Knowledge (XXG)

Carboxylate-based metal–organic frameworks

Source 📝

394:(DMF) solvent molecules were observed in the smaller triangular channels of as-prepared MIL-68(In) reported by Volkringer et. al, disordered over two positions, with hydrogen bonding between the oxygen of the DMF and the hydroxyl group of the inorganic chain. The solvent was removed by calcination at 200 °C overnight in a furnace. The activated samples were stored under inert atmosphere to prevent rehydration which would lead to hydrolysis and ultimately decomposition of the structure. Adsorption studies on the indium and gallium forms of MIL-68 give a value for the BET surface area of 1117(24) m2 g-1,746(31) mg and 603(22) mg for the gallium, indium and vanadium forms respectively. A number of activation procedures were attempted and NMR analysis used to verify complete removal of guest molecules to obtain the surface area results. The BET values suggest that the indium and vanadium analogues were not fully activated prior to adsorption. Notably, a recent computational study of the theoretical surface area, gave a value of 3333 mg for MIL-68(V) suggesting that there may still be activation issues with all the MIL-68 derivatives, rendering some of the porosity in accessible. 297:) as the formula for the activated material. The activated MIL-47(V) is anhydrous at room temperature under ambient pressure, as the channels are hydrophobic, being lined with phenyl rings and with no accessible metal sites or favourable hydrogen bonding positions the channels are hydrophobic. MIL-53 was first reported with chromium (Cr3+) and shortly after with aluminium (Al3) with terephthalic acid as the linker. MIL-53 is isostructural with MIL-47, the main difference is that MIL-53 only contains the trivalent metal and a μ2-hydroxide bridge whereas the activated MIL-47 is the tetravalent V with μ2-oxobridging. As the activated form of the MIL-53 contains the metal hydroxide chains, the channels are hydrophilic with the hydroxide protons available for hydrogen bonding. When activated MIL-53(Cr or Al) is exposed to moisture, 319: 345: 203:’ based MOF where two copper ions form a dimeric unit with four bridging carboxylates creating a square planar geometry around two adjacent copper sites. The two copper ions in the paddlewheel coordinate to the oxygen of two water molecules to create a double square pyramidal geometry for the two metal sites in the hydrated form of the structure. Activation of the material prior to adsorption studies results in the removal of the terminal water molecules resulting in a coordinatively unsaturated metal site. The rigid, porous structure of the HKUST-1 framework combined with the accessibility of the activated metal sites upon dehydration has led to a lot of interest in adsorption, separation and catalysis applications. 122: 332: 236:
cations with little freedom to rotate or distort the chain to change the coordination environment. This unfavourable coordination environment means that the activated metal site has a high enthalpy of adsorption and is readily filled by adsorbed guest species. The chain is topologically identical to that of the nickel bisphosphonate STA-12(Ni) but differs upon dehydration where the additional flexibility of the bisphosphonate linker allows the chain to twist and distort reducing the accessibility of the coordinatively unsaturated metal site. The availability of this metal site in the CPO-27 framework has been explored for a number of different adsorption applications involving gases such as CO
432: 150: 212: 444: 456: 477: 225:) was reported by Dietzel and co-workers, while at a similar time work by Rosi et. al. produced the isostructural zinc analogue, referred to as MOF-74. The divalent metal and 2,5-dihydroxyterephthalic acid linker form a honeycomb like array of hexagonal channels. The inorganic component is a helical chain of edge sharing NiO6octahedra where each metal is bound to two oxygens from hydroxyl groups on the ligand, three oxygens from carboxylate groups and one water molecule. 169: 420:
contraction of the unit cell volume is, however, much greater than that observed in MIL-53. As the trimeric units are connected in three dimensions, rather than the columnar rows of terephthalates connecting the chains in MIL-53, the change occurs over all three axes resulting in a cell volume expansion for the terephthalate form (MIL-88B) of 125% from the fully dried form (1500 Å3) to the most open form observed upon methanol solvation (3375Å3).
