Knowledge

Carpanone

Source 📝

183: 584: 304: 24: 403: 543:
in the presence of sodium acetate (e.g., dissolved in a mixture of methanol and water); the reaction was perceived to proceed via a complexation of a pair of carpacins to the Pd(II) metal via their phenolic anions (as shown in scheme, below right), followed by a classic 8-8' (β-β') oxidative phenolic
648:
The Chapman approach has been applied in a variety of ways since its original report, varying substrates, oxidants, and other aspects (and so synthesis of carpanone has subsequently been achieved by "quite a few research groups"); the actual mechanism of Pd(II) action is likely more complex than the
649:
original conjecture, and there is evidence that the mechanism, broadly speaking, depends on actual conditions (specific substrate, oxidant, etc.). Various groups, including the laboratories of Steve Ley, Craig Lindley, and Matthew Shair, have succeeded in extending the Chapman method to
639:
For the elegance of its "one-pot construction of a tetracyclic scaffold with complete stereocontrol of five contiguous stereo centers", the original Chapman design and synthesis is "ow considered a classic in total synthesis" that "highlights the power of biomimetic synthesis".
470:
Carpanone itself is limited in its pharmacologic and biologic activities, but related analogs arrived at by variations of the Brophy-Chapman approach have shown activities as tool compounds relevant to mammalian exocytosis and vesicular traffic, and provided therapeutic
598:
oxidative coupling–Diels Alder reaction sequence. Note, in the second image in the scheme, the two lines crossing at the top are the two molecules overlapping each other (and do not imply chemical bonds). In this scheme, Pd (II) is shown forming a complex between two
539:(carpacin with the methyl of its methoxy group removed). Though oxidative dimerizations of phenols normally used a 1-electron oxidant, Chapman then followed a precedent involving a 2-electron oxidant and treated desmethylcarpacin with PdCl 653:, i.e., phenolic starting materials on polymeric supports, thus allowing the generation of libraries of carpanone analogs. A hetero-8-8' oxidative coupling system akin to the Chapman approach has been developed that uses IPh(OAC) 815:
Brian C. Goess, Rami N. Hannoush, Lawrence K. Chan, Tomas Kirchhausen, and Matthew D. Shair, 2006, Synthesis of a 10,000-Membered Library of Molecules Resembling Carpanone and Discovery of Vesicular Traffic Inhibitors,
576:. The carpanone is produced in yields of ≈50% by the original method, and in yields >90% in modern variants (see below). The synthesis of a single diastereomer was confirmed in the original Chapman work, using 748:
F. Liron, F. Fontana, J.-O. Zirimwabagabo, G. Prestat, J. Rajabi, C. La Rosa & G. Poli, 2009, A New Cross-Coupling-Based Synthesis of Carpanone, Org. Lett., 11(19):4378–4381, DOI: 10.1021/ol9017326, see
399:
with a 9-carbon framework, recognized its substructure as being dimerized within the complex carpanone structure, and proposed a hypothesis of how carpacin was converted to carpanone in plant cells:
694:
C.W. Lindsley, C.R. Hopkins & G.A. Sulikowski, 2011, Biomimetic synthesis of lignans, In "Biomimetic Organic Synthesis" (E. Poupon & B. Nay, Eds.), Weinheim: Wiley-VCH,
347:
most widely known for the remarkably complex way nature prepares it, and the similarly remarkable success that an early chemistry group, that of Orville L. Chapman, had at
383:), and is notable in its stereochemical complexity, because it contains five contiguous stereogenic centers. The route by which this complex structure is achieved through 317: 206:
InChI=1S/C20H18O6/c1-9-3-11-13(21)5-17-20(25-8-24-17)19(11)18(10(9)2)12-4-15-16(23-7-22-15)6-14(12)26-20/h3-6,9-10,18-19H,7-8H2,1-2H3/t9-,10+,18+,19+,20?/m0/s1
216:
InChI=1/C20H18O6/c1-9-3-11-13(21)5-17-20(25-8-24-17)19(11)18(10(9)2)12-4-15-16(23-7-22-15)6-14(12)26-20/h3-6,9-10,18-19H,7-8H2,1-2H3/t9-,10+,18+,19+,20?/m0/s1
232: 391:
that, almost instantly, take a molecule with little three-dimensionality to the complex final structure. Notably, Brophy and coworkers isolated the simpler
895:
C.W. Lindsley, L.K. Chan, B.C. Goess, R. Joseph & M.D. Shair, 2001, Solid-phase biomimetic synthesis of carpanone-like molecules, J. Am. Chem. Soc.
