21761533 1515:26489967 1471:18348113 1427:16534821 1177:18311741 1052:31380626 1010:59252440 1002:30681680 960:25961506 916:24742315 838:25855868 794:18318021 752:17924383 698:17075933 652:18318020 606:98257123 497:.   427:tungsten 402:Basicity 297:to form 266:such as 121:various 119:catalyse 83:orbitals 28:Carbones 1873:Please 1832:7986408 540:bismuth 466:rhodium 451:geminal 420:Ligands 358:iminium 241:diglyme 123:organic 1839:  1829:  1790:  1751:  1743:  1704:  1513:  1469:  1425:  1381:  1309:  1175:  1058:  1050:  1008:  1000:  958:  914:  836:  792:  750:  696:  650:  604:  511:dienes 487:reduce 445:, and 443:silver 439:copper 431:nickel 379:olefin 307:Cyclic 276:halide 189:allene 67:ligand 36:carbon 1749:S2CID 1056:S2CID 1006:S2CID 602:S2CID 532:boron 368:with 1837:PMID 1788:PMID 1741:PMID 1702:PMID 1511:PMID 1467:PMID 1423:PMID 1379:ISBN 1307:ISBN 1173:PMID 1048:PMID 998:PMID 956:PMID 912:PMID 834:PMID 790:PMID 748:PMID 694:PMID 648:PMID 513:. 505:and 447:gold 429:and 264:base 117:and 109:and 39:atom 1877:by 1827:PMC 1819:doi 1780:doi 1776:136 1733:doi 1729:144 1694:doi 1663:doi 1659:120 1629:doi 1593:doi 1559:doi 1503:doi 1459:doi 1415:doi 1371:doi 1339:doi 1299:doi 1265:doi 1261:468 1231:doi 1200:doi 1165:doi 1127:doi 1123:100 1096:doi 1040:doi 990:doi 948:doi 944:137 904:doi 900:136 868:doi 864:127 826:doi 822:137 782:doi 740:doi 686:doi 640:doi 592:doi 293:or 270:or 258:or 1904:: 1835:. 1825:. 1815:60 1813:. 1809:. 1786:. 1774:. 1770:. 1747:. 1739:. 1727:. 1723:. 1700:. 1690:50 1688:. 1684:. 1657:. 1653:. 1641:^ 1625:21 1623:. 1619:. 1605:^ 1589:95 1587:. 1583:. 1571:^ 1555:18 1553:. 1549:. 1509:. 1499:54 1497:. 1493:. 1479:^ 1465:. 1455:47 1453:. 1449:. 1435:^ 1421:. 1411:45 1409:. 1405:. 1393:^ 1377:. 1365:. 1351:^ 1333:. 1321:^ 1305:. 1295:18 1293:. 1289:. 1277:^ 1259:. 1255:. 1243:^ 1227:97 1225:. 1221:. 1194:. 1171:. 1161:47 1159:. 1155:. 1139:^ 1121:. 1117:. 1092:83 1090:. 1086:. 1068:^ 1054:. 1046:. 1036:58 1034:. 1030:. 1018:^ 1004:. 996:. 986:55 984:. 980:. 968:^ 954:. 942:. 938:. 924:^ 910:. 898:. 894:. 880:^ 862:. 858:. 846:^ 832:. 820:. 816:. 802:^ 788:. 778:14 776:. 772:. 760:^ 746:. 736:46 734:. 730:. 706:^ 692:. 682:45 680:. 676:. 660:^ 646:. 636:14 634:. 630:. 614:^ 600:. 588:81 586:. 582:. 570:^ 550:. 441:, 317:. 212:PC 1889:) 1885:( 1871:. 1843:. 1821:: 1794:. 1782:: 1755:. 1735:: 1708:. 1696:: 1669:. 1665:: 1635:. 1631:: 1599:. 1595:: 1565:. 1561:: 1535:. 1517:. 1505:: 1473:. 1461:: 1429:. 1417:: 1387:. 1373:: 1345:. 1341:: 1315:. 1301:: 1271:. 1267:: 1237:. 1233:: 1206:. 1202:: 1179:. 1167:: 1133:. 1129:: 1102:. 1098:: 1062:. 1042:: 1012:. 992:: 962:. 950:: 918:. 906:: 874:. 870:: 840:. 828:: 796:. 784:: 754:. 742:: 700:. 688:: 654:. 642:: 608:. 594:: 303:S 299:O 214:2 210:3 202:3 87:π 63:σ 59:2

Index


molecules
carbon
atom
excited state
oxidation state
valence electrons
lone pairs
σ
ligand
phosphine
N-heterocyclic carbene/NHC
donor-acceptor bonds
orbitals
π
Lewis bases
π-backdonor
proton affinities
nucleophiles
main group
transition metal
reactivities
catalyse
organic
reactions
syntheses
resonance hybrid
phosphorus
zwitterionic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.