107:). This large yet rigid tri-carboxylate unit connects to the cluster in the same manner as in the MOF-5 structure but as there are three carboxylate units and a triangular geometry, this produces a more spherical porous cage structure rather than the cubic pore geometry in MOF-5. MOF-177 has been shown to have one of the largest surface areas of known materials to date. Literature states a Langmuir surface area value of 4500 mg with N 138: 265:, first reported by Barthelet and co-workers, is an example of a metal organic framework consisting of infinite corner sharing metal chains of VO6 octahedra bridged by the linear terephthalate organic linker. This connectivity results in the formation of large diamond shaped channels. The channels in as-prepared vanadium MIL-47 contain some residual guest terephthalic acid and is reported as having the formula V(OH)(CO 407:
of dicarboxylate forming the same network topology prepared using the fumaric acid (MIL-88A), terephthalic acid (-88B),naphthalene-2,6-dicarboxylic acid (-88C) and 4,4’-biphenyldicarboxylic acid (-88D). The framework consists of both one dimensional channels, and trigonal bipyramidal cages. Solvent exchange experiments on the terephthalate form, MIL-88B, show that large organic molecules such as
364: 318: 387:) initially reported for V3+and later with In and Ga. In this case the metal hydroxide chains connect to form two types of unidirectional channels, triangular and hexagonal in shape, creating a‘kagome lattice’ like network of pore channels. The cross-sectional diameters of the triangular and hexagonal channels are 6 Å and 17 Å respectively. 121: 344: 331: 431: 419:
MIL-88(Cr and Fe) also exhibits a breathing behaviour in response to solvent exchange and gas adsorption. The mechanism for the breathing is similar to that observed in the MIL-53 where there is a hinge like motion around the axis of the two oxygen atoms of the carboxylate. The observed expansion and
77:
O inorganic clusters connected by terephthalate linkers. Each cluster involves 6 carboxylate groups of 6 terephthalate molecules bridging zinc atoms leading to an octahedral type arrangement around the cluster which, when expanded in three dimensions, reproduces the cubic arrangement of the material.
415:
are able to enter the framework and induce an increase in cell volume over the dried material. The three metals in the trimeric cluster share a μ3-O and are bridged to the adjacent metals with four carboxylate groups, leaving a coordinatively unsaturated metal site pointing into the cages within the
406:
Reactions using the metal acetate trimeric building unit are thought to proceed via a ligand exchange mechanism where the acetate of the starting material is replaced with a longer linear dicarboxylate to create the three dimensional framework. MIL-88 is an isoreticular series with increasing length
235:
of CPO-27(Ni) are separated by the planar dihydroxyterephthalic acid linker. This organic molecule acts as a rigid pillar between chains with each linker bound to three different metal sites from each chain. Removal of the solvent molecules from the terminal metal sites creates five-coordinate metal
402:
Further study on the metal carboxylate systems of trivalent iron and chromium yielded a series of materials referred to as MIL-88(A-D). First reported as an iron fumarate, and based on the trimeric building unit obtained on the crystallization of iron (and chromium) acetate, MIL-88 is a family of
61:
are examples of prototypical MOF materials and triggered a huge growth in the field of metal-organic frameworks. A keyword search for “metal-organic frameworks” registers>1,600 publications in 2010 and >2,000 for 2011, a strong indication of the worldwide interest in this area and indicates
304:
As a result of this hydration behavior, the unit cell volume reduces by ~30%, fully reversible upon subsequent dehydration. Such large structural changes, in response to adsorption of gas or solvent molecules, is commonly referred to as ‘breathing’. Since the initial reports of the chromium and
416:
framework. To maintain charge balance in the material, there must be one negatively charged species on the cluster, either a hydroxide or fluoride (depending on the synthesis conditions) occupying one of the unsaturated metal sites and the other two could be water or exchanged solvent species.
86:
and at the time, among the highest of all known materials. One downside to the large open pore structure is the potential for interpenetration of 2 frameworks. In the case of MOF-5 and the IRMOF family of isoreticular structures, if the pore size is sufficient to contain a
62:
that the growth is continuing. More recent work on divalent carboxylates with longer and more complex organic components is pushing the limits of gas adsorption and storage properties with the highest surface areas and lowest densities of all known crystalline materials.