782: 84: 572:
reaction termed an inverse demand Diels-Alder reaction (see curved arrows in image), which closes the 2 new rings and generates the 5 contiguous
478:
The original Chapman design and synthesis is considered a classic in total synthesis, and one that highlights the power of biomimetic synthesis.
878:
Per Lindsley et al., see following, oxidant systems, generally including dioxygen, adventitious or otherwise, include azobisisobutyronitrile, Ag
751: 863: 699: 197: 467:
this proposed biosynthetic route, and achieved the synthesis of carpanone from carpacin in a single "pot", in about 50% yield.
505:), shown below as the starting molecule in the scheme, is acquired in two high-yield steps involving three transformations: 140: 161: 657:, and that allows for preparation of more electron rich homodimers, and for hetero-tetracyclic analogs of carpanone. 324: 915:
Goess, B. C.; Hannoush, R. N.; Chan, L. K.; Kirchhausen, T.; Shair, M. D. J. Am. Chem. Soc. 2006, 128, 5391–5403.
628: 936: 946: 882:
O, M(II) salen systems (M=Co, Mn, Fe), singlet oxygen (hν, Rose Bengal), dibenzoyl peroxide, and IPh(OAC)
632: 603:
of carpacin, then mediating oxidative 8-8' (β-β') phenolic coupling of their alkene tails to generate a
577: 573: 517: 758: 587: 491: 464: 348: 178: 364: 50: 799:
G.C. Brophy, J. Mohandas, M. Slaytor, T.R. Watson & L.A. Wilson, 1969, Novel lignans from a
855: 719:
O.L. Chapman, M.R. Engel, J.P. Springer & J.C. Clardy, 1971, Total synthesis of carpanone,
859: 776: 695: 463:
Remarkably, within two years, Chapman and coworkers were able to chemically design a route to
104: 448:
intermediate then underwent a phenolic coupling to generate a dimeric intermediate, which was
931: 847: 352: 255: 568:
of the other (shown adjacent in image for clarity), setting the state for a variant of the
149: 60: 941: 616: 595: 553: 487: 421: 396: 388: 380: 368: 344: 182: 912:
Baxendale, I. R.; Lee, A.-L.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 2002, 1850–1857.
824: 843: 295: 925: 848: 456: 418: 583: 384: 372: 129: 703: 788: 624: 569: 472: 452: 560:
intermediate. A particular conformation of this dimer then places a 4-electron
544:
coupling of the two olefin tails—shown crossing in the image—to give a dimeric
520:
to move the O-allyl group onto the adjacent site on the aromatic ring, and then
918:
Daniels, R. N.; Fadeyi, O. O.; Lindsley, C. W. Org. Lett. 2008, 10, 4097–4100.
356: 283: 95: 591: 536: 438: 376: 523:
thermal isomerization of the Claisen product, to move the terminal olefin (
392: 510: 502: 415: 411: 116: 23: 557: 524: 445: 371:
derives its name. The hexacyclic lignan is one of a class of related
340: 459:
reaction to create 2 new rings, to give the final carpanone product.
402: 294:
Except where otherwise noted, data are given for materials in their
582: 561: 499: 401: 375:
isolated from carpano bark as mixtures of equal proportion of the
83: 73: 565: 475:
in antiinfective, antihypertensive, and hepatoprotective areas.
509:
allylation of the phenolic anion generated after treatment of
424:
whose structure was recognized as being dimerized in carpanone
166: 535:
This procedure is one of several that gives the required
527:) into conjugation with the ring (with e.g., potassium 312: 803:
sp. from Bougainville, Tetrahedron Lett. 10:5159-5162.