215:
Single chain (left) and view along the hexagonal channels (right) of the nickel dihydroxyterephthalate, CPO-27(Ni). Nickel octahedra are shown in green, black spheres represent the carbon atoms of the organic linker and red spheres the oxygen of adsorbed water
252:
Some of the most widely studied of all metal organic frameworks are trivalent metal carboxylate materials. Extensive work in this area has provided an understanding of the crystal chemistry of a wide variety of the trivalent first row transition metals
281:) and a hydroxide μ2-OH ion forming the infinite chains. Activation of the solid by heating in a tube furnace at 573 K for 24 hours results in deprotonation of the hydroxide on the chains to form a μ2-oxo and oxidation of the vanadium, to give VO(CO 220:
While surface area and pore volume is important to the adsorption properties of MOF materials, another consideration is the availability of coordinatively unsaturated metals sites. The divalent metal carboxylate CPO-27(M) (where M =
111:
adsorption giving a type I isotherm with adsorption of 1350 mg g-1 between 0.4 and 1 P/P0.50 These values show that MOF-177 is a highly porous open framework MOF material with a 3-dimensionally connected array of porous cages.
95:
of two frameworks results in a significant reduction in the porosity as the majority of the void space in the cage is filled with the other framework. Examples of interpenetration are reported for some members of the IRMOF series.
192:‘paddlewheel’ cluster coordinated by trimesic acid (left) and the porous cubic framework (right) of HKUST-1. Blue polyhedra represent the square pyramidal CuO5. Black spheres represent the carbon atoms of the organic linker. 443: 149: 324:
Corner sharing vanadium chains (left) and view along the rhombic channels (right) of the vanadium terephthalate, MIL-47(V).62 Vanadium octahedra are shown in red, black spheres represent the carbon atoms of the organic
1197:"V III (OH){O 2 C–C 6 H 4 –CO 2 }.(HO 2 C–C 6 H 4 –CO 2 H)x(DMF) y (H 2 O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology : reticular synthesis with infinite inorganic building blocks?" 131:
O(CO2)6 cluster (left), octahedral geometry of terephthalate molecules (middle) and 3D cubic lattice (right). Zinc tetrahedra are shown in blue. Black spheres represent the carbon atoms of the organic linker.
350:
MIL-53(Cr) in the hydrated (narrow pore) state (left) and in the dehydrated (large pore) state (right). Chromium octahedra are shown in green, black spheres represent the carbon atoms of the organic linker.
337:
Corner sharing chromium hydroxide chains (left) and large pore (dehydrated) framework of MIL-53(Cr) (right). Chromium octahedra are shown in green, black spheres represent the carbon atoms of the organic
1238:
Volkringer, Christophe; Meddouri, Mohamed; Loiseau, Thierry; Guillou, Nathalie; Marrot, Jérôme; Férey, Gérard; Haouas, Mohamed; Taulelle, Francis; Audebrand, Nathalie; Latroche, Michel (2008-12-15).
371:
Work by Barthelet and co-workers also identified MIL-68, another trivalent metal terephthalate. The framework is a polymorph of the MIL-47/MIL-53 structure with the chemical formula, MIIIOH(CO
437:
Iron trimer unit with bridging trifluoroacetate anions. Iron octahedra are shown in brown, black and green spheres represent the carbon and fluorine atoms of the organic linker respectively.
367:
Corner sharing vanadium chains (left) and large pore framework of MIL-68(V) (right). 64 Vanadium octahedra are shown in red, black spheres represent the carbon atoms of the organic linker.
1402: 301:
shows the material adopts a ‘closed’ structure, due to the strong hydrogen bonding interaction between the hydroxyl groups of the inorganic chains and the adsorbed water molecules.
1240:"The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption" 1420: 1100:"Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or Cr III (OH)·{O 2 C−C 6 H 4 −CO 2 }·{HO 2 C−C 6 H 4 −CO 2 H} x ·H 2 O y" 746:
Vitillo, Jenny G.; Regli, Laura; Chavan, Sachin; Ricchiardi, Gabriele; Spoto, Giuseppe; Dietzel, Pascal D. C.; Bordiga, Silvia; Zecchina, Adriano (2008-07-01).
91:
O cluster and the dicarboxylate is of sufficient length, then the formation of a second extended lattice can occur within the first. This interpenetration or
707:
Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. (2006-03-01).
973:
Chavan, Sachin; Bonino, Francesca; Vitillo, Jenny G.; Groppo, Elena; Lamberti, Carlo; Dietzel, Pascal D. C.; Zecchina, Adriano; Bordiga, Silvia (2009).
709:"Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates" 1148:
Loiseau, Thierry; Serre, Christian; Huguenard, Clarisse; Fink, Gerhard; Taulelle, Francis; Henry, Marc; Bataille, Thierry; Férey, Gérard (2004-03-19).
455: 1020:
McKinlay, Alistair C.; Morris, Russell E.; Horcajada, Patricia; Férey, Gérard; Gref, Ruxandra; Couvreur, Patrick; Serre, Christian (2010-08-23).
1388: 73:
is an early and heavily studied example of a MOF material. The material is an example of a cubic 3-dimensional extended lattice composed of Zn
103:
O cluster but with a more complex and extended tricarboxylate linker. The carboxylate molecule in this case in the large BTB molecule (BTB =
137: 839:"Structural Changes and Coordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb Analogous Microporous Metal–Organic Frameworks" 795:"Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives" 1098:
Serre, Christian; Millange, Franck; Thouvenot, Christelle; Noguès, Marc; Marsolier, Gérard; Louër, Daniel; Férey, Gérard (2002-11-01).
1061:<291::aid-ange291>3.0.co;2-i "A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics" 1575: 1076: 228:
MOF-74 was prepared using DMF as the solvent and as such, has terminal DMF molecules bound to the free metal sites on the chain.
1552: 1395: 211: 928:"Interaction of hydrogen with accessible metal sites in the metal–organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg)" 1411: 31: 82:(a monolayer-equivalent surface area) is stated to be of the order of 3000 mg, significantly higher than that of most 449:
MIL-88(Fe or Cr) series with the fumarate, terephthalate, naphthalate and biphenyldicarboxylate linkers respectively.
199:
is another early example of a divalent carboxylate MOF. Reported around the same time as MOF-5, HKUST-1 is a copper ‘
926:
Dietzel, Pascal D. C.; Georgiev, Peter A.; Eckert, Juergen; Blom, Richard; Strässle, Thierry; Unruh, Tobias (2010).
1287:"A Route to the Synthesis of Trivalent Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units" 879:
Rosi, Nathaniel L.; Kim, Jaheon; Eddaoudi, Mohamed; Chen, Banglin; O'Keeffe, Michael; Yaghi, Omar M. (2005-02-01).
104: 79: 660:
Chui, Stephen S.-Y.; Lo, Samuel M.-F.; Charmant, Jonathan P. H.; Orpen, A. Guy; Williams, Ian D. (1999-02-19).
1538: 1497: 1446: 1524: 1512: 388: 1461: 794: 565: 1329:
Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. (2007-03-30).
1150:"A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration" 168: 1366: 593: 543: 481: 881:"Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units" 485: 476: 1358: 1350: 1306: 1267: 1259: 1220: 1212: 1177: 1169: 1127: 1119: 1080: 1041: 1002: 994: 955: 947: 908: 900: 858: 814: 775: 767: 728: 689: 681: 642: 634: 585: 535: 298: 1286: 1149: 1021: 838: 1452: 1342: 1298: 1251: 1204: 1161: 1111: 1072: 1033: 986: 939: 892: 850: 806: 759: 720: 673: 661: 624: 577: 525: 517: 42: 35: 506:"Design and synthesis of an exceptionally stable and highly porous metal-organic framework" 1331:"Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks" 155:
IRMOF-13 (left) and IRMOF-15 (right): Interpenetration of the low density cubic lattices.
837:
Dietzel, Pascal D. C.; Johnsen, Rune E.; Blom, Richard; Fjellvåg, Helmer (2008-03-07).
662:"A Chemically Functionalizable Nanoporous Material [Cu 3 (TMA) 2 (H 2 O) 3 ] n" 1330: 1060: 17: 1569: 232: 597: 581: 305:
aluminium MIL-53, extensive work has been undertaken in this area, and the range of
1370: 547: 200: 677: 78:
The structure is retained upon solvent removal and the literature states that the
1380: 39: 810: 1285:
Serre, Christian; Millange, Franck; Surblé, Suzy; Férey, Gérard (2004-11-26).
92: 1354: 1263: 1239: 1216: 1173: 1123: 1099: 1084: 998: 951: 904: 880: 818: 771: 747: 732: 708: 685: 638: 589: 539: 1346: 1059:
Barthelet, Karin; Marrot, Jérôme; Riou, Didier; Férey, Gérard (2002-01-18).
504:
Li, Hailian; Eddaoudi, Mohamed; O'Keeffe, M.; Yaghi, O. M. (November 1999).