690: 688: 686: 684: 682: 680: 678: 676: 674: 672: 670: 811: 809: 128: 744: 742: 740: 738: 736: 734: 732: 240:CC1C=C2C3C(C1C)c4cc5c(cc4OC36C(=CC2=O)OCO6)OCO5 59: 838: 836: 834: 832: 823:(16): 5391–5403, DOI: 10.1021/ja056338g, see 367:by Brophy and coworkers, trees from which the 715: 713: 711: 8: 513:with potassium carbonate and allyl bromide, 498:in 1971. The required desmethylcarpacin (2- 623:-selective inverse electron-demand hetero- 181: 103: 15: 619:intermediate, followed immediately by an 148: 631:), to close the rings and generates the 429:carpacin underwent loss of a methyl (-CH 666: 237: 202: 177: 781:: CS1 maint: archived copy as title ( 774: 209:Key: WTXORUUTAZJKSN-JMAAQRFFSA-N 7: 854:. Weinheim, Germany: VCH. pp.  433:) group from the ring methoxy (-OCH 219:Key: WTXORUUTAZJKSN-JMAAQRFFBX 119: 351:nature's pathway. Carpanone is an 14: 594:into carpanone in one pot, via a 564:of one ring over the 2-electron 302: 267: 22: 437:) group to provide the phenol, 298:(at 25 °C , 100 kPa). 629:Diels–Alder reaction#Mechanism 494:approach published by Chapman 273: 261: 1: 414:, and a more common type of 850:Classics in Total Synthesis 288:354.343 g/mol 963: 451:followed immediately by a 846:; E. J. Sorensen (1996). 651:solid-supported synthesis 379:of its components (i.e., 339:is a naturally occurring 292: 248: 228: 193: 43: 35: 30: 21: 644:Extensions of the system 355:first isolated from the 826:, accessed 4 June 2014. 705:, accessed 4 June 2014. 790:, accessed 4 June 2014 636: 516:followed by a thermal 425: 586: 578:X-ray crystallography 518:Claisen rearrangement 490:of carpanone was the 405: 389:a series of reactions 661:References and notes 531:-butoxide as base). 365:Bougainville Island 18: 637: 590:transformation of 426: 325:Infobox references 16: 865:978-3-527-29284-4 818:J. Am. Chem. Soc. 721:J. Am. Chem. Soc. 592:desmethylcarpacin 537:desmethylcarpacin 439:desmethylcarpacin 333:Chemical compound 331: 330: 162:CompTox Dashboard 85:Interactive image 954: 900: 893: 887: 876: 870: 869: 853: 840: 827: 813: 804: 797: 791: 786: 780: 772: 770: 769: 763: 757:. Archived from 756: 746: 727: 717: 706: 692: 381:racemic mixtures 353:organic compound 315: 309: 306: 305: 275: 269: 263: 256:Chemical formula 186: 185: 170: 168: 152: 132: 121: 107: 87: 63: 26: 19: 962: 961: 957: 956: 955: 953: 952: 951: 937:Total synthesis 922: 921: 909: 907:Further reading 904: 903: 894: 890: 885: 881: 877: 873: 866: 844:Nicolaou, K. C. 842: 841: 830: 814: 807: 798: 794: 773: 767: 765: 761: 754: 752:"Archived copy" 750: 747: 730: 718: 709: 693: 668: 663: 656: 646: 617:quinone methide 554:quinone methide 542: 488:total synthesis 484: 482:Total synthesis 436: 432: 422:phenylpropanoid 397:phenylpropanoid 369:natural product 345:natural product 334: 327: 322: 321: 320:  ?) 311: 307: 303: 299: 278: 272: 266: 258: 244: 241: 236: 235: 224: 221: 220: 217: 211: 210: 207: 201: 200: 189: 171: 164: 155: 135: 122: 110: 90: 77: 66: 53: 39: 12: 11: 5: 960: 958: 950: 949: 944: 939: 934: 924: 923: 920: 919: 916: 913: 908: 905: 902: 901: 888: 883: 879: 871: 864: 828: 805: 792: 728: 707: 665: 664: 662: 659: 654: 645: 642: 627:reaction (see 540: 533: 532: 521: 514: 483: 480: 461: 460: 449: 442: 434: 430: 361:Cinnamomum sp. 332: 329: 328: 323: 301: 300: 296:standard state 293: 290: 289: 286: 280: 279: 276: 270: 264: 259: 254: 251: 250: 246: 245: 243: 242: 239: 231: 230: 229: 226: 225: 223: 222: 218: 215: 214: 