1362: 1310: 1302: 1271: 1224: 1181: 1165: 1131: 1045: 1037: 1022:"BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications" 1006: 959: 912: 862: 854: 779: 693: 646: 629: 612: 363: 99:
MOF-177 is another example of a MOF material containing the tetrahedral Zn
1544: 530: 408: 1077:
10.1002/1521-3757(20020118)114:2<291::aid-ange291>3.0.co;2-i
505: 1530: 1426: 943: 927: 412: 196: 83: 58: 1255: 1115: 896: 763: 724: 1503: 1434: 1208: 1196: 990: 974: 306: 262: 1438: 1430: 521: 362: 210: 167: 70: 54: 1384: 793:
Marx, Stefan; Kleist, Wolfgang; Baiker, Alfons (2011-07-01).
613:"Strategies for Hydrogen Storage in Metal-Organic Frameworks" 566:"Metal–organic frameworks: a new class of porous materials" 403:
isoreticular materials prepared withdicarboxylate linkers.
748:"Role of Exposed Metal Sites in Hydrogen Storage in MOFs" 1195:
Barthelet, K.; Marrot, J.; Férey, G.; Riou, D. (2004).
484: by John Patrick Stephen Mowat available under the 309:
materials now extends to: Cr,Al, Fe, Ga, In, and Sc.
1551: 1537: 1523: 1511: 1496: 1460: 1445: 1419: 611:Rowsell, Jesse L. C.; Yaghi, Omar M. (2005-07-25). 564:Rowsell, Jesse L. C.; Yaghi, Omar M. (2004-08-06). 53:The divalent metal carboxylate based frameworks 975:"Response of CPO-27-Ni towards CO, N2 and C2H4" 143:MOF-177, single cage from the zinc carboxylate. 1396: 8: 1403: 1389: 1381: 28:Carboxylate–based metal–organic frameworks 628: 529: 1104:Journal of the American Chemical Society 885:Journal of the American Chemical Society 752:Journal of the American Chemical Society 1291:Angewandte Chemie International Edition 1026:Angewandte Chemie International Edition 617:Angewandte Chemie International Edition 493: 427: 314: 117: 1324: 1322: 1320: 1143: 1141: 7: 874: 872: 832: 830: 828: 570:Microporous and Mesoporous Materials 559: 557: 499: 497: 979:Physical Chemistry Chemical Physics 25: 572:. Metal-Organic Open Frameworks. 461:Open and closed MIL-88(Fe or Cr). 480: This article incorporates 475: 454: 442: 430: 343: 330: 317: 148: 136: 120: 1553:Zeolitic imidazolate frameworks 582:10.1016/j.micromeso.2004.03.034 1154:Chemistry - A European Journal 843:Chemistry - A European Journal 1: 678:10.1126/science.283.5405.1148 105:benzene-1,3,5-tribenzoic acid 261:The vanadium terephthalate 1592: 811:10.1016/j.jcat.2011.04.004 1576:Metal-organic frameworks 1412:Metal–organic frameworks 32:metal–organic frameworks 1347:10.1126/science.1137975 932:Chemical Communications 1421:Carboxylate–based MOFs 1303:10.1002/anie.200454250 1166:10.1002/chem.200305413 1038:10.1002/anie.201000048 855:10.1002/chem.200701370 713:Chemistry of Materials 630:10.1002/anie.200462786 368: 248:Trivalent Carboxylates 217: 193: 18:Carboxylate-based MOFs 1539:Molybdenum-based MOFs 366: 214: 171: 80:Langmuir surface area 49:Divalent Carboxylates 1498:Aluminium-based MOFs 1447:Zirconium-based MOFs 799:Journal of Catalysis 1525:Vanadium-based MOFs 1341:(5820): 1828–1831. 1250:(24): 11892–11901. 1244:Inorganic Chemistry 1110:(45): 13519–13526. 672:(5405): 1148–1150. 257:MIL-47 & MIL-53 66:MOF-5 & MOF-177 1513:Azolate-based MOFs 944:10.1039/c0cc00091d 392:-Dimethylformamide 369: 218: 194: 127:MOF-5 assembly, Zn 34:that are based on 1563: 1562: 1462:Nickel-based MOFs 1297:(46): 6285–6289. 1256:10.1021/ic801624v 1116:10.1021/ja0276974 1065:Angewandte Chemie 1032:(36): 6260–6266. 985:(42): 9811–9822. 938:(27): 4962–4964. 897:10.1021/ja045123o 764:10.1021/ja8007159 758:(26): 8386–8396. 725:10.1021/cm052191g 623:(30): 4670–4679. 516:(6759): 276–279. 299:X-ray diffraction 43:functional groups 36:organic molecules 16:(Redirected from 1583: 1405: 1398: 1391: 1382: 1375: 1374: 1326: 1315: 1314: 1282: 1276: 1275: 1235: 1229: 1228: 1209:10.1039/B312589K 1192: 1186: 1185: 1160:(6): 1373–1382. 1145: 1136: 1135: 1095: 1089: 1088: 1056: 1050: 1049: 1017: 1011: 1010: 991:10.1039/b907258f 970: 964: 963: 923: 917: 916: 891:(5): 1504–1518. 876: 867: 866: 849:(8): 2389–2397. 834: 823: 822: 790: 784: 783: 743: 737: 736: 719:(5): 1337–1346. 704: 698: 697: 657: 651: 650: 632: 608: 602: 601: 561: 552: 551: 533: 501: 479: 458: 446: 434: 347: 334: 321: 224: 152: 140: 124: 21: 1591: 1590: 1586: 1585: 1584: 1582: 1581: 1580: 1566: 1565: 1564: 1559: 1547: 1533: 1519: 1518:MFU-4l, NU-2100 1507: 1492: 1491: 1484: 1477: 1470: 1456: 1441: 1415: 1409: 1379: 1378: 1328: 1327: 1318: 1284: 1283: 1279: 1237: 1236: 1232: 1194: 1193: 1189: 1147: 1146: 1139: 1097: 1096: 1092: 1058: 1057: 1053: 1019: 1018: 1014: 972: 971: 967: 925: 924: 920: 878: 877: 870: 836: 835: 826: 792: 791: 787: 745: 744: 740: 706: 705: 701: 659: 658: 654: 610: 609: 605: 563: 562: 555: 503: 502: 495: 472: 467: 466: 465: 462: 459: 450: 447: 438: 435: 400: 386: 382: 378: 374: 361: 356: 355: 354: 351: 348: 339: 335: 326: 322: 296: 292: 288: 284: 280: 276: 272: 268: 259: 250: 243: 239: 222: 209: 207:CPO-27 / MOF-74 191: 187: 183: 179: 175: 166: 161: 160: 159: 156: 153: 144: 141: 132: 130: 125: 110: 102: 90: 76: 68: 51: 23: 22: 15: 12: 11: 5: 1589: 1587: 1579: 1578: 1568: 1567: 1561: 1560: 1557: 1555: 1549: 1548: 1543: 1541: 1535: 1534: 1529: 1527: 1521: 1520: 1517: 1515: 1509: 1508: 1502: 1500: 1494: 1493: 1489: 1482: 1475: 1468: 1466: 1464: 1458: 1457: 1451: 1449: 1443: 1442: 1425: 1423: 1417: 1416: 1410: 1408: 1407: 1400: 1393: 1385: 1377: 1376: 1316: 1277: 1230: 1203:(5): 520–521. 1187: 1137: 1090: 1071:(2): 291–294. 1051: 1012: 965: 918: 868: 824: 785: 738: 699: 652: 603: 553: 492: 491: 471: 468: 464: 463: 460: 453: 451: 448: 441: 439: 436: 429: 426: 425: 424: 399: 396: 384: 380: 376: 372: 360: 357: 353: 352: 349: 342: 340: 336: 329: 327: 323: 316: 313: 312: 311: 294: 290: 286: 282: 278: 274: 270: 266: 258: 255: 249: 246: 241: 237: 233:helical chains 208: 205: 189: 185: 181: 177: 173: 165: 162: 158: 157: 154: 147: 145: 142: 135: 133: 128: 126: 119: 116: 115: 114: 108: 100: 88: 74: 67: 64: 50: 47: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1588: 1577: 1574: 1573: 1571: 1556: 1554: 1550: 1546: 1542: 1540: 1536: 1532: 1528: 1526: 1522: 1516: 1514: 1510: 1505: 1501: 1499: 1495: 1487: 1480: 1473: 1465: 1463: 1459: 1454: 1450: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1422: 1418: 1413: 1406: 1401: 1399: 1394: 1392: 1387: 1386: 1383: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1325: 1323: 1321: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1234: 1231: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1201:Chem. Commun. 