212: 208: 205: 204: 196: 195: 194: 191: 190: 188: 187: 179:DTXSID10303059 174: 172: 160: 157: 156: 154: 153: 145: 143: 137: 136: 134: 133: 125: 123: 115: 112: 111: 109: 108: 100: 98: 92: 91: 89: 88: 80: 78: 71: 68: 67: 65: 64: 56: 54: 49: 46: 45: 41: 40: 37: 33: 32: 28: 27: 13: 10: 9: 6: 4: 3: 2: 959: 948: 947:Benzodioxoles 945: 943: 940: 938: 935: 933: 930: 929: 927: 917: 914: 911: 910: 906: 898: 892: 889: 875: 872: 867: 861: 857: 852: 851: 845: 839: 837: 835: 833: 829: 825: 822: 819: 812: 810: 806: 802: 796: 793: 789: 784: 778: 764:on 2014-06-07 760: 753: 745: 743: 741: 739: 737: 735: 733: 729: 725: 722: 716: 714: 712: 708: 704: 701: 700:9783527634767 697: 691: 689: 687: 685: 683: 681: 679: 677: 675: 673: 671: 667: 660: 658: 652: 643: 641: 634: 633:stereocenters 630: 626: 622: 618: 614: 610: 606: 602: 597: 593: 589: 585: 581: 579: 575: 574:stereocenters 571: 567: 563: 559: 555: 551: 547: 538: 530: 526: 522: 519: 515: 512: 508: 507: 506: 504: 501: 497: 493: 489: 481: 479: 476: 474: 468: 466: 458: 457:cycloaddition 454: 450: 447: 443: 440: 428: 427: 423: 420: 417: 413: 409: 406:Carpacin, an 404: 400: 398: 394: 390: 386: 382: 378: 374: 373:diastereomers 370: 366: 362: 358: 357:carpano trees 354: 350: 346: 342: 338: 326: 319: 314: 297: 291: 287: 285: 282: 281: 260: 257: 253: 252: 247: 238: 234: 227: 213: 203: 199: 192: 184: 180: 176: 175: 173: 163: 159: 158: 151: 147: 146: 144: 142: 139: 138: 131: 127: 126: 124: 118: 114: 113: 106: 102: 101: 99: 97: 94: 93: 86: 82: 81: 79: 75: 70: 69: 62: 58: 57: 55: 52: 48: 47: 42: 34: 29: 25: 20: 896: 891: 874: 849: 820: 817: 800: 795: 766:. Retrieved 759:the original 723: 720: 650: 647: 638: 620: 612: 608: 604: 600: 549: 545: 534: 528: 495: 485: 477: 469: 462: 407: 385:biosynthesis 377:"handedness" 360: 336: 335: 44:Identifiers 36:Other names 726::6697–6698. 625:Diels-Alder 570:Diels-Alder 453:Diels-Alder 249:Properties 926:Categories 899:, 422–423. 801:Cinnamomum 768:2014-06-06 588:Biomimetic 492:biomimetic 486:The first 284:Molar mass 150:G32K37Q6T4 96:ChemSpider 72:3D model ( 61:26430-30-8 51:CAS Number 17:Carpanone 556:-type of 387:involves 349:mimicking 337:Carpanone 777:cite web 601:monomers 416:phenolic 410:-methoxy 393:carpacin 105:21864720 38:Cupanone 932:Lignans 511:sesamol 503:sesamol 412:styrene 318:what is 316: ( 117:PubChem 942:Enones 862:  702:, see 698:  596:tandem 558:lignan 525:alkene 496:et al. 473:"hits" 455:(4+2) 446:phenol 343:-type 341:lignan 313:verify 310:  233:SMILES 130:291296 31:Names 858:–97. 762:(PDF) 755:(PDF) 613:ortho 609:trans 605:dimer 562:enone 550:ortho 546:trans 500:allyl 465:mimic 444:this 419:plant 408:ortho 363:) of 198:InChI 74:JSmol 860:ISBN 783:link 696:ISBN 621:endo 607:, a 566:enol 529:tert 395:, a 141:UNII 897:122 821:128 787:or 167:EPA 120:CID 928:: 856:95 831:^ 808:^ 779:}} 775:{{ 731:^ 724:93 710:^ 669:^ 580:. 271:18 265:20 886:. 884:2 880:2 868:. 785:) 771:. 655:2 635:. 615:- 611:- 552:- 548:- 541:2 441:, 435:3 431:3 359:( 308:Y 277:6 274:O 268:H 262:C 169:) 165:( 76:)

Index


CAS Number
26430-30-8
JSmol
Interactive image
ChemSpider
21864720
PubChem
291296
UNII
G32K37Q6T4
CompTox Dashboard
DTXSID10303059
Edit this at Wikidata
InChI
SMILES
Chemical formula
Molar mass
standard state
verify
what is
Infobox references
lignan
natural product
mimicking
organic compound
carpano trees
Bougainville Island
natural product
diastereomers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.