1198: 1191: 1188: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1144: 1142: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1091: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1055: 1052: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1016: 1013: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 969: 966: 961: 957: 953: 949: 945: 941: 937: 933: 929: 922: 919: 914: 910: 906: 902: 898: 894: 890: 886: 882: 875: 873: 869: 864: 860: 856: 852: 848: 844: 840: 833: 831: 829: 825: 820: 816: 812: 808: 804: 800: 796: 789: 786: 781: 777: 773: 769: 765: 761: 757: 753: 749: 742: 739: 734: 730: 726: 722: 718: 714: 710: 703: 700: 695: 691: 687: 683: 679: 675: 671: 667: 663: 656: 653: 648: 644: 640: 636: 631: 626: 622: 618: 614: 607: 604: 599: 595: 591: 587: 583: 579: 575: 571: 567: 560: 558: 554: 549: 545: 541: 537: 532: 531:2027.42/62847 527: 523: 522:10.1038/46248 519: 515: 511: 507: 500: 498: 494: 490: 489: 487: 483: 478: 469: 457: 452: 445: 440: 433: 428: 423: 422: 417: 414: 410: 404: 397: 395: 393: 391: 365: 358: 346: 341: 333: 328: 320: 315: 310: 308: 303: 300: 264: 256: 254: 247: 245: 234: 230: 227: 213: 206: 204: 202: 198: 172:Individual Cu 170: 163: 151: 146: 139: 134: 123: 118: 113: 106: 97: 94: 85: 81: 72: 65: 63: 60: 56: 48: 46: 44: 41: 37: 33: 29: 19: 1485: 1478: 1471: 1338: 1334: 1294: 1290: 1280: 1247: 1243: 1233: 1200: 1190: 1157: 1153: 1107: 1103: 1093: 1068: 1064: 1054: 1029: 1025: 1015: 982: 978: 968: 935: 931: 921: 888: 884: 846: 842: 805:(1): 76–87. 802: 798: 788: 755: 751: 741: 716: 712: 702: 669: 665: 655: 620: 616: 606: 573: 569: 513: 509: 486:CC BY-SA 3.0 474: 473: 421: 418: 405: 401: 389: 370: 302: 260: 251: 229: 226: 219: 195: 98: 69: 52: 27: 26: 576:(1): 3–14. 201:paddlewheel 40:carboxylate 38:comprising 470:References 216:molecules. 93:catenation 1481:Ni(2-ain) 1474:Ni(3-ain) 1355:0036-8075 1264:0020-1669 1217:1359-7345 1174:0947-6539 1124:0002-7863 1085:0044-8249 999:1463-9076 952:1359-7345 905:0002-7863 819:0021-9517 772:0002-7863 733:0897-4756 686:0036-8075 639:1433-7851 590:1387-1811 540:1476-4687 1570:Category 1545:TUDMOF-1 1455:, UiO-67 1363:17395825 1311:15372643 1272:19053340 1225:14973587 1182:15034882 1132:12418906 1046:20652915 1007:19851561 960:20512182 913:15686384 863:18203217 780:18533719 694:10024237 647:16028207 598:41538790 488:license. 409:lutidine 244:and NO. 84:zeolites 1531:COMOC-2 1506:, DUT-5 1488:Ni(pba) 1467:Ni(ina) 1427:HKUST-1 1371:1148779 1335:Science 666:Science 548:4310761 413:butanol 338:linker. 325:linker. 197:HKUST-1 164:HKUST-1 59:HKUST-1 1504:MIL-53 1453:UIO-66 1435:MIL-53 1369:  1361:  1353:  1309:  1270:  1262:  1223:  1215:  1180:  1172:  1130:  1122:  1083:  1044:  1005:  997:  958:  950:  911:  903:  861:  817:  778:  770:  731:  692:  684:  645:  637:  596:  588:  546:  538:  510:Nature 398:MIL-88 359:MIL-68 307:MIL-53 263:MIL-47 1558:ZIF-8 1439:DUT-5 1431:MOF-5 1414:(MOF) 1367:S2CID 594:S2CID 544:S2CID 223:Co,Ni 71:MOF-5 55:MOF-5 1359:PMID 1351:ISSN 1307:PMID 1268:PMID 1260:ISSN 1221:PMID 1213:ISSN 1178:PMID 1170:ISSN 1128:PMID 1120:ISSN 1081:ISSN 1042:PMID 1003:PMID 995:ISSN 956:PMID 948:ISSN 909:PMID 901:ISSN 859:PMID 815:ISSN 776:PMID 768:ISSN 729:ISSN 690:PMID 682:ISSN 643:PMID 635:ISSN 586:ISSN 536:ISSN 482:text 411:and 390:N,N’ 231:The 57:and 30:are 1343:doi 1339:315 1299:doi 1252:doi 1205:doi 1162:doi 1112:doi 1108:124 1073:doi 1069:114 1034:doi 987:doi 940:doi 893:doi 889:127 851:doi 807:doi 803:281 760:doi 756:130 721:doi 674:doi 670:283 625:doi 578:doi 526:hdl 518:doi 514:402 383:-CO 293:-CO 277:-CO 240:, H 176:(CO 1572:: 1486:, 1479:, 1472:, 1437:, 1433:, 1429:, 1365:. 1357:. 1349:. 1337:. 1333:. 1319:^ 1305:. 1295:43 1293:. 1289:. 1266:. 1258:. 1248:47 1246:. 1242:. 1219:. 1211:. 1199:. 1176:. 1168:. 1158:10 1156:. 1152:. 1140:^ 1126:. 1118:. 1106:. 1102:. 1079:. 1067:. 1063:. 1040:. 1030:49 1028:. 1024:. 1001:. 993:. 983:11 981:. 977:. 954:. 946:. 936:46 934:. 930:. 907:. 899:. 887:. 883:. 871:^ 857:. 847:14 845:. 841:. 827:^ 813:. 801:. 797:. 774:. 766:. 754:. 750:. 727:. 717:18 715:. 711:. 688:. 680:. 668:. 664:. 641:. 633:. 621:44 619:. 615:. 592:. 584:. 574:73 568:. 556:^ 542:. 534:. 524:. 512:. 508:. 496:^ 375:-C 285:-C 269:-C 188:O) 184:(H 87:Zn 45:. 1490:2 1483:2 1476:2 1469:2 1404:e 1397:t 1390:v 1373:. 1345:: 1313:. 1301:: 1274:. 1254:: 1227:. 1207:: 1184:. 1164:: 1134:. 1114:: 1087:. 1075:: 1048:. 1036:: 1009:. 989:: 962:. 942:: 915:. 895:: 865:. 853:: 821:. 809:: 782:. 762:: 735:. 723:: 696:. 676:: 649:. 627:: 600:. 580:: 550:. 528:: 520:: 385:2 381:4 379:H 377:6 373:2 295:2 291:4 289:H 287:6 283:2 279:2 275:4 273:H 271:6 267:2 242:2 238:2 190:2 186:2 182:4 180:) 178:2 174:2 129:4 109:2 101:4 89:4 75:4 20:)

Index

Carboxylate-based MOFs
metal–organic frameworks
organic molecules
carboxylate
functional groups
MOF-5
HKUST-1
MOF-5
Langmuir surface area
zeolites
catenation
benzene-1,3,5-tribenzoic acid
MOF-5 assembly, Zn4O(CO2)6 cluster (left), octahedral geometry of terephthalate molecules (middle) and 3D cubic lattice (right). Zinc tetrahedra are shown in blue. Black spheres represent the carbon atoms of the organic linker.
MOF-177, single cage from the zinc carboxylate.
IRMOF-13 (left) and IRMOF-15 (right): Interpenetration of the low density cubic lattices.

HKUST-1
paddlewheel

helical chains
MIL-47
X-ray diffraction
MIL-53
Corner sharing vanadium chains (left) and view along the rhombic channels (right) of the vanadium terephthalate, MIL-47(V).62 Vanadium octahedra are shown in red, black spheres represent the carbon atoms of the organic linker.
Corner sharing chromium hydroxide chains (left) and large pore (dehydrated) framework of MIL-53(Cr) (right). Chromium octahedra are shown in green, black spheres represent the carbon atoms of the organic linker.
MIL-53(Cr) in the hydrated (narrow pore) state (left) and in the dehydrated (large pore) state (right). Chromium octahedra are shown in green, black spheres represent the carbon atoms of the organic linker.

N,N’-Dimethylformamide
lutidine
butanol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.